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ABSTRACT 
The purpose of this paper is to solve annonlinear Ordinary Differential Equation (ODE) system model of cancer 

chemotherapy. Initially, we provide an overview of cancer temporal model. Subsequently, we conduct a 

comprehensive analysis of suggested model withouttreatment. It is a lung cancer prediction model describes us 

the behavior of the proliferating cells and the role of the nutrients available in the tumor (Concentration) and 

the minimum (hypoxia) which can help the tumor cells to divide. 

In this paper numerical simulations have been used,  to gain deeper insights into the theoretical findings. 

However, approximate numerical solutions to the temporal model are represented by fourth order Runge-Kutta 

(RK4), Nonstandard Finite Difference Scheme (NSFD) and also Explicit Euler method. 
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I. INTRODUCTION 
 

The focus of this study is on non-vascularized lung metastases. Data from scans will be used to predict 

nodule volume and activity evolution [3]. This information is critical for medical decisions, especially for high-

risk patients, to assess the necessity and risks of treatments like chemotherapy or surgery [14]. Prioritizing the 

removal of rapidly growing metastases is also important for other patients [16,4,5,6]. 

 

Non-vascularized tumors are composed of three types of cells [10,20]: 

 

Proliferating Cells: They divide rapidly, use glucose for energy, and avoid the usual mechanisms that eliminate 

mutated cells. 

Quiescent Cells: These were once proliferating cells but are now dormant due to nutrient scarcity. They can 

resume division when nutrients become available. 

Necrotic Cells: Quiescent cells that perish due to a lack of nutrients. 

Hypoxia denotes a shortage of oxygen, which can hinder cell division. 

 

II. MODEL FORMULATION 
This study introduces a time-dependent tumor growth model based on ordinary differential equations 

(ODEs) [18]. It builds upon earlier models, focusing on non-vascularized tumors [7]. The model tracks the 

evolution of tumor volume over time, considering two cell types: proliferating and quiescent cells. Nutrient 

availability within the tumor, represented by "C," affects cell division ("P") but doesn't account for spatial 

aspects [19]. It is assumed that that when "C" exceeds a certain threshold ("Chyp"), normal cell division occurs, 

and they employ a smoothed function to describe this behavior [10,20,8]. 

 

 

 

 

 

http://www.questjournals.org/
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The model  presents the following system of ordinary differential equations (ODEs) [20,10]: 

 

{
 
 
 
 

 
 
 
 
𝒅𝑽

𝒅𝒕
= 𝜸 𝑷 𝑽,                                                                                                               

𝒅𝑷

𝒅𝒕
= 𝜸𝑷(𝟏 − 𝑷) − (𝟏 − 𝜸)𝑷,                                                              (𝟏)

𝒅𝑪

𝒅𝒕
= (𝟏 − 𝑪) (

𝑽

𝑽𝟎
)

𝟐

𝟑

−  𝜶 𝑷 𝑪,

𝜸 =
𝟏 + 𝒕𝒂𝒏𝒉(𝟏𝟎(𝑪 − 𝑪𝒉𝒚𝒑))

𝟐
.                                                                          

 

 

In this system we denote the following [10]: 

 

P: The proportion of proliferating cells within the tumor (P in the range [0, 1]). 

Q: The proportion of quiescent cells within the tumor (Q in the range [0, 1]). Assuming the equivalence of 

quiescent and necrotic cells, we have 1 = P + Q. 

V: The total volume of the tumor (the quantity of proliferating cells within the tumor is thus PV, and the 

quantity of quiescent cells is QV). 

 

C is the quantity of nutrients available within the tumor. This represents a concentration, and it does not take 

into account diffusion and distribution issues. It is assumed that this concentration remains constant and is equal 

to 1 in healthy tissues. 

 

Chyp represents the minimal concentration of nutrients required for a cell to divide. This concept is often 

associated with hypoxia, which refers to conditions of reduced oxygen availability. 

 

Differential equations describe how these variables change over time, capturing tumor growth dynamics and 

nutrient availability [1]. 

 

Numerical methods, such as Euler and Runge-Kutta, can be applied to solve these differential equations and 

understand the temporal evolution of the variables [10,2]. 

 

Figures (1), (2), (3) and (4) illustrate the evolution of these populations: proliferating volume of tumor cells and 

the concentration (the quantity of nutrients available in the tumor). 

 

NUMERICAL RESULTS AND ANALYSIS 

 

The initial values and the parameters used to solve the system (1) are summarized in the table 1 [10]. 

 
Parameter Description  Value  

𝑉0 Total volume of the tumor 10 

𝑃0 Proliferating cells  0.16 

𝐶0 Nutrient Concentration  1 

𝐶ℎ𝑦𝑝 Threshold Concentration 0.7 

𝛼 Constant  1.5 

𝛾 Related to difference between C and C_hyp 0.9976 

Table 1: Parameters of TemporelModel [10,20]. 

 

To analyze and solve this system, you would typically use mathematical techniques such as numerical methods 

or computer simulations. The specific parameter values and initial conditions would need to be determined 

based on the characteristics of the disease you are modeling. 

 

Solving this system of differential equations analytically can be challenging, especially for nonlinear systems 

like the one you've presented. Typically, such systems are solved numerically using software tools like 

MATLAB [9,17]. 

 

The initial values and the parameters used to solve the system are summarized in the following table. They were 

taken from[10]. 
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APPLICATION OF ODE MATLAB METHOD 

We have performed calculations using Ode 45  withh =1. Here are the results:  

 
t  

 

𝑽𝟎 𝑷𝟎 𝑪𝟎 

 
 

0 

1 
2 

3 
4 

5 

6 
7 

8 

9 
10 

11 

12 
13 

14 

15 
16 

17 

18 
19 

20 

21 
22 

23 

24 
25 

26 

27 
28 

29 

30 

(1.0e+13 *) 
 

0.0000 

    0.0000 
    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0001 

    0.0002 
    0.0005 

    0.0014 

    0.0038 
    0.0102 

    0.0277 

    0.0750 
    0.2028 

    0.5486 

    1.4841 
 

 
 

0.1600 

    0.3399 
    0.5816 

    0.7890 
    0.9088 

    0.9628 

    0.9844 
    0.9927 

    0.9958 

    0.9969 
    0.9973 

    0.9975 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
 

 
 

1.0000 

    0.7977 
    0.6744 

    0.6679 
    0.7489 

    0.8434 

    0.9126 
    0.9527 

    0.9749 

    0.9869 
    0.9935 

    0.9961 

    0.9985 
    0.9990 

    1.0001 

    0.9997 
    0.9991 

    0.9989 

    0.9996 
    0.9999 

    1.0003 

    0.9998 
    0.9998 

    1.0001 

    0.9998 
    0.9998 

    1.0000 

    1.0007 
    1.0000 

    0.9999 

    0.9994 
 

 

Table 2: Values for V, P and C with Ode 45 for h=1 
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Figure 1: Total volume of tumor cells using ode45 

 

 
 

Figure 2: The evolution of the population of proliferating cellsusing Matlab 
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Figure 3: The concentration of the nutrient using Matlab 

 

The method you choose should align with your problem's unique traits, such as nonlinearities, 

boundary conditions, geometry, and the desired accuracy level. Careful analysis of your problem and an 

evaluation of various methods is crucial in selecting the most appropriate one. Furthermore, you can often 

implement these methods efficiently using computer software and numerical libraries [10]. 

 

RUNGE KUTTA 4TH ORDER (RK4) 

 

The Fourth-Order Runge-Kutta method, or RK4, is a numerical approach for solving ordinary differential 

equations (ODEs). Known for its accuracy and reliability, RK4 is widely used, especially for solving initial 

value problems. In such problems, an ODE and an initial condition that defines the function's value at a specific 

point are provided [11]. 

 

The 4th-order Runge-Kutta method is a numerical technique used to solve ordinary differential equations of the 

form: 

{

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦),

𝑦(0) = 𝑦0.    
(2) 

 

The 4th-order Runge-Kutta method is based on the following elements: 

𝑦𝑖+1 = 𝑦𝑖 + (𝑎1𝐾1 + 𝑎2𝐾2 + 𝑎3𝐾3 + 𝑎4𝐾4)ℎ, 
 

where knowing the value of𝑦 = 𝑦𝑖at𝑥𝑖 ,  we can find the value of 𝑦 = 𝑦𝑖+1 𝑎𝑡 𝑥𝑖+1, and ℎ = 𝑥𝑖+1 − 𝑥𝑖 . Equation 

(1) is approximated using the first five terms of the Taylor series [13]: 

 

𝑦𝑖+1 = 𝑦𝑖 +
𝑑𝑦

𝑑𝑥
|𝑥𝑖,𝑦𝑖(𝑥𝑖+1 − 𝑥𝑖) +

1

2!

𝑑2𝑦

𝑑𝑥2
|𝑥𝑖,𝑦𝑖(𝑥𝑖+1 − 𝑥𝑖)

2 + 
1

3!

𝑑3𝑦

𝑑𝑥3
|𝑥𝑖,𝑦𝑖(𝑥𝑖+1 − 𝑥𝑖)

3 

1

4!

𝑑4𝑦

𝑑𝑥4
|𝑥𝑖,𝑦𝑖(𝑥𝑖+1 − 𝑥𝑖)

4.                                                                  (3) 

 

Given that 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) and 𝑥𝑖+1 − 𝑥𝑖 = ℎ: 

 

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑥𝑖 , 𝑦𝑖) +
ℎ2

2!
𝑓′(𝑥𝑖 , 𝑦𝑖)| +  

ℎ3

3!
𝑓′′(𝑥𝑖 , 𝑦𝑖) +  

ℎ4

4!
𝑓′′′(𝑥𝑖 , 𝑦𝑖).             (4) 
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One of the most popular solutions used is: 

 

𝑦𝑖+1 = 𝑦𝑖 + 
1

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4)ℎ, 

such that: 

 

𝐾1 = 𝑓(𝑥𝑖 , 𝑦𝑖),                            

𝐾2 = 𝑓 (𝑥𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝐾1ℎ), 

𝐾3 = 𝑓 (𝑥𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝐾2ℎ), 

𝐾4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝐾3ℎ).         
 

 

APPLICATION OF THE FOURTH ORDER RUNGE KUTTA METHOD 

We have performed calculations using RK4 with h =1. Here are the results:  

 

 
t V P C 

 

 
0 

1 

2 
3 

4 
5 

6 

7 
8 

9 

10 
11 

12 

13 
14 

15 

16 

17 

18 

19 
20 

21 

22 
23 

24 

25 
26 

27 

28 
29 

30 

1.0e+13 * 

 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 
    0.0001 

    0.0002 

    0.0005 
    0.0013 

    0.0035 

    0.0095 
    0.0255 

    0.0688 

    0.1853 
    0.4996 

    1.3466 

 

 

 
0.1600 

    0.3395 

    0.5811 
    0.7884 

    0.9079 
    0.9620 

    0.9839 

    0.9924 
    0.9956 

    0.9969 

    0.9973 
    0.9975 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 

    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

 

1.0e+301 * 

 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    7.0532 

NaN 

NaN 
NaN 

NaN 

 

 

Table 3: Values for V, P and C with RK4 for h=1. 

 

These tables show the values of V, P and C at different time points (t) for the given parameter values and step 

sizes. The Fourth-Order Runge-Kutta method was used to approximate the solutions for the temporal model. 
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Figure 4: Approximate Solution Using RK4 for tumor V and h = 1 

 

 
Figure 5: Approximate Solution Using RK4 for P and h = 1 
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Figure 6: Approximate Solution Using RK4 for C and h = 1 

 

NONSTANDARD FINITE DIFFERENCE METHOD (NSFD) 

The Nonstandard Finite Difference (NSFD) method is a numerical approach employed for solving 

differential equations, notably partial differential equations (PDEs). It falls within the category of finite 

difference methods, which discretize spatial and/or temporal domains to approximate solutions to differential 

equations. What distinguishes NSFD is its utilization of nonstandard discretization schemes, offering advantages 

in specific scenarios [15]. 

 

The nonstandard finite difference method (NSFD) is applied to a small system of three nonlinear equations of 

the form: 

 
𝑑𝑈

𝑑𝑡
= 𝐴𝑈 + 𝐺(𝑈), 

 

whereA is a constant matrix, U is a vector, and G(U) contains nonlinear terms, provided that there is a repeated 

eigenvalue of A. NSFD stands out because it allows for the addition or removal of nonlinearity within 

calculations, eliminating the need for interruptions and separate linear methods. Mickens introduced a set of 

modeling rules to facilitate the integration of crucial physical properties from differential equations into NSFD 

numerical schemes.[15,12].  

 
 ED Mikens 

ED1 𝑑𝑢

𝑑𝑡
= −𝜆 𝑢 

𝑢𝑘+1 − 𝑢𝑘
ℎ

= −𝜆 𝑢𝑘 

ED2 𝑑𝑢

𝑑𝑡
= −𝑢2 

𝑢𝑘+1 − 𝑢𝑘
ℎ

= −𝑢𝑘𝑢𝑘+1 

ED3 𝑑𝑢

𝑑𝑡
= −𝑢3 

𝑢𝑘+1 − 𝑢𝑘
ℎ

= −
2𝑢𝑘+1 

2 𝑢𝑘
2

𝑢𝑘+1 + 𝑢𝑘
 

Table 4: NSFD Mickens 

 

These equations depict different orders of time derivatives using the NSFD method. They incorporate terms at 

successive time intervals and constants like λ and ℎ. 

 

When applying the NSFD method to system (1), we derive the following difference equations: 

 
𝑉𝑗+1 − 𝑉𝑗

ℎ
= 𝛾Pj Vj, 
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Pj+1 − 𝑃𝑗

ℎ
 =  γ Pj(1 − Pj) − (1 − γ)Pj, 

 

Cj+1 − 𝐶𝑗

ℎ
 = (1 − Cj) (

vj

v0
)

2

3
− α PjVj. 

 

The obtained results represent the values of compartments N, C, and I at various time points (t) when employing 

the nonstandard finite difference method with the given parameters. 

 
t V P C 

 
 

0 

1 
2 

3 

4 
5 

6 

7 
8 

9 

10 
11 

12 

13 
14 

15 

16 
17 

18 

19 
20 

21 

22 
23 

24 
25 

26 

27 
28 

29 

30 
 

1.0e+09 * 
 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0001 

    0.0002 
    0.0003 

    0.0006 

    0.0012 
    0.0024 

    0.0048 

    0.0095 
    0.0190 

    0.0379 
    0.0756 

    0.1509 

    0.3010 
    0.6005 

    1.1982 

    2.3906 
 

 
 

    0.1600 

    0.2937 
    0.4999 

    0.7481 

    0.9343 
    0.9933 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
 

1.0e+73 * 
 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

   -0.0000 
    0.0000 

   -0.0000 

    0.0000 
   -0.0000 

    0.0000 

   -0.0000 
    0.0000 

   -0.0000 

    0.0000 
   -0.0000 

    0.0000 

   -0.0000 
    0.0000 

   -0.0000 

    0.0000 
   -0.0000 

    0.0000 
   -0.0000 

    0.0000 

   -0.0000 
    0.0000 

   -0.0000 

    6.2689 
 

Table 5:  NSFD method with a time step h=1. 



Chemotherapy Model of Tumor ODEs and Their Numerical Solutions 

*Corresponding Author:  Abdellatif Bettayeb                                                                                             10 | Page 

 
Figure 7: Approximate Solution Using NSFD for V and h = 1 

 

 
 

Figure 8: Approximate Solution Using NSFD for P cells and h = 1 
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Figure 9: Approximate Solution Using NSFD for C and h = 1 

 

EXPLICIT EULER METHOD 

The Explicit Euler Method, also known as the Forward Euler Method, is a numerical technique used for 

approximating the solution of ordinary differential equations (ODEs) or differential equations. It's a 

straightforward and widely used method, especially for initial value problems [2,10,21]. 

 

Here's how the Explicit Euler Method works: 

 

You start with an initial value for your function at a specific point in the domain. 

 

Then, you divide the domain into small time steps or intervals, denoted by "h." 

 

At each time step, you update the function's value by taking the current value and adding the product of the 

derivative of the function with respect to time (the rate of change) and the time step "h." 

 

Mathematically, for a function y(t) with its derivative dy/dt, the Explicit Euler Method can be expressed as 

follows: 

 

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + ℎ 
𝑑𝑦

𝑑𝑡
. 

 

This method essentially estimates the next value of the function based on its current value and the rate of change 

(derivative) at that point. It's called "explicit" because the update formula directly computes the new value based 

on known information at the current step. 

 

The Explicit Euler Method is relatively simple to implement, but its accuracy depends on the choice of the time 

step "h." Smaller time steps generally lead to more accurate results but may require more computational effort. 

It's a useful method for getting an initial approximation of a solution, but for some differential equations, 

especially those with stiff behavior or rapid changes, more sophisticated numerical methods may be necessary to 

achieve accurate results[21]. 

 

Iterative Calculation: Starting from the initial condition, you iteratively compute the function's values at each 

time step using the following formula: 

 

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + ℎ 𝑓(𝑡𝑖 , 𝑦(𝑡𝑖)). 
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Here: 

 

y(tᵢ) is the known value of the function at time tᵢ. 

y(tᵢ₊₁) is the estimated value of the function at the next time step tᵢ₊₁ = tᵢ + h. 

h is the fixed time step. 

f(tᵢ, y(tᵢ)) represents the derivative of y at time tᵢ, which is given by the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑡, 𝑦). 

 

APPLICATION OF THE EXPLICIT EULER METHOD 

We have performed calculations using Euler Explicit method with h =1. Here are the results: 

 
t V P C 

 

 
0 

1 

2 
3 

4 

5 
6 

7 

8 
9 

10 

11 
12 

13 

14 
15 

16 

17 
18 

19 

20 
21 

22 

23 
24 

25 

26 
27 

28 

29 
30 

 
 

1.0e+09 * 

 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0001 

    0.0002 

    0.0003 
    0.0006 

    0.0012 

    0.0024 
    0.0048 

    0.0095 

    0.0190 
    0.0379 

    0.0756 

    0.1509 
    0.3010 

    0.6005 

    1.1982 
    2.3906 

 

 

 
    0.1600 

    0.2937 

    0.4999 
    0.7481 

    0.9343 

    0.9933 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

    0.9976 

    0.9976 
    0.9976 

 

1.0e+73 * 

 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

    0.0000 

    0.0000 
    0.0000 

   -0.0000 

    0.0000 
   -0.0000 

    0.0000 

   -0.0000 
    0.0000 

   -0.0000 

    0.0000 
   -0.0000 

    0.0000 

   -0.0000 
    0.0000 

   -0.0000 

    0.0000 
   -0.0000 

    0.0000 

   -0.0000 
    0.0000 

   -0.0000 

    0.0000 
   -0.0000 

    0.0000 

   -0.0000 
    6.2689 

 

Table 6:  NSFD method with a time step h=1. 
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Figure 10: Approximate Solution Using Explicit Euler for V and h = 1 

 

 
Figure 11: Approximate Solution Using Explicit Euler P and h = 1 
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Figure 12: Approximate Solution for C Using Explicit Euler and h = 1 

 

III. DISCUSSION 
The analysis of system (1) without the presence of an actively administered drug provides an overview of the 

system's behavior, especially after the drug treatment has ceased. 

 

For the proliferating cells for example as shown in Figures (2) with Matlab, (5) with RK4 (9) with NFSD; the 

cells are increasing for the first 7 days , and for the first 5 days in Figure (16) with Euler. After that became 

constant P=1. 

While the volume of the tumor V is constant approaching from zero for all 4 methods during the first 25 days 

and then starts to increase exponentially rapidly. 

The concentration C is small and this affect the growth of the proliferating cells P as shown in Figures (3), (6), 

(9) and (12). 

 

IV. CONCLUSION 
In this study, we focused on the Temporal Chemotherapy model. Our analysis of the untreated system 

sheds light on how the system behaves when treatment is not applied. In essence, these mathematical models 

enable us to find answers to questions directly related to human health. This has a significant impact on 

individual well-being because mathematical modeling plays a pivotal role in the development of personalized 

medicine [10]. 
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