Quest Journals Journal of Research in Applied Mathematics Volume 9 ~ Issue 12 (2023) pp: 09-22 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Review Paper

Quotient-4 Cordial Labeling Of Some Tricyclic Graphs

S.Kavitha

Department of mathematics, St. Thomas College of Arts and Science, Koyambedu, Chennai-600107, India.

Dr.P.Sumathi

Department of mathematics, C.Kandaswami Naidu College for Men, Annanagar, Chennai-600102, India.

Abstract

Let G(V, E) be a simple graph of order p and size q. Let $\varphi: V(G) \to Z_5 - \{0\}$ be a function. For each edge set E(G) define the labeling $\varphi^*: E(G) \to Z_4$ by $\varphi^*(uv) = [(\frac{\varphi(u)}{\varphi(v)})] \pmod{4}$ where $\varphi(u) \ge \varphi(v)$. The function φ is called Quotient-4 cordial labeling of G if $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1, 1 \le i, j \le 4, i \ne j$ where $v_{\varphi}(x)$ denote the number of vertices labeled with x and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1, 0 \le k, l \le 3, k \ne l$, where $e_{\varphi}(y)$ denote the number of edges labeled with y. Here some tricyclicgraphs such as Jelly fish graph and $C_n \circ v C_n$ graph are quotient-4 cordial labeling.

Keywords: Jelly fish graph, $C_n \circ v C'_n$ graph, quotient-4 cordial labeling and quotient-4 cordial graph.

Received 02 Dec., 2023; Revised 10 Dec., 2023; Accepted 12 Dec., 2023 © *The author(s) 2023. Published with open access at www.questjournals.org*

I. INTRODUCTION

Here the graphs considered are finite, simple, undirected and non-trivial. Graph theory has a good development in the graph labeling and has a broad range of applications. Refer Gallian [4] for more information. The cordial labeling concept was first introduced by Cahit [2]. H- and H2 –cordial labeling was introduced by Freeda S and ChellathuraiR.S[3]. Mean Cordial Labeling was introduced by Albert William, Indira Rajasingh, and S Roy [1]. Quotient-4 cordiallabelingwas introduced byP.Sumathi and S.Kavitha [5]. A graph G is said to be quotient-4 cordial graph if it receives quotient-4 cordial labeling .Let $v_{\varphi}(i)$ denotes the number of vertices labeled with i and $e_{\varphi}(k)$ denotes the number of edges labeled with $k, 1 \le i \le 4, 0 \le k \le 3$.

II. DEFINITIONS

Definition 2.1.Let G(V, E) be a simple graph of order p and size q.Let $\varphi: V(G) \to Z_5 - \{0\}$ be a function. For each edge set E(G) define the labeling $\varphi^*: E(G) \to Z_4$ by $\varphi^*(uv) = [(\frac{\varphi(u)}{\varphi(v)})] \pmod{4}$ where $\varphi(u) \ge \varphi(v)$. The function φ is called Quotient-4 cordial labeling of G if $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1, 1 \le i, j \le 4, i \ne j$ where $v_{\varphi}(x)$ denote the number of vertices labeled with x and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1, 0 \le k, l \le 3, k \ne l$, where $e_{\varphi}(y)$ denote the number of edges labeled with y.

Definition 2.2. The *jelly fish graph* J(m,n) is obtained from a cycle with vertices x, y, u, v of length 4 by joining x and y with a prime edge and appending m pendent edges to u and n pendent edges to v. The prime edge in jelly fish graph is defined to be the edge joining the vertices x and y.

Definition 2.3. A graph $C_n \circ v C'_n$ obtained from two copies of the cycle C_n sharing $\frac{n}{2}$ common vertex if n is even and $\frac{n-1}{2}$ common vertex if n is odd.

^{*}Corresponding Author: S.Kavitha

III. MAIN RESULT

Theorem3.1. Any Jelly fish graphJ(m, n) is quotient-4 cordial if $m, n \ge 1$.

Proof. Let *G* be a Jelly fish graph.

 $V(G) = \{u_i : 1 \le i \le 4\} \cup \{x_j : 1 \le j \le m\} \cup \{y_k : 1 \le k \le n\}.$

$$E(G) = \{u_i u_{i+1} : 1 \le i \le 3\} \cup \{u_4 u_1\} \cup \{u_1 u_3\} \cup \{u_2 x_j : 1 \le j \le m\} \cup$$

 $\{u_4 y_k: 1 \le k \le n\}.$

Here |V(G)| = m + n + 4, |E(G)| = m + n + 5.

Define $\varphi: V(G) \rightarrow \{1, 2, 3, 4\}.$

The values of u_i are labeled as follows:

Case 1: $m \ge n$.

 $\varphi(u_1) = \varphi(u_3) = 3, \varphi(u_2) = 1, \varphi(u_4) = 2.$

Case 2: *m* < *n*.

 $\varphi(u_1) = \varphi(u_3) = 3, \varphi(u_2) = 2, \varphi(u_4) = 1.$

The values of x_i are labeled as follows:

When m < n.

For $1 \le j \le m$. $\varphi(x_j) = 1$ if $j \equiv 0 \pmod{2}$.

 $\varphi(x_j) = 2$ if $j \equiv 1 \pmod{2}$.

When $m \ge n$.

Case 1: When $m \equiv 0, 1 \pmod{4}$ and $n \equiv 0 \pmod{4}$.

For $1 \leq j \leq n$.

 $\varphi(x_j) = 3$ if $j \equiv 1 \pmod{2}$ and $j \neq 1$.

 $\varphi(x_i) = 4$ if $j \equiv 0 \pmod{2}$ and j = 1.

For $n + 1 \le j \le m$.

 $\varphi(x_j) = 1$ if $j \equiv 1 \pmod{4}$.

 $\varphi(x_i) = 2$ if $j \equiv 2 \pmod{4}$.

 $\varphi(x_j) = 3$ if $j \equiv 3 \pmod{4}$.

 $\varphi(x_i) = 4$ if $j \equiv 0 \pmod{4}$.

Case 2: When $m \equiv 0 \pmod{4}$ and $n \equiv 1 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_j values are same as case 1. $\varphi(x_{n+1}) = 4$. For $n + 2 \le j \le m$.

^{*}Corresponding Author: S.Kavitha

 $\varphi(x_i) = 1$ if $j \equiv 3 \pmod{4}$.

 $\varphi(x_i) = 2$ if $j \equiv 0 \pmod{4}$.

 $\varphi\bigl(x_j\bigr)=3 \quad if \ j\equiv 1 \ ({\rm modulo4}).$

 $\varphi(x_j) = 4$ if $j \equiv 2 \pmod{4}$.

Case 3: When $m \equiv 0 \pmod{4}$ and $n \equiv 2 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_i values are same as case 1.

 $\varphi(x_{n+1}) = 3.$

For $n + 2 \le j \le m$.

 $\varphi(x_j) = 1$ if $j \equiv 0$ (modulo4).

 $\varphi(x_j) = 2$ if $j \equiv 1 \pmod{4}$.

 $\varphi(x_i) = 3$ if $j \equiv 2 \pmod{4}$.

 $\varphi(x_j) = 4$ if $j \equiv 3 \pmod{4}$.

Case 4: When $m \equiv 0 \pmod{4}$ and $n \equiv 3 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_i values are same as case 2.

 $\varphi(x_{n+1}) = 4.$

For $n + 2 \le j \le m$, the labeling of x_j values are same as case 1.

Case 5: When $m \equiv 1 \pmod{4}$ and $n \equiv 1 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_j values are same as case 1.

 $\varphi(x_{n+1}) = 4, \varphi(x_{n+2}) = 3.$

For $n + 3 \le j \le m$, the labeling of x_j values are same as case 3.

Case 6: When $m \equiv 1 \pmod{4}$ and $n \equiv 2 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_j values are same as case 1.

 $\varphi(x_{n+1}) = 3, \varphi(x_{n+2}) = 4.$

For $n + 3 \le j \le m$, the labeling of x_j values are same as case 1.

Case 7: When $m \equiv 1 \pmod{4}$ and $n \equiv 3 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_i values are same as case 1.

 $\varphi(x_{n+1}) = 4.$

For $n + 2 \le j \le m$, the labeling of x_j values are same as case 1.

Case 8: When $m \equiv 2 \pmod{4}$ and $n \equiv 0 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_j values are same as case 1.

 $\varphi(x_{n+1}) = 3, \varphi(x_{n+2}) = 4.$

For $n + 3 \le j \le m$.

 $\varphi(x_j) = 1$ if $j \equiv 3 \pmod{4}$.

 $\varphi(x_i) = 2$ if $j \equiv 0 \pmod{4}$.

^{*}Corresponding Author: S.Kavitha

 $\varphi(x_i) = 3$ if $j \equiv 1 \pmod{4}$.

 $\varphi(x_j) = 4$ if $j \equiv 2 \pmod{4}$.

Case 9: When $m \equiv 2 \pmod{4}$ and $n \equiv 1 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_j values are same as case 1.

 $\varphi(x_{n+1}) = 4.$

For $n + 2 \le j \le m$, the labeling of x_j values are same as case 8.

Case 10: When $m \equiv 2 \pmod{4}$ and $n \equiv 2 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_i values are same as case 1.

For $n + 1 \le j \le m$, the labeling of x_j values are same as case 8.

Case 11: When $m \equiv 2 \pmod{4}$ and $n \equiv 3 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_j values are same as case 1.

 $\varphi(x_{n+1}) = 4.$

For $n + 2 \le j \le m$, the labeling of x_j values are same as case 1.

Case 12: When $m \equiv 3 \pmod{4}$ and $n \equiv 0 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_i values are same as case 1.

 $\varphi(x_{n+2}) = 4, \varphi(x_{n+1}) = 3.$

For $n + 3 \le j \le m$, the labeling of x_i values are same as case 8.

Case 13: When $m \equiv 3 \pmod{4}$ and $n \equiv 1 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_j values are same as case 1.

 $\varphi(x_{n+1}) = 4.$

For $n + 2 \le j \le m$, the labeling of x_j values are same as case 8.

Case 14: When $m \equiv 3 \pmod{4}$ and $n \equiv 2 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_j values are same as case 1.

 $\varphi(x_{n+1}) = 3.$

For $n + 2 \le j \le m$, the labeling of x_j values are same as case 3.

Case 15: When $m \equiv 3 \pmod{4}$ and $n \equiv 3 \pmod{4}$.

For $1 \le j \le n$, the labeling of x_i values are same as case 1.

For $n + 1 \le j \le m$, the labeling of x_j values are same as case 3.

The values of y_k are labeled as follows:

When $m \ge n$.

For $1 \le k \le n$.

 $\varphi(y_k) = 1$ if $k \equiv 0 \pmod{2}$.

 $\varphi(y_k) = 2$ if $k \equiv 1 \pmod{2}$.

When m < n.

Case 1: When $m \equiv 0 \pmod{4}$ and $n \equiv 0, 1 \pmod{4}$.

For $1 \le k \le m$.

 $\varphi(y_k) = 3$ if $k \equiv 1 \pmod{2}$ and $k \neq 1$.

 $\varphi(y_k) = 4$ if $k \equiv 0 \pmod{2}$ and k = 1.

For $m + 1 \le k \le n$.

 $\varphi(y_k) = 1$ if $k \equiv 1 \pmod{4}$.

 $\varphi(y_k) = 2$ if $k \equiv 2 \pmod{4}$.

 $\varphi(y_k) = 3$ if $k \equiv 3 \pmod{4}$.

 $\varphi(y_k) = 4$ if $k \equiv 0$ (modulo4).

Case 2: When $m \equiv 0 \pmod{4}$ and $n \equiv 2 \pmod{4}$.

For $1 \le k \le m$, the labeling of y_k values are same as case 1.

 $\varphi\left(y_{m+1}\right)=3.$

For $m + 2 \le k \le n$.

 $\varphi(y_k) = 1$ if $k \equiv 2 \pmod{4}$.

 $\varphi(y_k) = 2$ if $k \equiv 3 \pmod{4}$.

 $\varphi(y_k) = 3$ if $k \equiv 0$ (modulo4).

 $\varphi(y_k) = 4$ if $k \equiv 1 \pmod{4}$.

Case 3: When $m \equiv 0 \pmod{4}$ and $n \equiv 3 \pmod{4}$.

For $1 \le k \le m$, the labeling of y_k values are same as case 1.

$$\varphi(y_{m+1}) = 3, \varphi(y_{m+2}) = 4.$$

For $m + 3 \le k \le n$.

 $\varphi(y_k) = 1$ if $k \equiv 3 \pmod{4}$.

 $\varphi(y_k) = 2$ if $k \equiv 0$ (modulo4).

 $\varphi(y_k) = 3$ if $k \equiv 1 \pmod{4}$.

 $\varphi(y_k) = 4$ if $k \equiv 2 \pmod{4}$.

Case 4: When $m \equiv 1 \pmod{4}$ and $n \equiv 0, 1, 2, 3 \pmod{4}$.

For $1 \le k \le m$, the labeling of y_k values are same as case 1.

$$\varphi(y_{m+1}) = 4, \varphi(y_{m+2}) = 1.$$

For $m + 3 \le k \le n$, the labeling of y_k values are same as case 3.

Case 5: When $m \equiv 2 \pmod{4}$ and $n \equiv 0, 1 \pmod{4}$.

For $1 \le k \le m$, the labeling of y_k values are same as case 1.

 $\varphi(y_{m+1}) = 3, \varphi(y_{m+2}) = 4.$

For $m + 3 \le k \le n$, the labeling of y_k values are same as case 1.

Case 6: When $m \equiv 2 \pmod{4}$ and $n \equiv 2, 3 \pmod{4}$. For $1 \le k \le m$,the labeling of y_k values are same as case 1. $\varphi(y_{m+1}) = 1, \varphi(y_{m+2}) = 2.$

For $m + 3 \le k \le n$, the labeling of y_k values are same as case 3.

Case 7: When $m \equiv 3 \pmod{4}$ and $n \equiv 0, 1 \pmod{4}$.

For $1 \le k \le m$, the labeling of y_k values are same as case 1.

 $\varphi\left(y_{m+1}\right) = 4.$

For $m + 2 \le k \le n$, the labeling of y_k values are same as case 1.

Case 8: When $m \equiv 3 \pmod{4}$ and $n \equiv 2 \pmod{4}$. For $1 \le k \le m$, the labeling of y_k values are same as case 1. $\varphi(y_{m+1}) = 4, \varphi(y_{m+2}) = 3.$

For $m + 3 \le k \le n$, the labeling of y_k values are same as case 2.

Case 9: When $m \equiv 3 \pmod{4}$ and $n \equiv 3 \pmod{4}$.

For $1 \le k \le m$, the labeling of y_k values are same as case 1. For $m + 1 \le k \le n$.

 $\varphi(y_k) = 1$ if $k \equiv 0$ (modulo4).

 $\varphi(y_k) = 2$ if $k \equiv 1 \pmod{4}$.

 $\varphi(y_k) = 3$ if $k \equiv 2 \pmod{4}$.

 $\varphi(y_k) = 4$ if $k \equiv 3 \pmod{4}$.

The following table shows that *m* & *n*concurrence is realized with modulo 4

Nature of <i>m</i> and <i>n</i>	$v_{\varphi}(1)$	$v_{\varphi}(2)$	$v_{\varphi}(3)$	$v_{\varphi}(4)$
$m \equiv 0$ $n \equiv 0$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$
$m \equiv 0$				
$n\equiv 1$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}+1$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$
$m \ge n$				
$m \equiv 0,$ $n \equiv 1,$ m < n	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$

Ouotient-4	Cordial	Labeling	Of Some	Tricvclic	Graphs
Quoneni I	coraiai	Labering	Of Some	Incyche	Graphs

$m \equiv 0$	$\frac{m+n+6}{4}$	$\frac{m+n+6}{4} - 1$	$\frac{m+n+6}{4}$	$\frac{m+n+6}{4} - 1$
$n \equiv 2$	1		1	
$m \equiv 0,$				
$n \equiv 3$,	m+n+5	m + n + 5	m + n + 5	m + n + 5
$m \ge n$	$\frac{m(n+3)}{4} - 1$		1	
	-	4	4	4
$m \equiv 0$				
	m + n + 5	m + n + F	m + n + 5	m + n + 5
$n \equiv 3$		$\frac{m+n+3}{4} - 1$	<u></u>	
	4	-	4	4
m < n				
$m \equiv 1$				
		$m \perp n \perp 3$	$m \perp n \perp 3$	$m \perp n \perp 3$
$n\equiv 0$	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+5}{4}$
	т	4	4	4
$m \ge n$				
$m \equiv 1$				
				m m 2
$n\equiv 0$	$\frac{m+n+5}{2}$	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{2}$	$\frac{m+n+5}{2}$
	4	4	4	4
m < n				
$m \equiv 1$				
	$\frac{m+n+6}{2}-1$	m+n+6	m+n+6	$\frac{m+n+6}{2}-1$
$n \equiv 1$	4	4	4	4
$m \equiv 1$				
	=			=
$n \equiv 2$	$\frac{m+n+5}{2}$	$\frac{m+n+5}{2}-1$	m+n+5	$\frac{m+n+5}{2}$
	4	4	4	4
$m \ge n$				
$m \equiv 1$				
				=
$n \equiv 2$	$\frac{m+n+5}{2}-1$	m + n + 5	m+n+5	m+n+5
-	4	4	4	4
m < n				
$m \equiv 1$				
	$\frac{m+n+4}{2}$	$\frac{m+n+4}{2}$	$\frac{m+n+4}{2}$	$\frac{m+n+4}{2}$
$n \equiv 3$	4	4	4	4
$m \equiv 2$				
	$\frac{m+n+6}{1} - 1$	$\frac{m+n+6}{1} - 1$	$\frac{m+n+6}{2}$	$\frac{m+n+6}{2}$
$n\equiv 0$	4	4	4	4
$m \equiv 2$				
$n \equiv 1$	$\frac{m+n+5}{1}-1$	$\frac{m+n+5}{2}$	$\frac{m+n+5}{2}$	$\frac{m+n+5}{2}$
	4	4	4	4
m > n				
$m \equiv 2$				
n = 1	m + n + 5	$\frac{m+n+5}{2} - 1$	m + n + 5	m+n+5
	4	4	4	4
m < n				
$m \setminus n$				1

$m \equiv 2$				
$n \equiv 2$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$
$m \equiv 2$				
$n \equiv 3$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$
$m \ge n$				
$m \equiv 2$				
$n \equiv 3$	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$
m < n				
$m \equiv 3$				
$n\equiv 0$	$\frac{m+n+5}{4}$	$\frac{m+n+5}{4} - 1$	$\frac{m+n+5}{4}$	$\frac{m+n+5}{4}$
$m \ge n$				
$m \equiv 3$				
$n\equiv 0$	$\frac{m+n+5}{4} - 1$	$\frac{m+n+5}{4}$	$\frac{m+n+5}{4}$	$\frac{m+n+5}{4}$
m < n m = 2				
$m \equiv 3$ $n \equiv 1$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$
$m \equiv 3$				
$n \equiv 2$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{4}$
$m \equiv 3$	$\frac{m+n+6}{2} - 1$	m + n + 6	m + n + 6	$\frac{m+n+6}{2} - 1$
$n \equiv 3$	4	4	4	4

Quotient-4 Cordial Labeling Of Some Tricyclic Graphs

Table 1: Vertex labeling of Jelly Fish graph

The following table shows that *m* & *n*concurrence is realized with modulo 4.

Nature of m and n	$e_{\varphi}(0)$	$e_{\varphi}(1)$	$e_{\varphi}(2)$	$e_{\varphi}(3)$
$m \equiv 0$ $n \equiv 0$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4} + 1$	$\frac{m+n+4}{4}$
$m \equiv 0$ $n \equiv 1$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{4}$
$m \equiv 0$ $n \equiv 2$	$\frac{m+n+6}{4} - 1$	$\frac{m+n+6}{4}$	$\frac{m+n+6}{4}$	$\frac{m+n+6}{4}$
$m \equiv 0$ $n \equiv 3$	$\frac{m+n+5}{4}$	$\frac{m+n+5}{4}$	$\frac{m+n+5}{4}$	$\frac{m+n+5}{4}$

$m \equiv 1$	$\frac{m+n+3}{1}$	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{4} + 1$	$\frac{m+n+3}{4}$
$n \equiv 0$	4	4	4	4
$m \equiv 1$	m+n+6	m + n + 6	m + n + 6	m + n + 6
	$\frac{111111}{4} - 1$	4	4	4
$n \equiv 1$ $m \equiv 1$				
	$\underline{m+n+5}$	m + n + 5	m + n + 5	m+n+5
$n \equiv 2$	4	4	4	4
$m \equiv 1$	m + n + 4	<i>m</i> + <i>n</i> +4	m + n + 4	m + n + 4
n = 3	4	$\frac{++1}{4}$	4	4
$m \equiv 3$ $m \equiv 2$				
	$\frac{m+n+6}{4}$	$\frac{m+n+6}{4} - 1$	$\frac{m+n+6}{4}$	$\frac{m+n+6}{4}$
$n \equiv 0$	4	4	4	4
$m \equiv 2$	<i>m</i> + <i>n</i> + 5	<i>m</i> + <i>n</i> + 5	<i>m</i> + <i>n</i> + 5	m + n + 5
n = 1	4	4	4	4
$m \equiv 2$		aaa ca 4		
	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n+4}{4} + 1$	$\frac{m+n+4}{4}$
$n \equiv 2$	4	4	-	4
$m \equiv 2$	m + n + 3	m+n+3 + 1	m+n+3 + 1	m + n + 3
$n \equiv 3$	4	4	4	4
$m \equiv 3$	$m \pm n \pm 5$	$m \pm n \pm 5$	$m \pm n \pm 5$	$m \pm n \pm 5$
	$\frac{m+n+5}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+5}{4}$
$n \equiv 0$ m = 2	1	1	1	1
$m \equiv 5$	m+n+4	$\frac{m+n+4}{2} + 1$	m+n+4	m+n+4
$n \equiv 1$	4	4	4	4
$m \equiv 3$				
	m + n + 3	m + n + 3	<i>m</i> + <i>n</i> +3	m+n+3
$n \equiv 2$	4	4	$\frac{++1}{4}$	$\frac{++1}{4}$
m > n				
$m \equiv 3$				
_	m + n + 3	<i>m</i> + <i>n</i> +3	m + n + 3	<i>m</i> + <i>n</i> +3
$n \equiv 2$	4	$\frac{4}{4} + 1$	4	$\frac{4}{4} + 1$
m < n				
$m \equiv 3$		$m \perp n \perp 6$	$m \perp n \perp 6$	$m \perp n \perp 6$
	$\frac{m+n+6}{4} - 1$	$\frac{m+n+6}{4}$	$\frac{m+n+6}{4}$	$\frac{m+n+6}{4}$
$n \equiv 3$	-	4	4	4

Quotient-4 Cordial Labeling Of Some Tricyclic Graphs

Table 2: Edge labeling of Jelly Fish graph

The above tables 1 and 2 show that $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1$ and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1$. Hence the Jelly fish graphis quotient-4 cordial labeling.

Illustration3.2. Figure 1 gives the quotient-4 cordial labeling for the Jelly fish graph with m = 6, n = 5.

Figure 1.

Theorem 3.3. A graph $C_n \circ v C'_n$ is quotient-4 cordial if $n \ge 3$. **Proof.** Let G be a $C_n \circ v C'_n$ graph. If *n* is even, V (G) = { x_i : 1 ≤ i ≤ n} ∪ { y_j : $\frac{n}{2}$ + 1 ≤ j ≤ n}. n - 1 \cup { $x_1 y_n$ }. Here $|V(G)| = \frac{3n}{2}$, $|E(G)| = \frac{3n}{2} + 1$. If n is odd, $V(G) = \{x_i : 1 \le i \le n\} \cup \{y_j : \frac{n-1}{2} + 1 \le j \le n\}.$ $E(G) = \{x_i x_{i+1} \colon 1 \le i \le n-1\} \cup \{x_1 x_n\} \cup \{x_{\frac{n-1}{2}} y_{\frac{n-1}{2}+1}\} \cup \{y_j y_{j+1} \colon \frac{n-1}{2} + 1 \le j \le n-1\} \cup \{x_1 x_n\} \cup \{x_n x_n\} \cup$ $\leq n-1\} \cup \{x_1y_n\}.$ Here $|V(G)| = \frac{3n+1}{2}$, $|E(G)| = \frac{3n+1}{2} + 1$. Define $\varphi : V(G) \rightarrow \{1, 2, 3, 4\}.$ The values of x_i are labeled as follows: **Case 1:** When $n \equiv 0 \pmod{16}$. For $1 \leq i \leq n$. $\varphi(x_i) = 1$ if $i \equiv 1, 4 \pmod{8}$. $\varphi(x_i) = 2$ if $i \equiv 6, 7 \pmod{8}$. $\varphi(x_i) = 3$ if $i \equiv 0, 5 \pmod{8}$.

 $\varphi(x_i) = 4$ if $i \equiv 2, 3 \pmod{8}$.

Case 2: When $n \equiv 1 \pmod{16}$.

For $1 \le i \le n - 1$, the labeling of x_i values are same as case 1.

 $\varphi(x_n)=4.$

Case 3: When $n \equiv 2 \pmod{16}$.

For $1 \le i \le n - 2$, the labeling of x_i values are same as case 1. $\varphi(x_{n-1}) = 4, \varphi(x_n) = 1.$

Case 4: When $n \equiv 3, 4, 12 \pmod{16}$.

For $1 \le i \le n - 2$, the labeling of x_i values are same as case 1. $\varphi(x_{n-1}) = 2, \varphi(x_n) = 3.$

Case 5: When $n \equiv 5, 13 \pmod{16}$.

For $1 \le i \le n - 3$, the labeling of x_i values are same as case 1. $\varphi(x_{n-2}) = \varphi(x_{n-1}) = 4, \varphi(x_n) = 1.$

Case 6: When $n \equiv 6 \pmod{16}$.

For $1 \le i \le n - 2$, the labeling of x_i values are same as case 1. $\varphi(x_{n-1}) = \varphi(x_n) = 2.$

Case 7: When $n \equiv 7 \pmod{16}$.

For $1 \le i \le n - 3$, the labeling of x_i values are same as case 1. $\varphi(x_{n-2}) = 4, \varphi(x_{n-1}) = \varphi(x_n) = 2.$

Case 8: When $n \equiv 8 \pmod{16}$.

For $1 \le i \le n - 3$, the labeling of x_i values are same as case 1.

 $\varphi(x_{n-2}) = 1, \varphi(x_{n-1}) = 4, \varphi(x_n) = 3.$

Case 9: When $n \equiv 9 \pmod{16}$.

For $1 \le i \le n - 3$, the labeling of x_i values are same as case 1.

 $\varphi(x_{n-2}) = 3, \varphi(x_{n-1}) = 1, \varphi(x_n) = 4.$

Case 10: When $n \equiv 10 \pmod{16}$.

For $1 \le i \le n - 3$, the labeling of x_i values are same as case 1.

 $\varphi(x_{n-2}) = 1, \varphi(x_{n-1}) = \varphi(x_n) = 3.$

Case 11: When $n \equiv 11 \pmod{16}$.

For $1 \le i \le n - 2$, the labeling of x_i values are same as case 1. $\varphi(x_{n-1}) = \varphi(x_n) = 3.$

Case 12: When $n \equiv 14 \pmod{16}$.

For $1 \le i \le n - 4$, the labeling of x_i values are same as case 1.

 $\varphi(x_{n-3}) = 1, \varphi(x_{n-2}) = \varphi(x_{n-1}) = \varphi(x_n) = 2.$

Case 13: When $n \equiv 15 \pmod{16}$.

For $1 \le i \le n - 5$, the labeling of x_i values are same as case 1.

^{*}Corresponding Author: S.Kavitha

 $\varphi(x_{n-4}) = 1, \varphi(x_{n-3}) = 4, \varphi(x_{n-2}) = \varphi(x_{n-1}) = \varphi(x_n) = 2.$

The values of y_i are labeled as follows:

Case 1: When $n \equiv 0, 3, 4, 5, 9, 10, 11, 12, 13 \pmod{16}$.

For, if *n* is even
$$\frac{n}{2} + 1 \le j \le n$$
, if *n* is odd $\frac{n-1}{2} + 1 \le j \le n$.

$$\varphi(y_j) = 1$$
 if $j \equiv 1, 4 \pmod{8}$.

 $\varphi(y_j) = 2$ if $j \equiv 6, 7 \pmod{8}$.

 $\varphi\bigl(y_j\bigr)=3\quad if\ j\equiv 0,5\ ({\rm modulo}\ 8).$

 $\varphi(y_i) = 4$ if $j \equiv 2, 3 \pmod{8}$.

Case 2: When $n \equiv 1 \pmod{16}$.

For $1 \le j \le n - 2$, the labeling of y_j values are same as case 1. $\varphi(y_{n-1}) = 1, \varphi(y_n) = 3.$

Case 3: When $n \equiv 2, 6, 14 \pmod{16}$.

For $1 \le j \le n - 1$, the labeling of y_i values are same as case 1.

$$\varphi(y_n) = 3.$$

Case 4: When $n \equiv 7, 15 \pmod{8}$.

For $1 \le j \le n - 4$, the labeling of y_i values are same as case 1.

 $\varphi(y_{n-2}) = 1, \varphi(y_{n-3}) = \varphi(y_{n-1}) = \varphi(y_n) = 3.$

Case 3: When $n \equiv 8 \pmod{8}$.

For $1 \le j \le n - 1$, the labeling of y_j values are same as case 1. $\varphi(y_n) = 2$.

The following table shows that *n*concurrence is realized with modulo 16.

Nature of <i>n</i>	$v_{\varphi}(1)$	$v_{\varphi}(2)$	$v_{\varphi}(3)$	$v_{\varphi}(4)$
<i>n</i> ≡ 0,8	$\frac{3n}{8}$	$\frac{3n}{8}$	$\frac{3n}{8}$	$\frac{3n}{8}$
$n \equiv 1$	$\frac{3n+5}{8}$	$\frac{3n+5}{8}-1$	$\frac{3n+5}{8}-1$	$\frac{3n+5}{8}$
$n \equiv 2$	$\frac{3n+2}{8}$	$\frac{3n+2}{8}-1$	$\frac{3n+2}{8}$	$\frac{3n+2}{8}$
$n \equiv 3$	$\frac{3n-1}{8}$	$\frac{3n-1}{8}$	$\frac{3n-1}{8}$	$\frac{3n-1}{8} + 1$

Quationt A	Cordial	Labolina	Of Como	Triovalia	Cranhe
Ouolleni-4	Coraiai	Labeling	OI Some		Gravns
~					

<i>n</i> ≡ 4, 12	$\frac{3n+4}{8}$	$\frac{3n+4}{8} - 1$	$\frac{3n+4}{8} - 1$	$\frac{3n+4}{8}$
<i>n</i> ≡ 5, 13	$\frac{3n+1}{8}$	$\frac{3n+1}{8}$	$\frac{3n+1}{8}$	$\frac{3n+1}{8}$
<i>n</i> ≡ 6, 14	$\frac{3n-2}{8}+1$	$\frac{3n-2}{8}$	$\frac{3n-2}{8}$	$\frac{3n-2}{8}$
<i>n</i> ≡ 7, 15	$\frac{3n+3}{8}$	$\frac{3n+3}{8}-1$	$\frac{3n+3}{8}$	$\frac{3n+3}{8}$
$n \equiv 9$	$\frac{3n+5}{8}$	$\frac{3n+5}{8}-1$	$\frac{3n+5}{8}$	$\frac{3n+5}{8}-1$
$n \equiv 10$	$\frac{3n+2}{8}$	$\frac{3n+2}{8}$	$\frac{3n+2}{8}$	$\frac{3n+2}{8}-1$
<i>n</i> ≡ 11	$\frac{3n-1}{8}$	$\frac{3n-1}{8}$	$\frac{3n-1}{8} + 1$	$\frac{3n-1}{8}$

Table 5.3.5: Vertex labeling of $C_n \circ v C'_n$ graph.

The following table shows that *n*concurrence is realized with modulo 16.

Nature of <i>n</i>	$e_{\varphi}(0)$	$e_{\varphi}(1)$	$e_{\varphi}(2)$	$e_{\varphi}(3)$
<i>n</i> ≡ 0,8	$\frac{3n}{8}$	$\frac{3n}{8}$	$\frac{3n}{8}$	$\frac{3n}{8} + 1$
<i>n</i> ≡ 1,9	$\frac{3n+5}{8}$	$\frac{3n+5}{8} - 1$	$\frac{3n+5}{8}$	$\frac{3n+5}{8}$
<i>n</i> ≡ 2, 10	$\frac{3n+2}{8}$	$\frac{3n+2}{8}$	$\frac{3n+2}{8}$	$\frac{3n+2}{8}$
$n \equiv 3$	$\frac{3n-1}{8} + 1$	$\frac{3n-1}{8}$	$\frac{3n-1}{8} + 1$	$\frac{3n-1}{8}$
<i>n</i> ≡ 4, 12	$\frac{3n+4}{8}$	$\frac{3n+4}{8}$	$\frac{3n+4}{8}$	$\frac{3n+4}{8} - 1$
<i>n</i> ≡ 5, 13	$\frac{3n+1}{8}$	$\frac{3n+1}{8}$	$\frac{3n+1}{8}$	$\frac{3n+1}{8} + 1$
<i>n</i> ≡ 6, 14	$\frac{3n-2}{8}+1$	$\frac{3n-2}{8} + 1$	$\frac{3n-2}{8}$	$\frac{3n-2}{8}$
<i>n</i> ≡ 7, 15	$\frac{3n+3}{8}$	$\frac{3n+3}{8}$	$\frac{3n+3}{8}$	$\frac{3n+3}{8}$

	$n \equiv 11$	$\frac{3n-1}{8}$	$\frac{3n-1}{8} + 1$	$\frac{3n-1}{8}$	$\frac{3n-1}{8} + 1$
--	---------------	------------------	----------------------	------------------	----------------------

Table 4: Edgelabeling of $C_n \circ v C_n$ graph.

The above tables 3 and 4show that $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1$ and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1$. Hence the graph $C_n \circ v C_n$ is quotient-4 cordial labeling.

Illustration 4. Figure 2 gives the quotient-4 cordial labeling for the graph $C_8 \circ v C_8'$.

Figure 2.

IV. CONCLUSION

In this paper, it is proved that some tricyclic graphs which admits quotient-4 cordial. The existence of quotient-4 cordial labeling of different families of graphs will be the future work.

ACKNOWLEDGMENT

Sincerely register our thanks for the valuable suggestions and feedback offered by the referees.

REFERENCES

- [1]. Albert William, IndraRajasingh and S Roy, Mean Cordial Labeling of Certain graphs, J.Comp.& Math. Sci. Vol.4 (4),274-281 (2013).
- [2]. I.Cahit and R. Yilmaz, E3-cordial graphs, ArsCombin, 54 (2000) 119-127.
- [3]. S. Freeda and R. S. Chellathurai, H- and H2-cordial labeling of some graphs Open J. Discrete Math., 2 (2012) 149-155.
- [4]. Joseph A. Gallian, A Dynamic survey of Graph Labeling, Twenty-first edition, December 21, 2018.
- [5]. P.Sumathi, S.Kavitha, Quotient-4 cordial labeling for path related graphs, The International Journal of Analytical and Experimental Modal analysis, Volume XII, Issue I, January 2020, pp. 2983-2991.
- [6]. P.Sumathi, S.Kavitha, Quotient-4 Cordial Labeling of Some Ladder Graphs, Journal of Algebraic Statistics, Volume 13, No.2, 2022, p.3243-3264.
- P.Sumathi, S.Kavitha, Quotient-4 cordial labeling of some unicyclicgraphs-paper-I, AIP Conference Proceedings, Volume 2718, Issue.1, 24 May 2023, p.020003-1-020003-12.
- [8]. P.Sumathi, A.Mahalakshmi and A.Rathi, Quotient-3 cordial Labeling for Star Related Graphs, Global Journal of Pure and Applied Mathematics, Volume 13, Number 7 (2017), pp.3909-3918.