Quest Journals Journal of Research in Applied Mathematics Volume 9 ~ Issue 2 (2023) pp: 81-84 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Uniqueness Results for the Euler Characteristic and the Pick Formula

Jack Weinstein

(Department of Mathematics, University of Haifa, Haifa, Israel)

ABSTRACT: Two uniqueness results are proven on the class of binary polygonal images: one for the Euler characteristic, the other for the Pick formula.

KEYWORDS: binary polygonal image, Euler characteristic, Pick formula.

Received 12 Feb., 2023; Revised 22 Feb., 2023; Accepted 25 Feb., 2023 © *The author(s) 2023. Published with open access at www.questjournals.org*

I. BASICS

Abinary polygonal image(shape) P is defined as a finite collection of nonintersecting simple polygons (without holes or with nonintersecting holes). Each polygon in the collection is called a component; a hole is a polygon placed inside a component. A component is considered a *foreground* component; a hole is a *background* component. Some foreground components may be placed inside holes. A binary polygonal image has a hierarchical structure. If we denote by C the number of components and by H the total number of holes, then we define the *Euler characteristic* of P as $\chi(P) = C - H$.

If there are no holes in the components, then $\chi(P) = C$; if there is only one component, then $\chi(P) = 1 - H$; and if the only component has no holes, then $\chi(P) = 1$.

A triangulation of a polygonal image P is a decomposition of P into triangles, such that each border vertex of P is a vertex of one or more triangles, each border edge of P is an edge of one triangle, and every two triangles do not intersect, or they have a common vertex or a common edge and two common vertices. Given a triangulation of P, the Euler characteristic can be redefined as $\chi(P) = v(P) - e(P) + f(P)$, where v(P) is the number of triangulation vertices, e(P) is the number of triangulation edges, and f(P) is the number of triangulation faces (triangles).

II. THE INTEGRAL LATTICE

Consider the integral lattice in the plane (the set of all points with integer coordinates). Let P be a binary polygonal image, all of whose vertices belong to the lattice (we call it a lattice polygonal image). A *lattice decomposition (lattice triangulation)* of P is a triangulation of P such that all offits vertices have integer coordinates. Each face of this triangulation is a *lattice triangle*(its vertices are lattice points, i.e. their coordinates are integers).

A lattice triangle is *primitive* if there are no lattice points in its interior and the only lattice points on its boundary are its three vertices. As shown in [1], the area of a primitive lattice triangle is always $\frac{1}{2}$.

In the sequel we will also use the notations: $v(P) = v_i(P) + v_b(P)$, where $v_i(P)$ is the number of triangulation vertices interior to P and $v_b(P)$ is the number of triangulation vertices on its boundary; $e(P) = e_i(P) + e_b(P)$, where $e_i(P)$ is the number of triangulation edges interior to P and $e_b(P)$ is the number of triangulation edges on its boundary. The Pick formula was defined in [2] and redefined in [3] as

 $A(P) = \frac{1}{2}f(P) = v_i(P) + \frac{1}{2}v_b(P) - \chi(P)(A(P))$ is the area of P). As shown in [3], each lattice

polygonal image admits a lattice decomposition (subdivision) into primitive triangles (not in a unique way).

III. FROM EULER TO PICK

The Pick formula can be derived from the Euler formula in a simple way; for a proof, see [4]. We give here a slightly modified variant of the proof in [5].

Consider a lattice polygonal image *P* with a given lattice decomposition into primitive triangles. Since $v_b(P) = e_b(P)$, we have $\chi(P) = v(P) - e(P) + f(P) = v_i(P) - e_i(P) + f(P)$. Each face contributes three edges to the count; each interior edge appears exactly twice and each boundary edge appears only once. Therefore, $3f(P) = 2e_i(P) + e_b(P) = 2e_i(P) + v_b(P)$ and $e_i(P) = \frac{3}{2}f(P) - \frac{1}{2}v_b(P)$. This implies $\chi(P) = v_i(P) - \frac{3}{2}f(P) + \frac{1}{2}v_b(P) + f(P) = v_i(P) + \frac{1}{2}v_b(P) - \frac{1}{2}f(P)$ and, therefore, $A(P) = \frac{1}{2}f(P) = v_i(P) + \frac{1}{2}v_b(P) - \chi(P)$ (the Pick formula).

IV. MEDIAL SUBDIVISIONS

Let P be a lattice polygonal imagewith a given lattice decomposition into primitive triangles. We define the medial subdivision mP of P in the following way. Each edge is divided by its middle point into two edges. In each triangle, the three middle points of its edges are connected by three new edges; the triangle is thus divided into four equal sized smaller triangles. We also refine the integral lattice such that it contains all

points with coordinates $\left(\frac{a}{2}, \frac{b}{2}\right)(a \text{ and } b \text{ integers})$. We then expand the plane by $(x, y) \rightarrow (2x, 2y)$; the refined lattice turns into the original integral lattice. Each middle point of an edge becomes a lattice vertex; each new triangle becomes a primitive lattice triangle. The numbers of the various elements of mP are related to those of P by the following formulas:

$$v_{i}(mP) = v_{i}(P) + e_{i}(P)$$
$$v_{b}(mP) = 2v_{b}(P)$$
$$e_{i}(mP) = 2e_{i}(P) + 3f(P)$$
$$e_{b}(mP) = 2e_{b}(P)$$
$$f(mP) = 4f(P)$$

The Euler characteristic is invariant under the medial subdivision operation:

$$\chi(mP) = v(mP) - e(mP) + f(mP) = v_i(mP) - e_i(mP) + f(mP)$$

= $v_i(P) + e_i(P) - 2e_i(P) - 3f(P) + 4f(P)$
= $v_i(P) - e_i(P) + f(P) = v(P) - e(P) + f(P) = \chi(P)$

The Pick formula can be rewritten in the following way:

$$\chi(P) = v_i(P) + \frac{1}{2}v_b(P) - \frac{1}{2}f(P)$$

^{*}Corresponding Author: Jack Weinstein

It is obviously an invariant under medial subdivision. Alternatively,

$$v_{i}(mP) + \frac{1}{2}v_{b}(mP) - \frac{1}{2}f(mP) = v_{i}(P) + e_{i}(P) + v_{b}(P) - 2 \cdot f(P) = v_{i}(P) + \frac{3}{2}f(P) - \frac{1}{2}v_{b}(P) + v_{b}(P) - 2 \cdot f(P) = v_{i}(P) + \frac{1}{2}v_{b}(P) - \frac{1}{2}f(P)$$

V. UNIQUENESS OF THE EULER CHARACTERISTIC

Consider the class \mathcal{LP} of all lattice polygonal images P, each with a given lattice decomposition. Our first uniqueness result is

Theorem 1. If $\lambda: \mathcal{LP} \to R$ is a function defined by

$$\lambda(P) = \alpha \cdot v_i(P) + \beta \cdot e_i(P) + \gamma \cdot f(P), \ \alpha, \beta, \gamma \in \mathbb{R},$$

and satisfying $\lambda(mP) = \lambda(P)$ for each $P \in \mathcal{LP}$.

Then $\lambda = \kappa \cdot \chi : \mathcal{LP} \to R$, where $\kappa \in R$ is a constant and the function is defined by

$$(\kappa \cdot \chi)(P) = \kappa \cdot (v_i(P) - e_i(P) + f(P)).$$

Proof: If $P \in \mathcal{LP}$, then

$$\lambda(mP) = \alpha \cdot v_i(mP) + \beta \cdot e_i(mP) + \gamma \cdot f(mP)$$

= $\alpha \cdot (v_i(P) + e_i(P)) + \beta \cdot (2e_i(P) + 3f(P)) + 4\gamma \cdot f(P)$
= $\alpha \cdot v_i(P) + (\alpha + 2\beta) \cdot e_i(P) + (3\beta + 4\gamma) \cdot f(P)$

The invariance condition $\lambda(mP) = \lambda(P)$ implies

$$(\alpha + \beta) \cdot e_i(P) + 3(\beta + \gamma) \cdot f(P) = 0$$

For the image P_1 that contains one triangle with vertices (-1,0), (0,0), (0,1): $e_i(P_1) = 0$, $f(P_1) = 1$, then $\beta + \gamma = 0$. For the image P_2 that contains the triangle in P_1 and one more triangle with vertices (0,0), (0,1), (1,1): $e_i(P_2) = 1$, $f(P_2) = 2$, then $\alpha + \beta = 0$. Therefore, $\alpha = -\beta = \gamma$ and we derive the result

$$\lambda(P) = \gamma \cdot (v_i(P) - e_i(P) + f(P))$$

VI. UNIQUENESS OF THE PICK FORMULA

Our second uniqueness result is

Theorem 2. If $\lambda: \mathcal{LP} \to R$ is a function defined by

$$\lambda(P) = \alpha \cdot v_i(P) + \beta \cdot v_b(P) + \gamma \cdot f(P), \ \alpha, \beta, \gamma \in \mathbb{R},$$

and satisfying $\lambda(mP) = \lambda(P)$ for each $P \in \mathcal{LP}$.

Then $\lambda = \kappa \cdot \chi : \mathcal{LP} \to R$, where $\kappa \in R$ is a constant and the function is defined by

$$(\kappa \cdot \chi)(P) = \kappa \cdot \left(v_i(P) + \frac{1}{2}v_b(P) - \frac{1}{2}f(P)\right).$$

Proof: If $P \in \mathcal{LP}$, then

$$\lambda(mP) = \alpha \cdot v_i(mP) + \beta \cdot v_b(mP) + \gamma \cdot f(mP)$$

= $\alpha \cdot (v_i(P) + e_i(P)) + 2\beta \cdot v_b(P) + 4\gamma \cdot f(P)$

The invariance condition $\lambda(mP) = \lambda(P)$ implies

$$\alpha \cdot e_i(P) + \beta \cdot v_b(P) + 3\gamma \cdot f(P) = 0$$

Since $e_i(P) = \frac{3}{2}f(P) - \frac{1}{2}v_b(P)$, we get

$$\alpha \cdot \left(\frac{3}{2}f\left(P\right) - \frac{1}{2}v_{b}\left(P\right)\right) + \beta \cdot v_{b}\left(P\right) + 3\gamma \cdot f\left(P\right) = 0$$

therefore,

$$\left(\beta - \frac{\alpha}{2}\right) \cdot v_b(P) + 3 \cdot \left(\frac{\alpha}{2} + \gamma\right) \cdot f(P) = 0$$

For the image P_1 that contains one triangle with vertices (-1,0), (0,0), (0,1): $v_b(P_1) = 3$, $f(P_1) = 1$, then $3\beta + 3\gamma = 0$. For the image P_2 that contains the triangle in P_1 and one more triangle with vertices (0,0), (0,1), (1,1): $v_b(P_2) = 4$, $f(P_2) = 2$, then $\alpha + 4\beta + 6\gamma = 0$. Therefore, $2\alpha = \beta = -2\gamma$ and we derive the result

$$\lambda(P) = (-2\gamma) \cdot \left(v_i(P) + \frac{1}{2} v_b(P) - \frac{1}{2} f(P) \right)$$

REFERENCES

- [1]. R. W. Gaskell, M. S. Klamkin, P. Watson, *Triangulations and Pick's theorem*, Math. Magazine 49 (1): 35-37 (1976).
- [2]. G. A. Pick, *GeometrischeszurZahlenlehre*, Sitzenber. Lotos (Prague) 19 (1899), pp. 311-319.
- [3]. Ross Honsberger, *Ingenuity in Mathematics*, Random House / Springer, New Mathematical Library, 1970; reprinted: Math. Assoc. of America, New York, 1998; Essay 5: *The FareySeries*, pp. 24-37.
- [4]. W. W. Funkenbusch, From Euler's formula to Pick's formula using an edge theorem, Amer. Math, Monthly 81: 647-648 (1974).
- [5]. M. Aigner & G. M. Ziegler, Proofs from THE BOOK, 6th ed., Springer, 2018; Chapter 13: Three applications of Euler's formula, pp. 89-94.