Quest Journals Journal of Research in Applied Mathematics Volume 9 ~ Issue 1 (2023) pp: 09-10 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Three Related Problems Involving Pythagorean Triples and Triangular Numbers

Anthony Delgado and Marty Lewinter

Received 01 Jan., 2023; Revised 09 Jan., 2023; Accepted 11 Jan., 2023 © The author(s) 2023. Published with open access at www.questjournals.org

I. Introduction:

The *n*-th *triangular number* is defined by $t_n = 1 + 2 + ... + n = 1$ $(n+1)$ 2 $\frac{n(n+1)}{n}$. The *m*-th *oblong number* is defined

by $O_m = m(m + 1)$. A *Pythagorean triple* is a set of positive integers, (a, b, c) , that satisfies $a^2 + b^2 = c^2$. See [1].We show that a solution to any one of the following three problems yields solutions to the other two.

- 1. Find Pythagorean triples of the form (t_{2x}, t_{2x+1}, z) . That is, the legs are consecutive triangular numbers.
- 2. Find Pythagorean triple of the form $(x, x + 1, w)$.
- 3. Find triangular number that are oblong.

Problem 1

Let's examine the first problem. Starting with the Pythagorean Theorem, we have
\n
$$
t_{2x}^{2} + t_{2x+1}^{2} = \left(\frac{2x(2x+1)}{2}\right)^{2} + \left(\frac{(2x+1)(2x+2)}{2}\right)^{2} = z^{2} \implies
$$
\n
$$
(x(2x+1))^{2} + ((2x+1)(x+1))^{2} = z^{2} \implies x^{2}(2x+1)^{2} + (x+1)^{2}(2x+1)^{2} = z^{2} \implies
$$
\n
$$
(x^{2} + (x+1)^{2})(2x+1)^{2} = z^{2} \implies (2x^{2} + 2x + 1)(2x+1)^{2} = z^{2} \implies z = (2x+1)\sqrt{2x^{2} + 2x + 1}
$$

Then solving problem #1 depends on finding values of x for which $2x^2 + 2x + 1$ is a square. Put this aside to dry, and turn our attention to problem #2.

Problems 2 and 3

The Pythagorean Theorem yields

 $x^2 + (x+1)^2 = w^2 \implies 2x^2 + 2x + 1 = w^2$

Such an *x* would also solve problem #1, with $z = (2x + 1)w$.

To tackle problem #3, we shall start with the equation $2x^2 + 2x + 1 = w^2$. It follows that w^2 must be odd, implying that *w* must be odd. Letting $w = 2k + 1$ yields

$$
2x^{2} + 2x + 1 = w^{2} = (2k + 1)^{2} = 4k^{2} + 4k + 1 \implies 2x^{2} + 2x = 4k^{2} + 4k \implies
$$

$$
\frac{x^{2} + x}{2} = k^{2} + k \implies t_{x} = \frac{x(x + 1)}{2} = k(k + 1) = O_{k}
$$

That is, we have a triangular number, t_x , that equals an oblong number, O_k .

Example: $t_{20} = 210 = O_{14}$ solves problem #3. So $x = 20$ and $k = 14$. Since $w = 2k + 1$, we get $w = 2.14 + 1 =$ 29, giving us the Pythagorean triple (20, 21, 29), a solution to problem #2, that is, we found a Pythagorean triple

of the form $(x, x + 1, w)$. We also obtain a solution to problem #1. $x = 20$ implies the Pythagorean triple (t_{40}, t_{41}, t_{42}) $(41.29) = (820, 861, 1189).$

Consider the *coupled sequence*:

Given any row *a*, *b*, the next row is $a + b$, $2a + b$. We will use this chart to solve problem #3, and find infinitely many pairs *x* and *k*, for which

$$
t_x = \frac{x(x+1)}{2} = k(k+1) = O_k
$$

which we write as $x(x + 1) = 2k(k + 1)$. We have the following sequence of equations.

$$
x(x + 1) = 2k(k + 1) \implies x^2 + x = 2(k^2 + k)
$$

lds
$$
x^2 + x + \frac{1}{4} = 2\left(k^2 + k + \frac{1}{4}\right) - \frac{1}{4}
$$

 $\ddot{}$

4

J

1

Completing the squares yields

Multiplying by 4 yields

$$
4x^2 + 4x + 1 = 2(4k^2 + 4k + 1) - 1 \qquad \Longrightarrow
$$

$$
(2x+1)^2 = 2(2k+1)^2 - 1 \qquad \Longrightarrow \qquad (2x+1)^2 - 2(2k+1)^2 = -1
$$

Now let $a = 2k + 1$ and $b = 2x + 1$

yielding

$$
b^2-2a^2=-1
$$

which is satisfied by every odd row of the coupled sequence

1, 1 2, 3 5, 7 12, 17 29, 41 ⁝

Example: The fifth row in the coupled sequence is $a = 29$ and $b = 41$. Then $x = 20$ and $k = 14$, implying that t_{20} $= O_{14}$, as we saw in the previous example.

Now $b^2 - 2a^2 = -1$ is a *Pell equation*. See [1]. It has infinitely many integer solutions, implying that all three problems have infinitely many integer solutions.

References

[1]. M.Lewinter, J.Meyer, *Elementary Number Theory with Programming*, Wiley & Sons. 2015.