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Abstract 
We consider the set of the first 6 Equations relating a spin ½ system with long-range ferromagnetic interaction 

on a circle with a truncation of the Riemann Xi function. 

We explicitly give the values of the first 6 Li-Keiper coefficients in the thermodynamic limit as functions of the 

first one i.e. λ1 = (1+γ/2-(1/2)·log(4·π) = 0.0230957... 

We then report the results, i.e., a numerical Table and plots both, with upper and lower bounds (2Nꝏ) for the 

true values of λn, n = 1, .., 6. 
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I. Introduction 
In this note, related to some recent our works  [1, 2] we start with a set of Equations for a spin ½ system 

on a dodecagon (2N=12 spins on a circle) with a magnetic field variable z = e (-2·βH), a two-body ferromagnetic 

interaction e (-2·βJ), and the related truncation of the Riemann ξ function in the variable z=1-1/s with s the usual 

complex number, i.e. s=Re(s)+i·Im(s) = ρ+i·t.  
The set of Equations of interest here is given by [1, 2]: 

 (φ0=1) 

 

(
2𝑁

𝑖
) ∙ 𝑋𝑖∙(2𝑁−𝑖) = ∑ (

2𝑁
𝑖 − 𝑘

) ∙ (−1)𝑘 ∙ 𝜑𝑘
𝑖
𝑘=0   

 

(1) 

where φk is the cluster function of order k, i.e. a function of the Li-Keiper coefficients λp for p from 1 to k. 

We notice that φ1 =  λ1; the first two above Equations read: 

 

                                  

                                2·N·X(2N-1)   = 2·N- φ1 = 2·N- λ1             

(2)        

and 

 

(
2𝑁
2

) ∙ 𝑋2∙(2𝑁−2) = (
2𝑁
2

) − 2𝑁 ∙ 𝜑1 + 𝜑2  

(3) 

where φ2 = (½)·( λ2 + λ1
2 ) . 

http://www.questjournals.org/


Thermodynamic limit for the low Li-Keiper coefficients: upper and lower bounds 

*Corresponding Author:  Danilo Merlini                                                                                                     21 | Page 

We now add that if we are interested in studying the true dodecagon i.e. 2N=12 we have the 6 Equations which 

give us the first 6 values of the Li-Keiper coefficients for the dodecagon, values which (as for the hexagon already 

treated in [3]) are below the true values, i.e. we obtain: λn (2N=12), n=1..6. 

We illustrate here the situation only with the computation of λ2. 

 

In fact with X= e(-2·β·J), given by Eq.(2), inserted in Eq.(3), we obtain for 2N=12: 

                                      

 

𝜑2 =
2𝑁∙(2𝑁−1)

2
∙ ((1 −

𝜆1

2𝑁
)

 2∙(2𝑁−2)/(2𝑁−1)

− 1) + 2𝑁 ∙ 𝜆1 =                                                         (4)  

 

= 66 ∙ ((1 −
𝜆1

12
)

20
11

− 1) + 12 ∙ 𝜆1 = 0.04637329 

                          

with λ1   =1+γ/2 -(1/2)·log(4·π) we  obtain values near and smaller than the true values, for n=1..6, on Table 1. 

  

λ2 = 2.φ2 – λ1
2 = 0.092213168 < 0.0923457..   

λ3 = 0.206846937 < 0.207638920.. 

λ4 = 0.366150325 < 0.368790479... 

λ5 = 0.568965028 < 0.575542714... 

λ6 = 0.8138172484 <0.827566012 

Table 1. 

II. The thermodynamic limit 
We are now merely interested in the thermodynamic limit 2N∞, (i.e., we forget now the dodecagon and we 

consider an infinite spin system as well as an infinite truncation of the series for the ξ function), and this up to n 

= 6. 

We obtain in this way an upper bound to λn, for n=1..6. 

In fact, Eq.(4) gives as 2N∞: 

                          

                                     φ2 = 2·λ1+ λ1
2/2 + O(1/2·N)    

thus: 

                                     λ2
* = 2·φ2 -λ1

2 = 4·λ1= 0.092382836.. > 0.0923457.. 

                        

i.e. we obtain a value λ2
*

 greater than the true value λ2 = 0.0923457..  

 

Moreover from early finding [4] we have some kind of “stability” (in the sense of statistical Mechanics) in that 

we also have a lower bound given by the first value emerging from our Riemann wave background [1, 2] i.e. that 

related to the smallest spin system (2N=2, stability) and given by:  λ'2 = 4·λ1- λ1
2 = 0.09184942.. 

 

Below, we report the corresponding Table 2 of values for the upper bounds λ*
n (given by λ*

n=n2· λ1, see Appendix 

for the proof), the true values λ 
n and the lower bounds λ'n  offered by Riemann wave background for n =1 to n=6. 

 

                          

n 'n n *
n 

1 0.02309570  0.02309570  0.02309570  

2 0.09184942  0.09234573  0.09238283  

3 0.20467322 0.20763892  0.20786138 

4 0.35896136  0.36879047  0.36953134 

5 0.55115045 0.57554271 0.57739272 

6 0.77680175   0.82756601  0.83144552 

 

Table 2. The lower bounds λ 'n , the true values λ 
n, and the upper bounds λ*

n = n2 λ1, n=1..6. 
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III. Locus of Zeros for 2N up to 56 (unit circle versus critical line) 
In this Section we analyze the following point: the spin model as presented, is limited to some values of the 

number 2·N, i.e. the number of spin variables on the circle. In fact, the values of the Li-Keiper coefficients which 

follow are given by: 

 

λn (2 ·N  ∞) = n2·λ1 = n2· (1+/2-(1/2)·log(4·) = n2·0.0230957… 

(See appendix for the proof). 

We add here that with the truncation, λ1 should be a function of N, i.e. a better approximation for the Li-Keiper 

coefficients. 

This may be seen by the product formula in the definition of the ξ function in term of the zeros i.e. by: 

 

𝜉(𝑠) = 𝜉(1 − 𝑠) = ∏ (1 −
(1 − 𝑠)

𝜌
)

𝜌

 

 

where s=Re(s)+i·Im(s). 

 

Introducing the variable z=1-1/s or s=1/(1-z), then 

 

1-(1-s)/ρ = 1-(1-1/(1-z))/ ρ = 1+z/[(1-z)·ρ]  

 

 

ξ(s) = 𝑒
{𝑙𝑛[∏ (1+

𝑧
(1−𝑧)∙𝜌

)𝜌 ]}
 

 

z~0 (s~1); then with the Taylor expansion: 

 

ξ(1 − s) = 𝑒
∑  ln(1+

𝑧
(1−𝑧)∙𝜌

)𝜌 = 𝑒
∑ (

𝑧
(1−𝑧)∙𝜌

−
1
2∙

𝑧2

(1−𝑧)2∙𝜌2+⋯ )𝜌
= 

 

= 𝑒
∑  (

𝑧
𝜌

+
𝑧2

𝜌
−

1
2

∙
𝑧2

𝜌2… )𝜌
= 

 

 

= 𝑒
(z∙∑

1
𝜌

+𝜌
𝑧2

2
∙∑ (

2
𝜌 −

1
𝜌2)+⋯𝜌 )

= 
 

= 𝑒
(z∙𝜆1+

𝑧2

2
𝜆2+⋯ )

 
 

 

Since we have considered a truncation, then (for a spin system of 2N spins variables) we have N zeros above 

t=0.  

We then introduce in the formulas not λ1 but λ1* solution of the next Equation. 

 

N(t) = (t/2)·(ln(t/2) -1) +7/8 +(1/)·argument(ζ(1/2+i·t)  

in the approximation N(t) = (t/2)·(ln(t/2) -1) + 7/8, where the solution is given in terms of the Lambert W 

function [5] by: 

 

 

𝑡 = 𝑓(𝑁) = 2 ∙ 𝜋 ∙ 𝑒1 ∙ 𝑒

(𝑊∙(
𝑁−

7
8

𝑒1 ))

 
 

Then: 

 

𝜆1
∗ = 𝑓(𝑁) = ∑

1

(𝑡2 (𝑘) +
1
4

)

𝑘=𝑁

𝑘=41

+ 0.0170313299451      

(5) 
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where the last number is the contribution of the first 40 zeros of ζ(1/2+i·t) [6]. The result is given in the Figure 

1. 

 
Fig. 1. Point plot of f(N) from N=1 to N=40 (in black) and f(N) by means of the LambertW function i.e. Eq. (5), 

N>40. 

 

We now analyze the relation between n and N i.e. we look at the solution of the Equation: n2·λ1
*(N)= λn, in 

order to see, for a given N, what n's are allowed with λ1
*< λn/n2. As an example, for n=2, λ2/4 =0.0923457/4 = 

0.023086425 and we obtain f(N) = 0.023086425 i.e. n < 50000. 

For N=28, we have f(28)=0.016128926 and for this value Eq. (5) above gives n<29.This means that with a system 

of 2.28=56 spins, the thermodynamic limit gives a value of the first 28 lambda's near and still smaller than the 

true value λn and from our construction (i.e. the meeting of the spin model with magnetic field variable z=e(-2·β·H) 

with the truncation of the function in the variable z) the 56 degree polynomial in z of the truncated function ξ(z), 

has all its zeros in z on the unit circle (Lee-Yang theorem) and thus all the zeros in s= 1/(1-z) on the critical line). 

 

Remark 

The upper bound is satisfactory for small n (n2·1) and is essentially given by n =n n with nn·1 which is 

the first term in our recent new strategy in terms of block’s partition [7]. 

Moreover, we add that the behavior n = n2·1 is also obtained from our closed set of equations for the Li-Keiper 

coefficients studied recently. In fact, from [8] the closed set is given by  

 

 

𝜆𝑛 ≅ ∑(−1)𝑛+𝑘−1 (
𝑛
𝑘

) ∙ 𝜆𝑘

𝑛−1

𝑘=1

 

(6) 

 

See Appendix 1 for additional calculations and proofs. 

 

IV. Conclusion 
We have presented the analytical as well as the numerical results i.e. upper and lower bounds for the 

first few Li-Keiper coefficients. To the best of our knowledge these are news or have not been obtained along 

our lines above. 

Additional strategies involving concepts as partitions have also been pursued by us in a recent work [7] 

and a refinement valid to higher values of n is under analysis and will appear in the near future. The main message 

here is that the two-body system (2N=2) provides a lower bound for the coefficients involving the Koebe function; 

an upper bound of the same (given by the present spin model, in n2- not of interest - for big values of n) is obtained 

by a limit 2N∞ of the system. Moreover, for a 2·N=56 spin model, we have obtained a truncation of the function 
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ξ, a polynomial, of degree 56 where all zeros in z (z=1-1/s) are on the unit circle (in the variable s =1/(1-z) on the 

critical line) and where the first 28 Li-Keiper coefficients are very near to the true values λn. 

 

 
Fig. 2. Riemann Wave background [1,2] (in red) and the first true values of the coefficients λn [9](in black). 
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Appendix 1 

 

In relation to the numerical values given in the Table 2 we now present more calculations and proof. 

A closed set of equations as an approximation to the Li-Keiper coefficients, given by our Eq.(6) is as follows. 

Let a binomial transform i.e.  Eq.(6)  be written as: 

 

𝑎𝑛 = ∑(−1)𝑛+𝑘−1 (
𝑛
𝑘

) ∙ 𝑎𝑘

𝑛−1

𝑘=1

 

Then, with a1 and a2 as initial conditions, we obtain the following solution, sum of arithmetic progressions n: 

 

𝑎𝑛 =
𝑛 ∙ (𝑛 − 1)

2
∙ 𝑎2 − 𝑛 ∙ (𝑛 − 2) ∙ 𝑎1 = 𝑛2 ∙ (

𝑎2

2
− 𝑎1) + 𝑛 ∙ (2 ∙ 𝑎1 −

𝑎2

2
) 

 

Some cases: 

1) If a2=2·a1  an=n·a1, i.e. a linear law given by n=n·1. 

2) If a2=4·a1  an=n2·a1, i.e. a quadratic law given by n=n2·1 (the case of the spin system, but only that with a 

constant two-body interaction=e-2J between two-spins, i.e. J is independent of the distance). 

3) If 

              𝑎𝑛 =
𝑛∙(𝑛−1)

2
∙ 𝑎2 − 𝑛 ∙ (𝑛 − 2) ∙ 𝑎1 

https://www.researchgate.net/pubblications/335867792-
https://www.researchgate.net/pubblications/335867792-
https://fungrim.org/entry/faf448/
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But where a2 is not related to a1, we still have a quadratic law for  n, given by: 

 

𝜆𝑛 =
𝑛 ∙ (𝑛 − 1)

2
∙ 𝜆2 − 𝑛 ∙ (𝑛 − 2) ∙ 𝜆1 = 

 

= 𝑛2 ∙ (
𝜆2

2
− 𝜆1) + 𝑛 ∙ (2 ∙ 𝜆1 −

𝜆2

2
) 

 
𝜆2

2
− 𝜆1 < 𝜆1, i.e. 2 < 4·1 if 2 is the true value: the solution in still quadratic in n, i.e. not interesting for big 

values of n (if RH is true the dominant term of n is given by 
𝑛

2
∙ ln 𝑛). 

Then, we look at an asymptotic solution of Eq.(6) which possibly correctly describes the numerical results for n 

given in [8], now in the form: 

 

𝑎𝑛 = ∑ (𝛼 ∙ 𝑘 ∙ ln 𝑘 + 𝛽 ∙ 𝑘 + 𝛾 ∙ √𝑛 ∙ ln𝑘 + 𝛿 ∙
1

𝑘
) (−1)𝑛+𝑘−1 (

𝑛
𝑘

) = ∑ 𝑎𝑘(−1)𝑛+𝑘−1 ∙ (
𝑛
𝑘

)

𝑛−1

𝑘=1

𝑛−1

𝑘=1

 

 

We then check that as n increases, the solution which we obtain is asymptotically given by: 

𝑎𝑛 ≅ 𝛼 ∙ 𝑛 ∙ ln 𝑛 + 𝛽 ∙ 𝑛 + 𝛾 ∙ √𝑛 ∙ ln 𝑛 

 

Then, with =1/2 and = -1.13033.. [9, 10] we have [8]: 

 

𝜆𝑛 ≅
1

2
∙ 𝑛 ∙ ln 𝑛 − 1.13033 ∙ n + (𝛾 ∙ √𝑛 ∙ ln 𝑛) + 𝛿 ∙ (ln 𝑛 + 0.57 … ) 

 

𝜆𝑛 = ∑(−1)𝑛+𝑘−1 (
𝑛
𝑘

) ∙ [
1

2
∙ 𝑘 ∙ ln 𝑘 − 1.13033 ∙ 𝑘 ±

1

70
∙ (√𝑘  ∙ ln 𝑘) ± 0.8 ∙

1

𝑘
]

𝑛−1

𝑘=1

 

 

On the table below, we check our set of closed equations given by Eq.(6), i.e.  

𝜆𝑛
∗ = ∑(−1)𝑛+𝑘−1 (

𝑛
𝑘

) ∙ 𝜆𝑘
∗

𝑛−1

𝑘=1

 

(*) 

After the insertion for k
* the first n-1 k’s true values to 12 digits taken from faf448 [9, 10] and compared with 

the true values, we obtain the table below. 

 

Eq.(*) relationship True values  

1
*= 0.023095708966 = 0.023095708966 

2
*= 0.092345735228 = 0.092345735228 

3
*= 0.207750078786 > 0.207638920554 

4
*= 0.368864106712 > 0.368790479492 

5
*= 0.575541999370 < 0.575542714460 

6
*= 0.827565730836 < 0.827566012278 

7
*= 1.124460119834 > 1.124460117570 

8
*= 1.465755682829 > 1.465755677147 

9
* = 1.850916040314 < 1.85091604838 

10
*= 2.27933937718 > 2.27933936319 

11
*= 2.750360814863 < 2.75036083822 

12
*= 3.263255358123 > 3.26325532062 

 


