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I. Introduction 

 

The Kuznetsov polynomials        can be defined via a generating function [1]: 
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or through a recurrence relation: 
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where      are Bernoulli numbers [2]: 
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In Sec. 2 we show the solution of (2), that is,       in terms of the     via the complete Bell polynomials [3-9] 

and the corresponding inversion gives the Bernoulli numbers in terms of Kuznetsov polynomials. The Sec. 3 has 

an expression to determine the Euler-Mascheroni’s constant [10-13]. 

 

II. Explicit expression for the Kuznetsov polynomials 

 

The relation (2) can be written in the form: 
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which has the structure of the recurrence relation studied in [14], therefore: 

 



On the Kuznetsov’s Polynomials 

*Corresponding Author: R. Sivaraman                                                                                                       34 | Page 

      
     

  
                          

            

     
|   |                                            (5) 

 

involving the complete Bell polynomials [3-9]: 
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hence from (3), (5) and (6) we reproduce the results of Kuznetsov [1]: 
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   On the other hand, the inversion of expressions of the type (5) is given by [15]: 
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that is, the polynomials (7) allow determine the absolute value of Bernoulli numbers. 

 

III. Euler-Mascheroni’s constant 

 

The work of Kuznetsov [1] has connection with the gamma approximation obtained by Lanczos [16, 

17], then it is natural to search for formulae to determine quantities related to the gamma function, for example, 

the Euler-Mascheroni constant    [10-13]. We know the following expression of Ulgenes [18]: 
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therefore:      
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where were applied the relations [2, 13]: 
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Similarly, we have the Hermite’s formula [18, 19]: 
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therefore: 
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where we used the property: 
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the formula (13) is alternative to the approximation deduced in [20]. 
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