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ABSTRACTA numerical investigation of longitudinal rectangular fin with temperature dependent thermal 

conductivity and internal heat generation is carried out. For enhanced visualizations and 

assessment,quantitative as well as qualitative impact of certain thermal parameters on the fin temperature 

profile are determined. This is necessary in order to better comprehend realistic combinations of fin thermo-

geometric parameters in thermal engineering applications.Quite often it is very challenging to arrive at analytic 

or numerical solutions to nonlinear systems of equations. For such problems a qualitative approach not only 

avails us  a rich information concerning the physics of the problem, but also allows us  to make valid 

conclusions irrespective of whether we know the solution or not.   
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I. INTRODUCTION 
Mechanical devices such as air conditioner in automobiles, processors  in computers,electronic 

chips,oil pipelines etc, generate a lot of heat during operation This often results in inefficiency and a decrease in 

performance. Heat generated wiithin these equipments needs to be dissipated inorder for them to work properly. 

As a result , extended surfaces or fins are designed  to contribute additional surface areas to enhance heat 

transfer between their surfaces and the ambient especially by convection. 

Fins with different thermal and geometric configurations are designed to achieve the most convinient, 

effective , efficient and economic output. They can be circular or rectangular in shape, or can also be made of 

different materials like aluminum or copper to optimize their thermal properties. But due to its convinience, 

economy and larger convective area, the rectangular longitudinal fin is favored over other geometrical 

configurations. 

If the  temperature between the tip of the fin and the base is not large, a linear approach is generally 

used in design. But if large, thermal parameters  play a huge role  because both the convective and conductive 

heat  transfer coefficients become functions of temperature and the problem beign  essentially nonlinear evokes 

a numerical solution.  

Internal heat generation is of a practical importance especially  for equipments involving considerable 

amount of heat transfer  during operation for example in electrical current carrying conductors,nuclear rods  or 

any other heat generating electrical equipments. It is therefore essential to identify and analyze its causes so that 

fin design can be optimized.  

As mentioned, heat transfer in fins is highly nonlinear and in a majority of cases defies analytic or 

closed form solutions. Aziz and Enamul-Huq [1]  applied regular perturbation expansion to examine pure 

convectionin fins with temperature dependent thermal conductivity. Later on Aziz [2]  extended this study to 

include uniform internal heat generation within the fin. Other attempts include those of Chowdhury and 

Hashim[3], where they  applied the Adomian decomposition technique  to determine the temperature and flux 

profiles of  a  straight rectangular fins with nonlinear thermal conductivity.  

We hasten to point out that as numerical solution techniques started gaining prominence in nonlinear 

applications, semi-exact analytical methods were also developing. And to a fairly large extent the combination 

of both methods has been found to be very useful in resolving the nonlearity  in fin problems (Moitsheki et al. 
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[4]).These techniques include the homotopy analysis method (HAM)  (Khani and Aziz[5]).  Hosseini et al.[6] 

applied HAM  to quantify ballpack estimates of heat transferer in fins with  temperature-dependent internal heat 

generation and thermal conductivity. Similar applications involving the homotopy perturbation method (HPM) 

is recorded in Ganji et al.[7], Ganji[8], Ganji and Rajabi[9], and Rajabi and Ganji. [10]). Another well known 

technique that falls under this categoryis the adomian decomposition method ADM). An example of its 

application to the nonlinear fin problem can be found in Arslanturk[11]. 

Current litterature search in the numerical and semi-exact solution of fin problems reveals that very 

little has been done to qualitatively analyze heat transfer process in fins. The few include work done by Harley  

[12]  Harley and Moitsheki [13]. Otherwise not much has been done to obtain a qualitative insight into thermal 

varaible parameters which are associated with fins in practical situations. Our task in this paper is therefore 

twofold namely, to numerically determine the the effects of various combinations of fin parameters on the 

temperature profile in a fin (Sobamowo[14], Onyejekwe [15]) and to qualitatively evaluatethese effects using 

the tools of dynamical analysis. 

 

II. PROBLEM FORMULATION 
Consider convective heat transfer in a straight 1D longitudinal fin. The fin has cross-sectional area A, 

length l, and perimeter P as shown in Fig.1. The fin projects from a base at temperature bT into a surrounding 

fluid at a temperature aT . It is assumed that at the fin surface heat loss occurs mostly by convection. The tip of 

the fin is insulated and has a zero flux since the heat loss is assumed to be small and negligible in that region. 

The length to width ratio is relatively largeand  as a result, heat flow through the fin is basically one-

dimensional. Finally the fin thermo-geometric properties is assumed not to vary with time. 

 

 
 

Fig 1 .A Schematic drawing for a rectangular longitudinal Fin 

 

Given the above characteristics, the one-dimensional governing ordinary differential equation describing heat 

transfer  in a fin, is written as follows: 

 
( )

( ) ( ) ( ) 0 1
d dT h T

k T P T T q T
dx dx A



 
    

 
  

     

 where K(T) is the temperature dependent thermal conductivity , h(T) the convective heat transfer coefficent,  

the internal heat generation parameter is q(T). 

The Boundary Conditions are 

1; 0
dT

x
dx

   

 0; 2Bx T T    

     

Temperature dependent thermal properties is represented as: 

 0 0( ) (1 ( ) 3K T K T T     

       

where 0K  is the thermal conductivity when the temperature is 0T  and  is a heat transfer parameter. The 

convection coefficient is: 
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 ( ) 4
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b
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Internal heat generation parameter is given as  

 0( ) [1 ( )] 5q T q T T      

       

The exponent constant n practically varies between -3 and 3, and represents  different modes of convection. For 

example n=-1/4 and n=1/4, represent  natural boiling and condensation respectively. For thermal radiation  n=2,  

for constant heat transfer n=0  and n=1 for linear heat distribution. 

Inserting equations (3-5) into equation(1), we obtain  

 
n 1

0 0n

( )
[1 ( )] [1 ( )] 0 6

( )

b

b

h P T Td dT
k T T q T T

dx dx A T T
 




 



 
         

  

Employing the following dimensionless parameters:   

 
2

2, , , 7b

b b a
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l T T h AK

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b b
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The governing equation reduces to: 

 
22 2

2 1 2

2 2
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With the following boundary conditions 

 

0, 0

1, 1 8

d
X

dx

X b





 

 

  

        

III. NUMERICALSOLUTION 
Equation (8) is solved with the shooting-secant method.  Rearrangement yields: 

 2 1 2(1 ) (1 ) 9nd d
M M Q a

dX dX


   
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subsequently      
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Equation (9b) is decomposed into two coupled nonlinear ordinary differential equaions 
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where : ,X   are dimensionless distance and temperatute; M is the thermo-geometric parameter,   is the 

nonlinear thermal conductivity parameter. Q is  dimensionless heat transfer parameter,   is dimensionless 

internal heat generation parameter. 

 

IV. FIN DESIGN PARAMETERS 
IV-1. Fin Efficiency  

This is the ratio of the actual heat transferred fron the fin surface to  the sorrounding environment or fluid to the 

actual amount of heat  transferred  from the entire fin area ; that is if we assume that  the entire fin area is 

situated at the base of the fin. Simply stated,  it is the ratio of actual heat transferred to that of the ideal heat 

tranferred 

 
1

0

( )( ) 11f bQ ph T T T dX     

      

The maximum heat transfer rate is given by  

 max L( ) 12b bQ ph T T dX   

 Therefore, the efficiency is given by  

 

1

0
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( )( )

13
( )

b

f

b b

ph T T T dX
Q

Q ph L T T






 



. 

Simplifying the above equation yields 

 
1

1

0

14n dX     

   

IV-2. Fin Effectiveness  

Effectiveness of a fin can be defined as the ratio of heat transfer rate of the fin to the rate of fin to the rate of 

heat transfer if the fin is not there. 

 15
f

fb

Q

Q
   

Qfb is the amount of heat dissipation from the area of the fin base and is given by  

 
1

0

( ) 16
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



 

 

Therefore, the dimensionless effectiveness is given as 

 
1

1

0

2 18n

ra dX     

 

Where ar is the aspect ratio given as the dimensionless length (L) to the thickness of the fin (δ). 

 

V.    RESULTS and DISCUSSION 
  In what follows, we carry out a numerical investigation of the effect of certain parameters on fin 

performance. Fig.2 illustrates the temperature profiles for an increase of the thermo-geometric parameter M and 

fixed values of , ,Q  . It can be seen that an increase in M results in a steeper temperature profile. Equation 

(7a) reveals a proportional relationship between M and the fin length L. Hence relatively small values of M 

yield smaller fin lengths and higher values of temperature profiles. The reverse is the case for higher values. 

    



Numerical and Qualitative Features of a Longitudinal Fin with Temperature –Dependent .. 

*Corresponding Author:  Okey Oseloka Onyejekwe                                                                                  75 | Page 

 

 
Fig 2  Temperatureprofile for   β=1,Q=0.8,γ=0.1 

 

 

   
Fig 3.  Temperature profile for (a) M=1.5, n=1, Q=0.8, γ=0.1 and (b) M=2.0, n=1, Q=0.8, γ=0.1 

 

Figures 3a and 3b illustrate the effect nonlinear thermal conductivity on  temperature profiles. The 

more the value of   the more the heat is lost as reflected by the values of the dimensionless temperature.  We 

should also note that the temperature of the fin at the base is uniform and the heat transfer at the tip is neglected 

according to the specification of the boundary conditions. A slight increase in M resulted in little or no change 

in temperature distribution. 

 



Numerical and Qualitative Features of a Longitudinal Fin with Temperature –Dependent .. 

*Corresponding Author:  Okey Oseloka Onyejekwe                                                                                  76 | Page 

   
Fig 4.  Temperature profile for (a) M=1, n=1,  γ=0.2, β=2.0 and (b) M=2.0, n=1,  γ=0.2, β=1.0 

 

  Figures (4a)  and (4b) show the effect of increasing the internal heat generation in a fin. As Q increases 

the temperature profile becomes flatter, less nonlinear and displays a higher temperature distribution along the 

fin. The fin operation becomes less efficient. There is however a minor change when the value of the thermo-

geometric parameter is slightly increased. This implies a longer fin length L and higher convection coefficient. 

 

 
Fig.5: Fin effectiveness versus thermo-geometric parameter for various values of  Q , 1,n 

0.2, 1, 1.0 , 2.5rn a      

 

Fig.5 shows that overall for the given fin parameter values adopted,  the fin is more effective for relatively 

smaller values of thermo-geometric parameter M and internal heat generation  parameter Q.The trend is the 

same for the values of Q  valueschosen. The following remarks can be  made as well 

(i) Low values of  thermo-geometric parameter M favor efficiency 

(ii) The above can be interpreted as a fin of small length (Equation 7a) 

(iii) High values of internal heat generation does not favor efficient fin operation 

 

Nest we carry out a dynamical study of the fin model to gain a better insight of the impact of some of 

the parameters on the overall performance.  

Specifically, we aim to be acquainted with the behavior of the linearized governing equation in the 

neighborhood of the equilibrium point. This not only provides an insight into the model problem parameters 

close to the equilibrium but also gives a clearer picture of  the range or combinations  of certain fin parameters. 

For example if the real part of the computed eigenvalue  of the nonlinear system t is nonzero,  the linearized 

analysis  will correctly predict  if the equilibrium is stable or unstable. Taken together, this type of analysis 
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provides amore vivid information concerning fin operation that would have been very difficult to obtain by 

application of numerical techniques alone. 

Firstly, computer generated phase-portraits are employed to produce critical or equilibrium points of 

the nonlinear system of equations. These critical points are then classified according to the eigenvalues of the 

corresponding linearization. One fin parameter that is of interest to us here is the thermogeometric parameter M. 

It provides information on the relative importance of conduction and convection . (see equation 7b).  The next 

valuable parameter is the dimensionless heat transfer coefficient Q. A comprehensive qualitative analysis of the 

effect of Q on the solution profile is sought. Fig. 6a shows the phase portrait produced for the following fin 

parameters  2, 1, 1, 0.5, 0.1M n Q       

 

 
Fig. 6a Qualitative profiles for the heat transfer coefficient Q = 0.5 

 

It comes with the following details:  

Location of spiral equilibrium point:   0.74162,0 , Type: Undetermined 

Jacobian matrix 
0 1

22.962 3.8703 06e

 
 
   

 

Eigenvalues and eigenvectors: 
 

 

1.9351 06 4.7819 8.2498 08 0.20429 , 0.9789

1.9351 06 4.7819 8.2498 08 0.20429 , 0.9789

e i e i

e i e i

     

    
 

In addition to the above,  the  following was also computed: 

Saddle located at :  0.74162,0 ; Type: unstable 

Jacobianmatrix :
0 1

3.4066 5.7418 07e

 
 

  
 

Eigenvalues and eigenvectors for saddle equilibrium: 

 

 

1.8457 0.47638, 0.85709

1.8457 0.47638, 0.85709 
 

 

Fig. 6a displays a spiral and saddle  equilibria. As can be seen the eigenvalues and eigenvectors of the 

spiral equilibrium are complex conjugates and this lends it its spiral configuration. . The real part is almost zero 

asa result there is practically no motion along the direction dictated by the accompanying eigenvectors. The 

eigenvalues can be considered as purely imaginary. The resulting trajectory is ellipsoid and there is no net 

motion  towards its equilibrium.  The equilibriumtype  is undetermined. A saddle point was also identified. 

Saddle equilibrium is always unstable since one of  the eigenvalues is  always positive. As can be observed , 

most of the trajectories  approach the saddle equilibrium along the eigenvector  corresponding to the  negative 

eigenvalue and does exactly the opposite along the eigenvectors of  positive eigenvalue. 

Fig. 6b shows the phase plane when Q was increased from 0.5  to   5.  
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Fig. 6b Qualitative profiles for the heat transfer coefficient Q = 5 

 

Saddle located at :  2.3452,0 ; Type: unstable 

Jacobian matrix :     
0 1

13.9452 7.4338 07e

 
 

 
 

Eigenvalues and eigenvectors for saddle equilibrium: 

 

 

3.7346 0.25866, 0.96597

3.7346 0.25866, 0.96597

 

 
 

A second saddle point was also  located at  2.3452,0  

Jacobianmatrix :
0 1

5.6085 2.9894 07e

 
 

  
 

Eigenvalues and eigenvectors for saddle equilibrium: 

 

 

2.3682 0.43106 0.92124

2.3682 0.43106 0.92124 
 

For this increase,we observe  a noticeable qualitative change in the profiles. Two saddle equilibrium points are 

identified and the spiral equilibrium point  seen in Fig. 6a is totally obviated.  As mentioned earlier,  

bothequilibria are nonlinear. A ten times increase in the value of heat transfer coefficient will definitely not be 

suitable for optimal fin operation. A dramatic change in profile just as seen above  is likely due to  bifurcation. 

However details of the phenomenon are outside the scope of the current study.  

The next parameter  to be looked at is the dimensionless heat transfer  parameter Q The following fin parameters 

were applied 

 0.8, 0.5, 1, 0.5, 0.1M n Q     
 

 

 
Fig. 6c Qualitative profiles for the thermogeometric parameter  M= 0.8 

 

These provided the following information 

Location of spiral source:   1.4354,0  
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Jacobian matrix 
0 1

6.9077 5.0728 07e

 
 

 
 

Eigenvalues and eigenvectors:    
 

 

2.5364 0.61182 0.3479 0.0839 0.93377

2.5364 0.61182 0.3479 0.0839 0.93377

i i

i i

 

 
 

In addition to the above,  the  following was also computed: 

Saddle located at :  1.4534,0 ; Type: unstable 

Jacobianmatrix :
0 1

1.0774 0.80285

 
 
 

 

Eigenvalues and eigenvectors for saddle equilibrium: 

 

 

0.71148 0.81481, 0.57973

0.71148 0.81481, 0.57973

 
 

In this instance, heat transfer activity within the fin is enhanced. Just like in the previous case ,we have both 

spiral and saddle node equilibrium  points. The eigenvalues  possess  positive real parts; so we have an 

exponential growth.  Points move away  from the equilibrium point in an oscillatory manner.   

For the next  step, variables were kept the same but M was increased to M=2. The following qualitative features 

were generated: 

 

 
Fig. 6d: Effect of an increase in M on  the solution profile. 

 

Location of spiral equilibrium point:   0.74162,0  , Type: Undetermined 

Jacobian matrix 
0 1

9.4295 0.7467 07e

 
 
   

 

Eigenvalues and eigenvectors:    
 

 

39734 07 3.0707 4.0067 08 0.30965 ,0.95085

39734 07 3.0707 4.0067 08 0.30965 ,0.95085

e i e i

e i e i

     

     
 

In addition to the above,  the  following was also computed: 

Saddle located at :  0.74162,0 ; Type: unstable 

Jacobianmatrix :
0 1

4.3281 3.6475 07e

 
 

  
 

Eigenvalues and eigenvectors for saddle equilibrium: 

 

 

2.0804 0.43323 , 0.90129

2.0804 0.43323 , 0.90129 
 

As can be observed , though  spiral and saddle equilibria  still exist  The positive  real component of the 

eigenvalues are almost zero in  this case. As a result,  rotations hardly happens. The transition between Figs. 6c 

and 6d  is obvious. On this note we  can infer that such a transition can be used to ‘sense’ a parameter changes. 

If for example  a certain parameter is decreased a stable  fixed point may be achieved, while if  increased, a 

stable periodic orbit may be reached. 
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VI.    CONCLUSION 
In the work reported herein, heat transfer analysis in a nonlinear fin with temperature-dependent 

thermal conductivity and internal heat generation has been carried out. A numerical quantitative and   qualitative 

dynamical approaches were adopted. The effects of various parameters on the overall fin performance were also 

assessed. The numerical results were found to be in conformity with previous work; especially [14].  Carrying 

out a dynamical analysis allows us to further validate the numerical results especially the role the thermo-

geometric parameter M plays as a dominant physical parameter in fin design. It was obvious that a critical value 

of M as well as Q would lead to unstable results and bifurcation. From the work done herein it can be seen that 

each solution starting in a certain neighborhood  of the equilibrium  displays some unique characteristics  within 

the neighborhood that can be related to engineering applications and design. Further dynamical study in this 

interesting observation is currently outside the scope of this study and will constitute an area of interest in a 

sequel to this paper. 
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