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Abstract 
This paper studies the motion of an infinitesimal particle near the out-of-plane equilibrium points in the elliptic 

restricted three body problem  when the primaries are triaxial rigid bodies, sources of radiation and surrounded 

by a belt. Itis observed that there exist two out-of-plane equilibria which lie  in the ξζ- plane in symmetrical 

positions with respect tothe orbital plane.The parameters involved in the system affect theirpositions.The 

position changes with an increase intriaxiality,radiation and belt.We found that for the binary system the effect 

of triaxialty and the belt moves the out-of-plane equilibrium points in opposite directions.The position and 

linear stability of the out-of-plane equilibrium points are investigated numerically using first, arbitrary values 

for theparameters and then forthe two binary systems (Xi-Bootis and Kruger 60) and they are found to be 

unstable in each case. 
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I. Introduction 
One of the most important problem in celestial mechanics, is the three-body problem. It has been 

studied in many scientific researches, especially in the field ofastrodynamics and astrophysics.Reknowned 

mathematicians and scientists have produced interesting and significant results in an attempt to understand and 

predict the motion of natural bodies. 

The restricted three-body problem is a configuration involving two massive bodies called the primaries 

and a particle of negligible mass,called the third body (infinestimalparticle,testparicle).It describes the motion of 

theinfinestimal particle in the vicinity of the primaries which  move in circular or elliptic orbits around their 

common centre of mass due to their mutual gravitational attraction.It possesses three collinear points L1,2,3 and 

two triangular points L4,5. They lie on the orbital planeof  motionof the primaries. The latter are stable, while the 

former areunstable.The restricted three-body problem is called ellipticrestricted three-body problem (ER3BP)if 

the primaries move in  elliptic orbit around their common centre of mass and cicularrestricted three-body 

problem (CR3BP) if the primaries move in circular orbits around their common centre of mass.There are several 

communications in both ER3BP and CR3BP.In the  classicalCR3BP only gravitational forces influence the 

motion of the particle.Thephotogravitational R3BPproblem arises when one of the participating bodies or both 

are intense emitters of radiation. It is inadequate to consider only the gravitational force in some solar or stellar 

dynamic problems. For instance, gravity is not the only dominant force present when a star collides with a 

particle, but also the repulsive forces of radiation pressure(Radsviesky,1950).Thefore, the potential function of 

the CR3BP was amended so as to  admit to other pertubing forces such as radiation,tiaxiality,oblateness and so 

on. These have enable several researchers to propose different models under different characterisations.For 

instance (Narayan,et.al;2015;Danby,1964;Capdvilla,2018;Umar and Hussain, 2016; Singh and Umar2012a) 

have carried out detailed investigation in CR3BP or ER3BP on the existence of the collinear and non-collinear 

(triangular)equilibirium points and the stability of motion aroundthese points in ξη-plane and it was found to 
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exist and the triangular equilibirium pointsare conditionally stable,when  0<𝜇<𝜇𝑐  and unstable for 𝜇𝑐 ≤ 𝜇 ≤
1

2
, 

where 𝜇𝑐  is the critical massratio; while the colliear equilibrium points are unstable.The existence of out-of-

plane equilibrium points (OPEPs) was first pointed out by Radviesky (1950,1953)when studying the case of sun 

planet-particle and Galaxy-kernel-sun-particle and found the two equilibrium points L6,7 on the  ξζ-  plane to be 

symmetrical with respect to the ξη-plane.Since thenseveral authors (Daset.al. 2009;Doukos and Markellos 2006; 

Singh 2012;Singh and Umar, 2013a;Singh and Vicent 2016) based theirstudies on the Radviesky Model under 

different characterisations in CR3BP or ER3BP. 

On the other hand (Shankara et. al. 2011;Singh andAmuda 2015;Chakraborty and Narayan 2018;Zotos 

2018)have studied the out-of-plane points in the CR3BP or ER3BP using different models under the influence 

of radiation pressure or Pr-drag or oblateness or in combination of one of these forces and they found the OPEPs 

to be unstable. The basins of attraction around the OPEPs in the Copenhagen R3BP was determined by (Zotos, 

2018) using a multivariate version of the Newton-Raphson interactive method around the OPEPs when the 

primaries are oblate.(Doukos and Markellos,2006) obtained OPEPs analytically and then numerically by 

approximation with power series expansion about the smaller primary,when one of  the primaries is  oblate and 

the other radiating and when one or two of the primaries are oblate andproved that theOPEPs exist, but they are 

unstable.Four additional OPEPs were obtained as result of the oblateness of the primaries.Authors like (Singh 

and Umar 2013a, Hussain and Umar 2019,Charkraborty and Narayan, 2018) extend these results into the 

ER3BP,when one or the two  primaries are oblate with or without radiation pressure and found that OPEPs exist 

but are unstable.A generalized out-of-plane model studied (Hussainand Umar, 2019)in which the  primary is 

oblate and the secondary is triaxial and radiating in the ER3BP, shows  that theOPEPs (L6,7) are affected by the 

oblateness of the primary, radiation pressure and triaxiality of the secondary, semi-major axis and 

eccentricity.Also,(Singh and Umar,2013a) found that the position and stability of out-of-plane points are greatly 

affected by oblateness and radiation pressure of the primaries and the eccentricity of theorbits.Our work is a 

modified form of (Singh and Umar,2013a) with radiating-triaxial primaries and a potential of the belt in the 

framework of ER3BP.This work to the best of our knowledge does not yet exist in the literature.The OPEPs has 

not yet been extensively researched,hence works devoted to it  arefew.Only recently,(Vicent,2022) presented a 

paper on OPEPs where the primaries are radiating with effective Poynting-Robertson drag force with small 

perturbation in corolis and centrifugal forces and  obtained four OPEPs ( L6,7,8,9) out of which two L6,7 are stable 

in the absence of P-R drag. 

Interest in binary systems has increased, in the last decade,this is in part because many extra solar 

planetary systemsrevealed the presence of belts of dust particles that are regarded as the young analogues of 

Kuiper belt.(Aumman et al.,1984) and(Jiang andYeh,2003)suggest the position of the disc relative to the planets 

when they studied the effects of belts on planetary orbits and conclude that the planets might prefer to stay near 

the inner part instead of outer part of the belt. Later the R3BP was modified in their paper (Jiang and 

Yeh,2004)to include the effect of additional gravitational force from the belt on the infinitesimal mass, which 

results in the formation of new libration points. 

The studies conducted on belt focus more on motion of the particle around triangular equilibrium 

points very few articles are available in OPEPs.The model by (Singh andTaura,2014a)focus on the CR3BP 

when the two primaries are oblate spheroids and radiating with the gravitational potential from a belt. They 

obtained in addition to the usual five libration points two new collinear points as a result of the potential from 

the belt. The influence of the belt and non-sphericity of the primaries on the infinitesimal mass was studied 

by(Singh andTaura,2014c).They did analytic and numerical treatment of motion of a dust grain particle around 

triangular equilibrium points when the bigger primary is triaxial and the smaller one an oblate spheroid with a 

potential from the belt.They found that triangular points are stable for 0<𝜇<𝜇𝑐  and unstable for 𝜇𝑐 ≤ 𝜇 ≤
1

2
, 

where 𝜇𝑐  is the critical mass ratio. It was also observed that the potential from the belt increase the range of 

stability. 

In another study by (Singh andAmuda,2019) where the more massive primary is a triaxial body and 

less massive one an oblate spheroid emitting radiation enclosed by a circumbinary disc (belt) in the presence of 

Pr- drag force it was proved thatthe potential from the belt is a stabilizing force as it can change an unstable 

condition to a stable one even when the mass parameter exceeds the critical mass value  𝜇 > 𝜇𝑐 . 
In this paper we investigate the effect of trixiality,radiation pressure and the potentialof the belt on a 

test particle around the OPEPs in the framework of ER3BP.  

This paper is organized in 6 sections. The first section is introduction, the equations of motion are 

described in section 2, locations of equilibrium points can be found in section 3, while section 4 contains 

thelinear stability analysis of the out-of-plane equilibrium points usingnumerical applications,section 5 is 

discussion and finally section 6 is conclusion.  
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II. Equation of Motion 
The equation of motion of an infinitesimal particle in the ER3BP when the primaries are triaxial and radiating, 

with a gravitational potential from the belt, in a dimensionless rotating coordinate system (ξ, η, ζ)following 

(Singh and Umar,2013a)are as follows: 

ξ" - 2η' = Ωξ  

η" + 2ξ' = Ωη          

ζ" = Ωζ           (1) 

      

Ω =  1 − 𝑒2 −
1

2  
1

2
 𝜉2 + 𝜂2 +

1

𝑛2  
 1−𝜇 𝑞1

𝑟1
+

 1−𝜇  2𝜎1−𝜎2 𝑞1

2𝑟1
3 −

3 1−𝜇  𝜎1−𝜎2 𝑞1𝜂
2

2𝑟1
5 −

3 1−𝜇 𝜎1𝑞1𝜁
2

2𝑟1
5 + 

𝜇𝑞2

𝑟2
+

 𝜇2𝜎3−𝜎4𝑞22𝑟23−3𝜇𝜎3−𝜎4𝑞2𝜂22𝑟25− 3𝜇𝜎3𝑞2𝜁22𝑟25+ 𝑀𝑏𝑟2+𝑐+𝜁2+𝑑2212  (2)   

            

            

   

            

𝑟1
2 =  𝜉 + 𝜇 2 + 𝜂2 + 𝜁2 

𝑟2
2 = =  𝜉 + 𝜇 − 1 2 + 𝜂2 + 𝜁2         (3)

       

𝑛2 = 
1

𝑎
 1 +

3

2
𝑒2 +

3

2
 2𝜎1 − 𝜎2 +

3

2
 2𝜎3 − 𝜎4 +

2𝑀𝑏𝑟𝑐

 𝑟𝑐
2+T2 

3
2 
    (4) 

The effect of the gravitational potential of the  belt is expressed using  a model that explains a flattened potential  

and which best describes the gravitational potential within a system  given by(Miyamoto and Nagai, 1975)  as: 

𝑉 𝑟, ζ  = 
𝑀𝑏

 𝑟2+ 𝑐+ ζ2+𝑑2 
                                             

(5) 
 

r is the radial distance of the infinitesimal mass and is given by 𝑟2 = 𝜉2+𝜁2,  where 𝑐 and 𝑑 are the parameters 

which determine the density profile of the belt(Miyamoto and Nagai, 1975) and  (Kushvah,2008)𝑟𝑐 is the 

distance of any out-of-plane point from the origin and T is their sum,r1 and r2 are distances of the bigger and 

smaller primaries from the infinitesimal particle,respectively.q1 and q2 are their mass reduction factor (radiation 

factor),while  𝜎1 ,𝜎2  and  𝜎3,𝜎4  denote their triaxiality, respectively. n is the mean motion, a and e are the 

semi major axis and the eccentricity of the elliptic orbis respectively. 

 

III. Location of out-of-plane equilibrium points 
The equilibrium points are the solutions of the system of equationsΩ𝜉= Ω𝜂= Ω𝜁  = 0 

Ω𝜉 =   𝜉 −  
1

𝑛2  
 1−𝜇  𝜉+𝜇 𝑞1

𝑟1
3 + 

3 1−𝜇  𝜉+𝜇  2𝜎1−𝜎2 𝑞1

2𝑟1
5 −

15 1−𝜇  𝜉+𝜇 𝜎1

2𝑟1
7 𝑞1𝜂

2 −
15 1−𝜇  𝜉+𝜇 𝜎1𝑞1𝜁

2

2𝑟1
7 + 

𝜇 𝜉+𝜇−1 𝑞2

𝑟2
3 +

 3𝜇𝜉+𝜇−12𝜎3−𝜎4𝑞22𝑟25−15𝜇𝜉+𝜇−1𝜎32𝑟27𝑞2𝜂2− 15𝜇𝜉+𝜇−1𝜎3𝑞2𝜁22𝑟27+𝑀𝑏 
𝜉𝜉2+𝑐+𝜁2+𝑑223/2=0     (5)     

        

Ω𝜂 =   1 − 𝑒2 −
1

2  𝜂  1 −
1

𝑛2  
 1−𝜇 𝑞1

𝑟1
3 + 

3 1−𝜇  2𝜎1−𝜎2 𝑞1

2𝑟1
5 +

3 1−𝜇  𝜎1−𝜎2 

𝑟1
5 𝑞1 −

15 1−𝜇  𝜎1−𝜎2 

2𝑟1
7 𝑞1𝜂

2 −

 151−𝜇𝜎1𝑞1𝜁22𝑟17+ 𝜇𝑞2𝑟23+ 3𝜇2𝜎3−𝜎4𝑞22𝑟25+3𝜇𝜎3−𝜎4𝑟25𝑞2−15𝜇𝜎3−𝜎42𝑟27𝑞2𝜂2− 15𝜇 
𝜎3𝑞2𝜁22𝑟27+𝑀𝑏𝜉2+𝑐+𝜁2+𝑑223/2 = 0        

 (6)         
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Ωζ =  1 − 𝑒2 −
1

2  −  
𝜁

𝑛2  
 1−𝜇 𝑞1

𝑟1
3 +

3 1−𝜇  2𝜎1−𝜎2 

2𝑟1
5 𝑞1 +

  3 1−𝜇 𝜎1

𝑟1
5 𝑞1 −

15 1−𝜇  𝜎1−𝜎2 

2𝑟1
7 𝑞1𝜂

2 −  
15 1−𝜇 𝜎1𝑞1𝜁

2

2𝑟1
7 +

 𝜇𝑞2𝑟23+ 3𝜇2𝜎3−𝜎42𝑟25𝑞2+3𝜇𝜎3𝑟25𝑞2−15𝜇𝜎3−𝜎42𝑟27𝑞2𝜂2− 
15𝜇𝜎3𝑞2𝜁22𝑟27+𝑀𝑏𝐶𝜁2+𝑑2−12+1𝜉2+𝑐+𝜁2+𝑑223/2 = 0     

      (7)       

   

The out-of-plane equilibrium points are the solution of above equations, when 

 𝜉≠ 0, 𝜂 = 0   𝑎𝑛𝑑  ζ≠ 0        

 From (7) with ζ ≠ 0 we get: 

 1 − 𝜇 𝑞1

𝑟1
3

+
3 1 − 𝜇  2𝜎1 − 𝜎2 

2𝑟1
5

𝑞1 +
  3 1 − 𝜇 𝜎1

𝑟1
5

𝑞1 −  
15 1 − 𝜇 𝜎1𝑞1ζ

2

2𝑟1
7

+  
𝜇𝑞2

𝑟2
3

+
3𝜇 2𝜎3 − 𝜎4 

2𝑟2
5

𝑞2

+
3𝜇𝜎3

𝑟2
5
𝑞2 −  

15𝜇𝜎3𝑞2𝜁
2

2𝑟2
7

 

+
𝑀𝑏  𝐶 𝜁

2+𝑑2 
−1

2 +1 

 𝜉2+ 𝑐+ 𝜁2+𝑑2 
2
 

3/2= 0           (8) 

  

   

Let 𝑄1=  1 − 𝜇 𝑞1 and 𝑄2= 𝜇𝑞2, then (8) becomes: 

𝑄1

𝑟1
3 +  

3𝑄1 2𝜎1−𝜎2 

2𝑟1
5 +

  3𝑄1𝜎1

𝑟1
5 −  

15𝑄1𝜎1𝜁
2

2𝑟1
7 + 

𝑄2

𝑟2
3 + 

3𝑄2 2𝜎3−𝜎4 

2𝑟2
5 +

3𝑄2𝜎3

𝑟2
5 −  

15𝑄2𝜎3𝜁
2

2𝑟2
7 +

𝑀𝑏   𝐶 𝜁
2+𝑑2 

−1
2 +1 

 𝜉2+ 𝑐+ 𝜁2+𝑑2 
2
 

3/2=  0 

          (9)  

      

 

Also from Equation (5) we write: 

𝑛2𝜉 −  
𝑄1 𝜉+𝜇 

𝑟1
3 −  

3𝑄1 𝜉+𝜇  2𝜎1−𝜎2 

2𝑟1
5 + 

15𝑄1 𝜉+𝜇 𝜎1𝜁
2

2𝑟1
7 −  

𝑄2 𝜉+𝜇−1 

𝑟2
3 −  

3𝑄2 𝜉+𝜇−1  2𝜎3−𝜎4 

2𝑟2
5 + 

15𝑄2 𝜉+𝜇−1 𝜎3𝜁
2

2𝑟2
7 −

𝑀𝑏𝜉

 𝜉2+ 𝑐+ 𝜁2+𝑏2 
2
 
3/2       (10)   

 

ExpandingEquation  (10) we obtained: 

𝜉  1 −  
1

𝑛2  
𝑄1

𝑟1
3 +  

3𝑄1 2𝜎1−𝜎2 

2𝑟1
5 −  

15𝑄1𝜎1𝜁
2

2𝑟1
7 + 

𝑄2

𝑟2
3 + 

3𝑄2 2𝜎3−𝜎4 

2𝑟2
5 −  

15𝑄2𝜎3𝜁
2

2𝑟2
7 +

𝑀𝑏  

 𝜉2+ 𝑐+ 𝜁2+𝑑2 
2
 

3/2  −

 
𝜇

𝑛2  
𝑄1

𝑟1
3  −  

15𝑄1𝜎1𝜁
2

2𝑟1
7 + 

𝑄2

𝑟2
3 −  

15𝑄2𝜎3𝜁
2

2𝑟2
7 +

3𝑄1 2𝜎1−𝜎2 

2𝑟1
5 +

3𝑄2 2𝜎3−𝜎4 

2𝑟2
5  +

1

𝑛2  
𝑄2

𝑟2
3 + 

3𝑄2 2𝜎3−𝜎4 

2𝑟1
5 −  

15𝑄2𝜎3𝜁
2

2𝑟2
7  = 0 

   (11)         

    

 

From (9) we have  

15𝑄1 𝜎1 − 𝜎2 𝜁
2

2𝑟1
7

+
15𝑄2 𝜎3 − 𝜎4 𝜁

2

2𝑟2
7

 =  
𝑄1

𝑟1
3

+
3𝑄1 2𝜎1 − 𝜎2 

2𝑟1
5

+
  3𝑄1𝜎1

𝑟1
5

+
𝑄2

𝑟2
3

+
3𝑄2 2𝜎3 − 𝜎4 

2𝑟2
5

+
3𝑄2𝜎3

𝑟2
5

 

+
𝑀𝑏  𝑐 𝜁

2 + 𝑑2 −
1

2 + 1 

 𝜉2 +  𝑐 +  𝜁2 + 𝑑2 
2
 

3/2
 

𝜁2 =

 
2𝑟1

7  𝑟2
7

15𝑄1 𝜎1−𝜎2  𝑟2
7+15𝑄2 2𝜎3−𝜎4 𝑟1

7  
𝑄1

𝑟1
3 + 

3𝑄1 2𝜎1−𝜎2 

2𝑟1
5 +  

𝑄2

𝑟2
3 + 

3𝑄2 2𝜎3−𝜎4 

2𝑟2
5 +

  3𝑄1𝜎1

𝑟1
5 +

3𝑄2𝜎3

𝑟2
5 +

𝑀𝑏  𝑐   𝜁2+𝑑2 
−1

2 +1 

 𝜉2+ 𝑐+ 𝜁2+𝑑2 
2
 

3/2 

           (12)  

    

Substituting Equation (9) into Equation (11) and solvingwe obtained: 
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𝜉

 
 
 

 
 

1 −  
1

𝑛2

 

 
 
−  

  3𝑄1𝜎1

𝑟1
5

−
3𝑄2𝜎3

𝑟2
5

+
𝑀𝑏  

 𝜉2 +  𝑐 +  𝜁2 + 𝑑2 
2
 

3/2
−  

𝑀𝑏   𝑐 +  𝜁2 + 𝑑2 −
1

2 + 1 

 𝜉2 +  𝑐 +  𝜁2 + 𝑑2 
2
 

3

2

 

 
 

 
 
 

 
 

 

−
𝜇

𝑛2
 −  

  3𝑄1𝜎1

𝑟1
5

−
3𝑄2𝜎3

𝑟2
5

−
𝑀𝑏   𝑐 +  𝜁2 + 𝑑2 −

1
2 + 1 

 𝜉2 +  𝑐 +  𝜁2 + 𝑑2 
2
 

3/2
  

+ 
1

𝑛2
 −

𝑄1

𝑟1
3
−  

3𝑄1 2𝜎1 − 𝜎2 

2𝑟1
5

−
  3𝑄1𝜎1

𝑟1
5

−  
3𝑄2𝜎3

𝑟2
5

+  
15𝑄1𝜎1𝜁

2

2𝑟1
7

 −
𝑀𝑏   𝑐 +  𝜁2 + 𝑑2 −

1
2 + 1 

 𝜉2 +  𝑐 +  𝜁2 + 𝑑2 
2
 

3/2
 = 0 

 

 
𝑄1

𝑟1
3 +

3𝑄1 2𝜎1−𝜎2 

2𝑟1
5 +

  3𝑄1𝜎1(1−𝜇)

𝑟1
5 +

3𝑄2𝑄1𝜎3

𝑟2
5   −

15𝑄1𝜎1𝜁
2

2𝑟1
7 +  

𝑀𝑏  𝑄1 𝑐+ 𝜁2+𝑑2 
−1

2 +1 

 𝜉2+ 𝑐+ 𝜁2+𝑑2 
2
 
3/2   

i.e. 𝜉 =  _________________________________________________________________________  

𝑛2 + 
  3𝑄1𝜎1

𝑟1
5 +

3𝑄2𝜎3

𝑟2
5 +

𝑀𝑏  

 𝜉2+ 𝑐+ 𝜁2+𝑑2 
2
 
3/2 + + 

𝑀𝑏  𝑐   𝜁2+𝑑2 
−1

2 +1 

 𝜉2+ 𝑐+ 𝜁2+𝑑2 
2
 
3/2   

 
  

(1 − 𝜇) 
1

𝑟1
3

+
3 2𝜎1 − 𝜎2 

2𝑟1
5

+
  3𝑄1𝜎1

𝑟1
5

+
3𝑄2𝜎3

𝑟2
5

  −
15𝜎1𝜁

2

2𝑟1
7

+  
𝑀𝑏   𝑐 +  𝜁2 + 𝑑2 −

1
2 + 1 

 𝜉2 +  𝑐 +  𝜁2 + 𝑑2 
2
 

3/2
  

𝜉 =  _________________________________________________________________________________  

𝑛2 + 
  3𝑄1𝜎1

𝑟1
5 +

3𝑄2𝜎3

𝑟2
5 +

𝑀𝑏  

 𝜉2+ 𝑐+ 𝜁2+𝑑2 
2
 
3/2 + + 

𝑀𝑏  𝑐   𝜁2+𝑑2 
−1

2 +1 

 𝜉2+ 𝑐+ 𝜁2+𝑑2 
2
 

3/2               (13)    

     
  
 

 

We use the initial approximation 𝜉𝑜 =   1 − 𝜇  and 𝜁𝑜 =   3 2𝜎3 − 𝜎4  to obtain the positions of out-of-plane 

points L6,7numerically with the aid of the software package mathematica 10.4 in the form of power series to 

third order term in (2𝜎3- 𝜎4) from (12) and (13) as: (see Duokos and Markellos2006;Singh and Umar 2013a): 

𝜉𝑜 =  
1

2𝑎𝜇 𝑞2
    −1 + 𝜇 −  3 3 −1 + 𝜇  2 + 3𝑒2 −  2𝑎𝑞1      

+   2𝜎2 − 𝜎1  3 − 3𝑎𝑞1 (2𝜎3 − 𝜎4)3/2    

−
1

4𝑎𝜇 𝑞2
   9  3  (−1 + 𝜇) (2 +  3𝑎 (2 +  15 2𝜎2 − 𝜎1  𝑞1  (2𝜎3 − 𝜎4)

5
2    −  27  −1 + 𝜇 (2 + 3𝑒2 −

 2𝑎𝑞1+2𝜎1−𝜎23−3𝑎𝑞1 −2−3𝑒2+2𝜎2−𝜎1−3+6𝑎  

  (−1 + 𝜇)𝑞1))) 4(𝑎2𝜇2𝑞2
2 −1(2𝜎3 − 𝜎4)3 +  0 (2𝜎3 − 𝜎4)

7
2                                  (14) 

            

  

𝜁𝑜 =  3  2𝜎3 − 𝜎4 −  
9 −1 + 𝜇 (2 + 9 2𝜎1 − 𝜎2 𝑞1

10𝜇𝑞2

 2𝜎3 − 𝜎4 
2 

+ 
81 −1+𝜇 

20𝜇𝑞2
 2 + 25  2𝜎1 − 𝜎2 𝑞1 2𝜎3 − 𝜎4 

3 − 0  2𝜎3 − 𝜎4 
7

2                     (15) 

     

Theequilibrium points (𝜉0, 0, ±𝜁0) given by equations (14) and (15) are called the out-of-plane equilibrium 

points and are denoted by L6 and L7 respectively. 
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IV. Linear stability of out-of-plane equilibrium points 
The stability or instability of these  equilibrium points are determined by the eigen-values of the characteristic 

equation (16). If all the characteristic roots(𝜆𝑖  (i=1,2,3,4,5,6)) are pure imaginary roots or complex roots with 

negative real parts the equilibrium point will be stable otherwise it will be unstable. 

The characteristic equation of the system near any one of the out-of-plane points can be written as:  

𝜆6 +  4 − Ω0
𝜉𝜉 −  Ω0

𝜂𝜂 −  Ω0
𝜁𝜁  𝜆

4 +  Ω0
𝜂𝜂Ω

0
𝜁𝜁 + Ω0

𝜉𝜉Ω
0
𝜁𝜁 + Ω0

𝜉𝜉Ω
0
𝜂𝜂 − 4Ω0

𝜁𝜁 − (Ω0
𝜉𝜁

)2 𝜆2 −

 (Ω0
𝜉𝜉Ω

0
𝜂𝜂Ω

0
𝜁𝜁 − (Ω0

𝜉𝜁 )2Ω0
𝜂𝜂 ) = 0  (16) 

  

The superscript O denotes that the partial derivatives are evaluated atthe out-of-plane point (𝜉𝑜 , 𝑜, 𝜁𝑜) where we 

have: 

Ω0
𝜉𝜉  = (1 − 𝑒2)−

1
2  1 +

1

𝑛2
   

3𝑄1 𝜉𝑜+𝜇 2

𝑟10
3

 −
𝑄1

𝑟10
3 +  

15𝑄1 𝜉𝑜+𝜇 2 2𝜎1−𝜎2 

2𝑟10
7 −

3𝑄1

2𝑟10
5 +

105𝑄1 𝜉𝑜+𝜇 2𝜎1𝜁𝑜
2

2𝑟10
9 −

15𝑄1𝜎1𝜁𝑜
2

2𝑟10
7 +

 3𝑄2𝜉𝑜+𝜇−12𝑟205−𝑄2𝑟205+15𝑄2𝜉𝑜+𝜇−122𝜎3−𝜎42𝑟207−3𝑄22𝑟205−105𝑄2𝜉𝑜+𝜇−12𝜎3𝜁𝑜22𝑟209+ 
15𝑄2𝜎3𝜁𝑜22𝑟207+ 3𝑀𝑏𝜉02𝜉02+𝑐+𝜁02+𝑑225/2− 𝑀𝑏𝜉02+𝑐+𝜁02+𝑑223/2(17)   

            

    

Ω0
𝜂𝜂  =

 1 − 𝑒2 −
1

2   1 −
1

𝑛2  
𝑄1

𝑟10
3
 + 

3𝑄1 2𝜎1−𝜎2 

2𝑟10
5 −

15𝑄1𝜎1𝜁𝑜
2

2𝑟10
7 + 

𝑄2

𝑟20
3 +

3𝑄2 2𝜎3−𝜎4 

2𝑟20
5 −  

15𝑄2𝜎3𝜁𝑜
2

2𝑟20
7 −  

3𝑀𝑏η0
2

 𝜉0
2

+ 𝑐+ 𝜁𝑜
2+𝑑2 

2

 

5
2

+

𝑀𝑏𝜉02+𝑐+𝜁𝑜2+𝑑223/2 (18)     

Ω0
𝜁𝜁 =   1 − 𝑒2 −

1
2   

1

𝑛2  −  
𝑄1

𝑟10
3
 +

3𝑄1𝜁𝑜
2

𝑟10
5
 −

3𝑄1 2𝜎1−𝜎2 

2𝑟10
5 +

15𝑄1 2𝜎1−𝜎2 𝜁𝑜
2

2𝑟10
7 −  

3𝑄1𝜎1

𝑟10
5 +

15𝑄1𝜎1𝜁𝑜
2

𝑟10
7 +

45𝑄1𝜎1𝜁𝑜
2

2𝑟10
7 −

105𝑄1𝜎1𝜁𝑜42𝑟109−𝑄2𝑟203+3𝑄2𝜁𝑜2𝑟205− 
3𝑄22𝜎3−𝜎42𝑟205+15𝑄22𝜎3−𝜎4𝜁𝑜22𝑟207−3𝑄2𝜎3𝑟205+15𝑄2𝜎3𝜁𝑜22𝑟207+45𝑄2𝜎3𝜁𝑜22𝑟207−105𝑄
2𝜎3𝜁𝑜42𝑟209−𝑀𝑏𝑐𝜁02+𝑑2−12+1𝜉02+𝑐+𝜁02+𝑑2232+𝑀𝑏𝑐2𝜁02𝜁02+𝑑2−32𝜉02+𝑐+𝜁02+𝑑2232+3𝑀
𝑏𝜁02𝑐𝜁02+𝑑2−12 +12𝜉02+𝑐+𝜁02+𝑑2252       
   (19)     

Ω0
𝜉𝜁  = (1 − 𝑒2)−

1
2  

3𝜁0

𝑛2
   
𝑄1 𝜉𝑜+𝜇 

𝑟10
5

 +  
5𝑄1 𝜉𝑜+𝜇  2𝜎1−𝜎2 

2𝑟10
7 −

35𝑄1 𝜉𝑜+𝜇 𝜎1𝜁𝑜
2

2𝑟10
9 −

15𝑄1𝜎1𝜁𝑜
2

𝑟10
7 +  

𝑄2 𝜉𝑜+𝜇−1 

𝑟20
5 +

5𝑄2 𝜉𝑜+𝜇−1  2𝜎3−𝜎4 

2𝑟20
7 −  

35𝑄2 𝜉𝑜+𝜇−1 𝜎3𝜁𝑜
2

2𝑟20
9 + 

15𝑄2𝜎3𝜁𝑜
2

𝑟20
7 +

3𝑀𝑏𝜉0
2
 𝑐 𝜁0

2+𝑑2 
−1

2  +1 

 𝜉0
2

+ 𝑐+ 𝜁0
2+𝑑2 

2

 

5/2
      (20) 

 

V. Numerical Application 
We present the effect of triaxiality,belt andradiaionpressure on the locations (Eqns.14 and 15) and stability 

(Eqns.16-20) of OPEPsusing arbitrary valuesIn Table 1- 4 ,while in Table 6-9the effects on thebinary system 

(xi-Bootis andKruger 60) are shown.The results inTable 6-9 were obtained by substitutingthe values of 

theorbital parametres (fixed) of  the binary system (xi-Bootis andKruger 60) and the varied values of triaxiality 

and radiation into (Eqns.14 and 15) and  (Eqns.16-20) for thelocationsand stability respectively. 
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Table 1: The effect of Triaxiality on the location and stability of out-of-plane equilibrium points for 𝑒 =0.3, 𝑎 

=0.87, 𝜇 = 0.45𝑞1 =0.9988, 𝑞2 =0.9977, Mb = 0.01 

 
 Triaxiality Out-of plane points Roots of the characteristic equation  

S/no 𝜎1 𝜎2 𝜎3 𝜎4 ξ ±𝜁 𝜆1,2 𝜆3,4 𝜆5,6 

1.  0.00 0.00 0.00 0.00 0.521012 0.311723 ±87.4420 
 

120.2235 ±33.9675𝑖 
 

2. 0.02 0.015 0.003 0.002 0.477810 0.269001 ±87.5631 
 

±120.5631 
 

±34.12654𝑖 
 

3. 0.03 0.019 0.004 0.003 0.49061 0.24443 ±87.6615 ±120.9985 ±34.241001i 
 

4. 0.04 0.02 0.005 0.004 0.517438 0.219650 ±88.43423 ±121.43423 ±35.35790𝑖 
 

5 0.05 0.03 0.006 0.005 0.539144 0.209341 ±88.9780 ±122.110 ±35.41283 

 

Table2 : The effect of belt on the location and stability of out-of-plane equilibrium points for 𝑒 =0.3, 𝑎 =0.87, 

𝜇 = 0.45𝑞1 =0.9988, 𝑞2 =0.9977 

 

 

Table 3:      The Effect of radiaionpressure on the location and stability of out-of-plane       
equilibrium points  for 𝑒=0.3,𝑎=0.87,𝜇 = 0.35 ,𝜎1 = 0.02,𝜎2 = 0.015,𝜎3 = 0.003,𝜎4 = 0.004, Mb= 0.01 

 
S/no Radiaion Pressure Out-of plane points Roots of the characteristic equation 

𝑞1 𝑞2  ξ ±𝜁 𝜆1,2 𝜆3,4 𝜆5,6 

1 0.9960 0.9950 0.66735 0.412681 −2.54373± 
0.543728i 

±11.42462i 2.54373± 
0.543728i 

2 0.9964 0.9954 0.67024 0.394326 −3.24342± 
0.810034i 

±16.23703i 3.24342± 
0.810034i 

3 0.9968 0.9958 0.67646 0.343671 −6.45986± 
0.886517i 

±27.42462i 6.45986± 
0.886517i 

4 0.9972 0.9962 0.68434 0.328763 −10.5756±0.47632i ±38.57823i 10.5756± 
0.47632i 

5 0.9976 0.9966 0.69101 0.310641 −13.4140± 
0.357649i 

±45.41365i 13.4145± 

0.357649i 

 

Table 4: The Combined effect of  thepertubationson the location and stability of out-of-plane 

equilibrium points  for 𝑒 =0.3,𝑎 =0.34 

(a) 
S/no. Triaxiality Radiation    Factors Belt Mass ratio 

𝜎1 𝜎2 𝜎3 𝜎4 𝑞1 𝑞2       Mb 𝜇 

1. 0.02 0.01 0.002 0.001 0.9980 0.9976 0.01 0.0375 

2. 0.03 0.02 0.003 0.002 0.9984 0.9980 0.02 0.0380 

3. 0.04 0.03 0.004 0.003 0.9988 0.9984 0.03 0.0385 

4. 0.05 0.04 0.005 0.004 0.9992 0.9988 0.04 0.0390 

5. 0.06 0.05 0.006 0.005 0.9996 0.9992 0.05 0.0395 

 

 

 

S/no      Mb Out-of plane points Roots of the characteristic equation 

ξ ±𝜁 𝜆1,2 𝜆3,4 𝜆5,6 

1 0.01 0.06735 0.741593 −2.364473±0.364473i ±1.470823i 2.364473± 

0.364473i 

2 0.02 0.04894 0.73965 −6.243416± 

0.765014i 

±14.51723i 6.243416± 

0.765014i 

3 0.03 0.03646 0.72671 −5.459825± 

0.886517i 

±13.44601i 5.459825± 

0.886517i 

4 0.04 0.03238 0.72136 −3.556463± 

0.876321i 

±11.52649i 3.556463± 

0.876321i 

5 0.05 0.02671 0.71641 −1.524192± 

0.837649i 

±8.875206i 1.524192± 

0.837649i 
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(b) 
out-of-plane  points The  characteristic Roots 

ξ ±𝜁 𝜆1,2 𝜆3,4 𝜆5,6 

0.633412 0.197065 ±227.584 
 

±19.2802 
 

±86.7122𝑖 
 

0.633011 0.205634 ±331.385 
 

±90.4429 
 

±87.2517𝑖 
 

0.632785 0.218767 ±379.863 ±90.547 ±88.5313i 
 

0.632145 0.224261 ±463.07 ±90.5989 ±88.9132𝑖 
 

0.631004 0.234659 ±88.9780 ±122.110 ±35.41283𝑖 
 

 

In Table 5 below we present the numerical data of the binary system xi-Bootis and Kruger 60. 

Table 5: Numerical data for the Binary System 
Binary system Masses (Mʘ) Eccentricity (e) Semi-major axis 

(a) 

Luminosity 

Lʘ 

Spectral 

Types 

 M1 M2   L1 L2  

Xi Bootis 0.9 0.66 0.5117 4.9044 0.49 0.061 G8/k4 

Kruger 60 
 

0.271 0.176 0.4100 2.3830 0.01 0.0034 M3/M4 

Source:NASA  ADS 

 

Table 6: The effect of triaxiality on the location and stability of out-of-plane equilibrium pointsof xi-Bootis for 

𝑒 = 0.5117, 𝑎 = 0.7304, 𝜇 = 0.4231 𝑞1 = 0.9988, 𝑞2 = 0.9998. 
S/no Triaxiality Out-of plane points Roots of the characteristic equation  

𝜎1 𝜎2 𝜎3 𝜎4 ξ ±𝜁 𝜆1,2 𝜆3,4 𝜆5,6 

1.  0.015 0.011 0.002 0.001 0.466010 0.275418 ±610.524 -173.012± 

184.316𝑖 
173.012± 

184.316𝑖 
2. 0.02 0.015 0.003 0.002 0.477810 0.269001 ±814.061 -175.981± 

182.895𝑖 
175.981± 

182.895𝑖 
3. 0.03 0.019 0.004 0.003 0.49061 0.24443 ±998.23 -174.887± 

180.49𝑖 
174.887± 

180.49𝑖 
4. 0.04 0.02 0.005 0.004 0.517438 0.219650 ±1627.48 -175.13± 

176.832𝑖 
175.13± 

176.832𝑖 
5. 0.05 0.03 0.006 0.005 0.539144 0.209341 ±1321.43 -173.39± 

176.972𝑖 
173.39± 

176.972𝑖 

 

Table 7: The effect of belt (Mb) on the location and stability of out-of-plane equilibrium pointsof xi-Bootis for 𝑒 

= 0.5117, 𝑎 = 0.7304, 𝜇 = 0.4231 𝑞1 = 0.9988, 𝑞2 = 0.9998.𝜎1=0.02, 𝜎2=0.015,𝜎3=0.003,𝜎4=0.002 
S/no Mb Out-of plane points Roots of the characteristic equation 

ξ ±𝜁 𝜆1,2 𝜆3,4 𝜆5,6 

1 0.02 0.521012 0.211723 ± 47.347306 
 

±113.5678 𝑖 
 

±33.98450 
 

2 0.03 0.513422 0.211965 ±47.748921 ±120.5631𝑖 
 

±34.12654 
 

3 0.04 0.51200 0.221343 ±48.256439 ±120.9985𝑖 ±34.241001 

 

4 0.05 0.51042 0.229867 ±48.84320 ±121.43423𝑖 ±35.35790 
 

5 0.06 0.50964 0.239341 ± 49.22418 ±122.1101𝑖 ±35.4128321 
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Table 8: The effect of triaxiality on the location and stability of out-of-plane equilibrium pointsof Kruger 60  

for𝑒 = 0.4100,𝑎 = 0.5894, 𝜇 = 0.3937 𝑞1= 0.9992 and 𝑞2 = 0. 9996 
 Triaxiality Out-of-plane points Roots of the characteristic equation  

S/No 𝜎1 𝜎2 𝜎3 𝜎4 ξ ±𝜁 𝜆1,2 𝜆3,4 𝜆5,6 

1.  0.02 0.002 0.002 0.001 0.946710 0.241070 -37.2193± 

21.4739𝑖 
0±42.9477𝑖 
 

37.2193±21. 

47396𝑖 
2. 0.03 0.025 0.003 0.002 0.951193 0.216110 -38.567± 

-22.0922i 

0±44.1875𝑖 
 

38.567± 

22.0922i 

3. 0.04 0.035 0.004 0.003 0.958414 0.213279 -51.476± 

28.7198𝑖 
0±57.5122𝑖 51.476± 

28.7198𝑖 
4. 0.05 0.045 0.005 0.004 0.959130 0.207454 -100.461± 

55.2628𝑖 
0±110.803𝑖 100.461± 

55.2628𝑖 
5. 0.06 0.055 0.006 0.005 0.960314 0.204511 -154.48± 

81.4207𝑖 
0±164.244𝑖 154.48± 

81.4207𝑖 

 

Table 9: The effect of belt (Mb) on the location and stability of out-of-plane equilibrium pointsof Kruger-60 for  

𝑒 = 0.4100,𝑎 = 0.5894, 𝜇 = 0.3937 𝑞1= 0.9992 and 𝑞2 = 0. 9996.𝜎1=0.02, 𝜎2=0.015,𝜎3=0.003,𝜎4=0.002 
S/no Mb Out-of plane points Roots of the characteristic equation 

ξ ±𝜁 𝜆1,2 𝜆3,4 𝜆5,6 

1 0.01 0.321012 0.200534 ± 54.223624 
 

±19.2802 
 

±86.7122𝑖 
 

2 0.02 0.321342 0.201823 ± 54.534534 ±90.4429 
 

±87.2517𝑖 
 

3 0.03 0.321440 0.201944 ±54.655978 ±90.547 ±88.5313i 
 

4 0.04 0.321452 0.202112 ±55.232720 ±90.5989 ±88.9132𝑖 
 

5 0.05 0.3214634 0.202472 ± 55.703529 ±122.110 ±35.41283𝑖 
 

 

 

 
Fig.1 Graph showing the effect of triaxiality on the OPEPs of XI-Bootis 
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Fig.2 Graph showing the effect of the belt on the OPEPs of XI-Bootis 

 

 
Fig.3 Graph showing the effect of triaxiality on the OPEPs of Kruger-60 
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Fig.4 Graph showing the effect of  the belt on the OPEPs of Kruger-60 

 

VI. Discussion 
The motion of a third body under the influence of  triaxial and radiating primaries together with a 

circumbinary disc has been described in equation (1)-(4).The positions of out-of-plane equilibrium points 

aregivenin equations14 and15 and are first obtained analytically and then numerically by power  series 

expansion about the triaxiality coefficient of the smaller primary in Equations 14 and 15 to third order term with 

the aid  of the software MATHEMATICA 10.4.The stability of these points are obtained by solving the roots of  

Equation (16) numerically.The  positions ofout-of- plane points and the characteristic roots obtained using 

arbitrary values for the parameters are shown in Tables 1-4. Generally, EPs are stable only if the six roots 𝜆𝑖  
(i=1,2,3,4,5,6) are purely imaginary roots or complex roots with negative real parts and are unstable if 𝜆𝑖  
(i=1,2,3,4,5,6) are complex or real roots (Szehebely,1967). 

Table 1 and  2, shows that the point L6,7 shifts towards the line joining the primaries as the effects of  

triaxiality  and  belt are being  increased respectively,while in Table 3 L6,7is seen to move away from the line 

joining the primaries as the radiation factors is increasing.The combined effects of  all the parameters are shown 

in Table 4.The arbitrary values for the parameters are shown in Table 4a.Table 4b shows their effects onOPEPs 

and  itsstability,In all cases the out-of- plane equilibrium points moves away fromthe ξ-axis whenthe values of 

the  parameters wereincreased.The roots (𝜆𝑖  (i=1,2,3,4,5,6)) in Tables1-4  are complex or real roots,hence 

theOPEPs  are unstable.The numerical data of the binary systems (xi- bootis and kruger-60) are shown in Table 

5.The effects  oftriaxiality and the belt on the binary systems can be observed in Table 6-9 and Fig.1-4. These 

Tables and the graphs shows that increasingthe values of triaxiality and belt,while keeping the orbitalparametres 

of the Xi-bootis and Kruger-60 constant,results in a shift of the OPEPs.It can be seen in Table 6 that OPEPs  

shifts towards the ξ-axis this can be seen clearly in Fig.1,this in contrast to the effect of the belt on OPEPs ofXi-

bootis in Table 7, where OPEPs  shifts away from the the line joining the primaries (see also Fig.2).The OPEPs 

in both Tables are unstable due to nature of their roots which are complex or real roots.The effects of triaxiality 

and the belt on Kruger-60 is similar to their effects on Xi-bootis.The effects of triaxialitymovesthe OPEPs 

towards the line joining the primaries(see Table 8 and Fig. 3) ,while the effect of thebelt moves OPEPs away 

fromthe ξ-axis (See Table 9 and Fig. 4).Similar to what obtains in the case of xi-Bootis,the roots obtained for  

OPEPs of Kruger-60 are either complex or real as such OPEPs are unstable. The changes in the positions of 

OPEPs are as shown in the graphs (Fig.1-4) below.Thisinstability has been confirmed by (Douskos 

andMarkellos2006;Kushvah2008;Singh and Umar 2013a). 
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VII. Conclusion 
We have established the existence of out of plane equilibrium points and their stability in the 

framework of ER3BP when the primaries are triaxial,radiating and surrounded by a belt.It is found that the 

positions are affected by triaxiality, radiation and thebelt.We found that for the binary system the effect of 

triaxialty and the  belt moves OPEPs  in opposite directions-while the effect of triaxiality moves OPEPs towards 

the ξ-axis,the belt moves OPEPs away from the ξ-axis.Our OPEPS (Equations 12 and 13) tally with that 

of(Singh and Umar 2013a) when  2𝜎1 − 𝜎2 = 𝐴1and  2𝜎3 − 𝜎4 = 𝐴2. 
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