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ABSTRACT: Derivative-free optimization techniques are widely used for solving optimization problems. The 

focus in this work is given to some variants of Nelder-Mead and particle swarm methods to tackle two 

unconstrained optimization problems originated from optimal control, namely the pole assignment problem for 

discrete and continuous-time positive systems. we present the Nelder-Mead and Particle Swarm optimization 

methods to solve problems. Moreover comparing our results with benchmarks in the literature.  
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I. INTRODUCTION  
The pole assignment problem (PAP) has been of great importance in many application areas. The 

problem in its simplest form was first addressed by Wonham [1] in 1967. Since then, huge number of 

publications have been proposed to tackle this problem. In 1976 Moore [2] identified the freedom available in 

pole assignment for the case of distinct eigenvalues. One of the first to address PAP by output feedback was 

Davison [3] and was extended by Davison and Chatterjee [4] and Sridhar and Lindhor [5]. Optimization 

techniques have been used for pole assignment via output feedback as demonstrated in Sobel and Shapiro [6] 

formulated an objective function to minimize the sum of the squares of the eigenvalue condition numbers 

subject to exact pole assignment. Mostafa et al. [7, 8, 9] tackled the PAP by gradient-based optimization 

methods. In optimal control literature there are various forms of the PAP for discrete and continuous–time 

systems that attract a lot of modern research among them [10-13]. 

             Derivative-free methods have been appear since the 1950s (see [14]), where derivative-free methods 

were based on simplicity. Attractive thinking is often drawn from examples drawn in two dimensions. Has been 

a techniques used in scientific and engineering fields where it is best used to avoid calculating gradients. 

Derivative–free methods remain an effective option for several types of difficult optimization problems. 

The importance of the research lies in the use of numerical methods in the solution that do not depend 

on the use of the derivative to obtain the stability state of the system as well as obtaining an initial point to be 

used in solving static output feedback design problems [9] .  

This article is organized as follows. The next section introduces the formulations of the PAP problem 

for discrete and continuous–time systems together. In Section 3 we give some basic definitions. In Section 4 we 

give a brief description Algorithms Nelder-Mead (NM) simplex method and Particle Swarm Optimization 

(PSO) method for tackling the considered two problems. In Section 5 we demonstrate the performance of the 

methods on several test examples. Then we end with a conclusion. 

Notations: The eigenvalues of a matrix  are denoted by  The Greek letter  

denotes the spectral radius of a square matrix  .Sometimes and for the sake of simplicity we skip the 

arguments of the considered functions, e.g., we use to denote  that stretches a matrix  into long 

column vector . 
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II. PROBLEM FORMULATION   
 Consider the linear time-invariant control system with the following state space realization 

 

where  is an operator indicating the time derivative   for continuous-time systems  

and a forward unit time shift for discrete-time systems. The vectors  , , and  are the state, the 

control input, and the measured output vectors, respectively.  

Moreover, , and  are given constant matrices. The control law is often used 

to close the above control system yielding 

 
where    is  the  closed-loop  system  matrix  and   is  the  output feedback  gain  matrix  

which  represents  the  unknown. 

The pole assignment problem is to find an output feedback gain matrix  provided that the closed-loop system is 

in satisfactory stage by shifting controllable eigenvalues to desirable locations in the complex plane. In 

particular, for discrete-time systems the PAP requires the spectral radius of the closed-loop system matrix  

to be strictly within the unit circle in the complex plane. In other words, let   and  be given constant 

matrices. The PAP for discrete–time systems is to find   that solves the following optimization problem: 

 

 
Where  is a given constant and  is generally nonconvex and non-smooth function and  

is the spectral radius of the matrix function .  

The inequality constraint of the problem  represents a cut to the objective function, where the major task is to 

find a feasible point  to the problem  In fact this problem can be regarded as the following unconstrained 

minimization problem: 

 
while we make sure of fulfilling the associated inequality constraint during the iterations of the proposed 

method. Obviously we can stop the unconstrained minimization solver as soon as the objective function 

becomes strictly less than one. However, we can run the method until it achieves a satisfactory stability margin 

as indicated by the inequality constraint. From a computational point of view, the unconstrained minimization 

solver when applied to the problem  it typically reduces the objective function where the imposed cut is 

fulfilled after finite number of iterations. Therefore, the focus is given to approximately solve the unconstrained 

minimization problem  On the other hand, the PAP for continuous–time control systems can be stated as 

follows. Let  and  be given constant matrices and let , be given desired eigenvalues. 

The PAP is to find a matrix variable   such that 

 

The PAP for continuous–time systems can be equivalently rewritten as: Find    

that solves the following nonlinear least-squares problem; see [7, 18] 

 
where the superscript  denotes the complex conjugate.  

Let us consider  in  the  following  some  basic  definitions of linear positive systems.                                                                   

III. BASIC DEFINITIONS OF LINER POSITIVE SYSTEMS  
Positive systems represent a class of control systems that have the property that its state variables are never 

negative for a given positive initial state. These systems appear in practical applications such as communication 

networks [15] and medical engineering [17] as these variables represent nonnegative physical quantities e.g. 

levels, heights, concentrations, etc. It is well known that positivity imposes a specific sign pattern on the system 

matrix .  

In particular, a discrete-time positive system of form (1) is fully characterized by having a positive matrix  

while a continuous-time positive system is fully characterized by having a Metzler matrix . Hence, we will 

concentrate on the eigenvalue regions of those kind of matrices only, see [17] and [19] for details. 
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Definition 1 [17]  The linear control system  for the discrete-time case is said to be positive  if  for  any  

nonnegative  initial  condition  and  ,  the  corresponding trajectory   for  all  . 

We refer to [19]  for  the  proof  of  the  following  theorems. 

Theorem 1 A discrete-time linear system  is positive if and only if    and   have nonnegative  elements,  

i.e.,   for  all  . 

Lemma 1 The system  for the continuous-time case is positive if and only if A has nonnegative  off-

diagonal elements, i.e., , and  has nonnegative elements, i.e.,  for all . 

Definition 2 A square real matrix  is called a Metzler  matrix  if  its  off-diagonal  elements  are  nonnegative,  

i.e., . 

Consequence of definition 2 is that  is Metzler matrix if and only if there exists  such  that  

. 

Remark 1 The system  for the continuous-time case is positive if and  only  if   is Metzler matrix and  ,  

have nonnegative  elements. 

Definition 3 The linear positive system  is said to be positively stabilizable if for all  there exists an 

input  such that for all  the state trajectories  is such that  and  as t → ∞. 

Definition 4 The spectral radius of a matrix    with eigenvalues  is defined  as 

 

Definition 5 The spectral abscissa of matrix      with  the set of all eigenvalues  is defined as 

{ .          

 

Definition 6 For the continuous-time case, the control system  is asymptotically stable if and only if 

 while the asymptotically stability for the discrete-time case requires .  

In this work we will apply the Nelder-Mead (NM) simplex method [20], and The particle swarm optimization 

(PSO) method [21] to tackle the two problems  and  in the case of the positive systems. 

 

IV. NELDER-MEAD SIMPLEX AND PARTICLE SWARM OPTIMIZATION METHODS 

FOR PAP 
In papers [22] and [23] we explained in detail the Nelder Mead (NM) simplex method as well as the The particle 

swarm optimization (PSO) method to solve the PAP in discrete and continuous-time systems. Therefore, we will 

suffice with setting the algorithms of the PAP for positive discrete and continuous-time systems.  

How to handle positivity for the discrete and continuous-time system within Algorithms  3.1 and 4.1 in  [22]? 

• Initially, we choose the matrices ,  have  nonnegative  elements in the case discrete-time system and 

choose a matrix  is Metzler and  have nonnegative elements in the case continuous-time. 

• Within  main  loop for discrete-time system  we  require  the  corresponding  state  vector  be  such  that 

 

 
Also in the main loop for continuous-time system we  require  the  corresponding  state  vector  be  such  that 

 
. 

To tackle problems  and  we will use the same Algorithms 3.1 and 4.1 in the paper [22] with a simple 

change in begin, as well as adding a condition to the main loop in the two Algorithms ensures the positive. 

Algorithm 1 (Nelder-Mead method for solving Problem  ) 
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1. Let  be given constant matrices have nonnegative elements, and let ,  and 

 be given constants. Choose  and  such that . The vector  

such that to be one of the initial simplex vertices, the matrices    have nonnegative 

elements and compute . Arrange the  vertices so that  

,  

hold. Identify  and compute  If , stop; otherwise set  and go to next step. 

2. While and  ,  do 

i. Compute  , set reshape  as and compute  

such that  has nonnegative elements. 

ii. (Reflection step) If , set ; and go to step (vii) 

iii. (Expansion step) If  then compute , reshape  as  

such that  has nonnegative elements and compute . If , set 

, otherwise  and go to step (vii) 

iv. (Outside contraction step) If , then compute 

, reshape  as  such that  has nonnegative elements and 

compute . If , set  and go to step (vii) otherwise go to step 

(vi) 

v. (Inside contraction step) If , then compute  reshape  as 

 such that  has nonnegative elements and compute ). If , set 

 and go to step (vii) otherwise go to step (vi). 

vi. (Shrinking step) Set , reshape  as  such that  has 

nonnegative elements and compute  for all  

vii. Arrange the  vertices so that , holds and identify  and . 

viii. Reshape  as  and compute  If  stop; otherwise set  and go to 

step (i). 

End (do) 

Algorithm 2 (Nelder-Mead method for solving  Problem  ) 

1. Let  is Metzler matrix and  have nonnegative elements. Let ,  and  be 

given constants. Choose  and  such that . The vector  such that 

 to be one of the initial simplex vertices. Then generate the remaining  vertices such that 

. Moreover choose the desired eigenvalue 

, compute  

2. Arrange  the    vertices  so  that ,    holds  and  identify   and   

3. Reshape  as ,  and compute the objective function  If 

, stop; otherwise  set    and  go  to  next  step.  

4. While and  ,  do  

i. Calculate  the  same  steps  from  (i)  to  (vii)  in  Algorithm  1  after  substitution  with  . 

ii. If   stop;  otherwise  go  to  next  step. 

iii. Reshape  as  ,  and compute the objective function  

, stop; otherwise  set   and  go  to  (i). 

End  (do) 

Algorithm 3 (Particle swarm optimization  method  for  solving  Problem  ) 

1. (Initialization) Let  be given constant matrices have nonnegative elements, and let  

 and be given constants. Choose and such that 

. The vector  such that  to be one of the initial simplex vertices. Then generate the 

remaining  vertices such  that   Calculate fitness of 

particles   and  find  the  index  of  the  best  particle .   Select  ; 

  and . 
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2. Reshape as  and compute the objective  function  If  , stop; 

otherwise set   and go to next step. 

3. While  and  ,  do 

i. Compute using    

ii. Update the velocity  and the position  of particles using 

     

   and  , respectively 

iii. Reshape the positions  into the matrices  and compute the 

fitness  and identify the index of the best 

particle  

iv. Update  for all the population : If set  

else set  

v. Update  of the population: 

If   set  and  else 

 

vi. If   stop; otherwise go  to  next  step. 

vii. Reshape as the matrix  and compute the corresponding fitness function 

If stop; otherwise set  and go to step (i) 

End (do) 

Algorithm 4 (Particle swarm optimization  method for solving Problem ) 

1. Let  is Metzler matrix and  have nonnegative elements, Let  and 

 be given constants. Choose and  such that . The vector  such 

that  to be one of the initial simplex vertices and 

Moreover choose the desired eigenvalue 

, calculate fitness of  particles    and  find  the  index  of  the  best  

particle  . Select  ;   and    

2.  Reshape      as   and  compute  the  objective  function    If     ,  

stop;  otherwise  set    and  go  to  next  step. 

3.   While  and ,  do  

i. Calculate (i)–(v) in Algorithm 3 after  change     to be  replaced by the objective  function . 

ii. If   .  stop; otherwise go to next  step. 

iii. Reshape as  and compute the     objective  function   

iv. If     ,  stop;  otherwise  set    and  go  to 

End (do) 

V. NUMERICAL RESULTS  
               In this section, various test problems are provided to illustrate the performance NM and PSO methods. 

The compared with respect to number of iterations and CPU time (sec.), the starting point is often generated 

randomly. Sometimes we start with the zero matrix or a matrix with ones on its entries. The problem dimensions 

are . The methods are implemented using MATLAB and all results are using a  Ghz Pentium  CPU 

with . Some of the considered test problems are for continuous–time systems. The MATLAB 

function c2d from the control toolbox is employed to provide the corresponding discrete–time data matrices. In 

our experiment, we used the following values for termination: 

 

 
In the following we consider six examples to show the performance of the methods NM and PSO for the case of 

positive control systems.  
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Example 1 This test problem is borrowed from [6], the data matrices for the corresponding discrete-time 

system are the following  

 
The spectral radius of the system matrix  is . The objective function values at starting matrix   are 

 , the methods NM and PSO stabilizing output feedback controllers after 

 and  iterations and CPU times  and  respectively. The corresponding objective function values at 

 are  and . The starting matrix and achieved 

output feedback matrices are the following 

 

 

Example 2 This test problem is borrowed from  [26],  the data matrices for the corresponding  discrete-time 

system are the following  

 

The spectral radius of the system matrix  is . The objective function values at starting matrix   are 

 , the methods NM and PSO stabilizing output feedback controllers after 

 and  iterations and CPU times  and  respectively. The corresponding objective function values at 

 are and . The starting matrix and achieved 

output feedback matrices are the following 

 

 

 

Example 3 This test problem is borrowed from  [6],  the data matrices for the corresponding  discrete-time 

system are the following  

 
The spectral radius of the system matrix   is . The objective function values at starting matrix  are 

 the methods NM and PSO stabilizing output feedback controllers after  and 

 iterations and CPU times  and  respectively. The corresponding objective function values at  are 

 and . The starting matrix and achieved output 

feedback matrices are the following 

 

  

Figure 1: Uncontrolled  state  space  variables  for  example  3 
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Figure 2: Controlled  state  space  variables  under the method NM for example  3 

 

Figure 3: Controlled  state  space  variables  under the method PSO for example  3 

 

Example 4 This test problem is borrowed from  [24], which has  the following data matrices are 

 
The system matrix  has the eigenvalues  The desired eigenvalues  such that the 

shift is , Starting from the same  where , the methods NM and PSO stabilizing output 

feedback controllers for the unconstrained problem  after  and  iterations and CPU times  and  

respectively, to reach the least possible values of the objective function of the problem  The corresponding 

objective function values are 

 , 

. 

The starting matrix  and the output feedback gain matrices  and  are the following  

 

 

 
 

Example 5 This test problem is borrowed from  [25], which has  the following data matrices are 

 
The system matrix  has the eigenvalues  The desired eigenvalues  such that the 

shift is , Starting from the same  where , the methods NM and PSO stabilizing 

output feedback controllers for the unconstrained problem  after  and  iterations and CPU times  

and  respectively, to reach the least possible values of the objective function of the problem  The 

corresponding objective function values are 
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 , 

. 

The starting matrix  and the output feedback gain matrices  and  are the following  

 

 
. 

Example 6 This test problem is borrowed from  [7], which  has  the  following  data  matrices   

are 

 
The system matrix  has the eigenvalues   The desired eigenvalues  such that the shift is , 

Starting from the same  where , the methods NM and PSO stabilizing output feedback 

controllers for the unconstrained problem  after  and  iterations and CPU times  and  

respectively, to reach the least possible values of the objective function of the problem  The corresponding 

objective function values are 

 , 

. 

The starting matrix  and the output feedback gain matrices  and  are the following  

 

 

. 

 

Figure 4: Uncontrolled  state  space  variables  for  example  6 

 

 
Figure 5: Controlled  state  space  variables  under the method NM for example  6 
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Figure 6: Controlled  state  space  variables  under the method PSO for example  6 

VI. CONCLUSION  

             The pole assignment problem for discrete-time and continuous-time positive linear systems formulated 

as a semi-smooth unconstrained optimization, the derivative-free methods are proposed to find a local solution 

of the minimization problem or at least achieve a stabilizing output feedback gain matrix. The performance of 

the methods is demonstrated over wide range of test problems  from the system and control literature. The two 

methods are successful in tackling the considered problems. In particular, the Nelder-Mead simplex method 

relatively outperforms the particle swarm optimization method. 
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