Quest Journals Journal of Research in Applied Mathematics Volume 9 ~ Issue 2 (2023) pp: 81-84 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Uniqueness Results for the Euler Characteristic and the Pick Formula

Jack Weinstein

(Department of Mathematics, University of Haifa,Haifa, Israel)

ABSTRACT:Two uniqueness results are proven on the class of binary polygonal images: one for the Euler characteristic, the other for the Pick formula.

KEYWORDS:binary polygonal image, Euler characteristic, Pick formula.

Received 12 Feb., 2023; Revised 22 Feb., 2023; Accepted 25 Feb., 2023 © The author(s) 2023. Published with open access at www.questjournals.org

I. BASICS

Abinary polygonal image(shape) P is defined as a finite collection of nonintersecting simple polygons (without holes or with nonintersecting holes). Each polygon in the collection is called a component; a hole is a polygon placed inside a component. A component is considered a *foreground* component; a hole is a *background* component. Some foreground components may be placed inside holes. A binary polygonal image has a hierarchical structure. If we denote by C the number of components and by H the total number of holes, then we define the *Euler characteristic* of P as $\chi(P) = C - H$.

If there are no holes in the components, then $\chi(P) = C$; if there is only one component, then $\chi(P)$ = 1 – H ; and if the only component has no holes, then $\chi(P)$ = 1.

A *triangulation* of a polygonal image P is a decomposition of P into triangles, such that each border vertex of P is a vertex of one or more triangles, each border edge of P is an edge of one triangle, and every two triangles do not intersect, or they have a common vertex or a common edge and two common vertices.. Given a triangulation of P, the Euler characteristic can be redefined as $\chi(P) = \nu(P) - e(P) + f(P)$, Given a triangulation of P, the Euler characteristic can be redefined as $\chi(P) = \nu(P) - e(P) + f(P)$, where $v(P)$ is the number of triangulation vertices, $e(P)$ is the number of triangulation edges, and $f(P)$ is the number of triangulation faces (triangles).

II. THE INTEGRAL LATTICE

Consider the integral lattice in the plane (the set of all points with integer coordinates). Let P be a binary polygonal image, all of whose vertices belong to the lattice (we call it a lattice polygonal image). A *lattice decomposition (lattice triangulation)* of P is a triangulation of P such that all ofits vertices have integer coordinates. Each face of this triangulation is a *lattice triangle*(its vertices are lattice points, i.e. their coordinates are integers).

A lattice triangle is *primitive* if there are no lattice points in its interior and the only lattice points on its boundary are its three vertices. As shown in [1], the area of a primitive lattice triangle is always $\frac{1}{2}$ $\frac{2}{2}$.

In the sequel we will also use the notations: $v(P) = v_i(P) + v_b(P)$, where $v_i(P)$ is the number of triangulation vertices interior to P and $v_b(P)$ is the number of triangulation vertices on its boundary; $e(P) = e_i(P) + e_b(P)$, where $e_i(P)$ is the number of triangulation edges interior to P and $e_b(P)$ is

the number of triangulation edges on its boundary.

The Pick formula was defined in [2] and redefined in [3] as
\n
$$
A(P) = \frac{1}{2} f(P) = v_i(P) + \frac{1}{2} v_b(P) - \chi(P) (A(P))
$$
\nis the area of P). As shown in [3], each lattice
\nreduced times a chult a harmonic direction (subdivision) into primitive triangles (not in a unique way).

polygonal image admits a lattice decomposition (subdivision) into primitive triangles (not in a unique way).

III. FROM EULER TO PICK

The Pick formula can be derived from the Euler formula in a simple way; for a proof, see [4]. We give here a slightly modified variant of the proof in [5].

Consider a lattice polygonal image P with a given lattice decomposition into primitive triangles. here a slightly modified variant of the proof in [5].
Consider a lattice polygonal image P with a given lattice decomposition into primitive triangle
Since $v_b(P) = e_b(P)$, we have $\chi(P) = v(P) - e(P) + f(P) = v_i(P) - e_i(P) + f(P)$. Each face contributes three edges to the count; each interior edge appears exactly twice and each boundary edge appears contributes three edges to the count; each interior edge appears exactly twice and each boundary edge appears
only once. Therefore, $3f(P) = 2e_i(P) + e_b(P) = 2e_i(P) + v_b(P)$ and $e_i(P) = \frac{3}{2}f(P) - \frac{1}{2}v_b(P)$.
This implies $\chi(P) = v_i(P)$ This implies $\chi(P) = v_i(P) - \frac{1}{2}f(P) + \frac{1}{2}v_b(P) + f(P) = v_i(P) + \frac{1}{2}v_b(P) - \frac{1}{2}f(P)$ exefore, $3f(P) = 2e_i(P) + e_b(P) = 2e_i(P) + v_b(P)$ and $e_i(P) = \frac{3}{2}f(P) - \frac{3}{2}f(P) = \frac{3}{2}f(P) - \frac{3}{2}f(P) + \frac{1}{2}v_b(P) + f(P) = v_i(P) + \frac{1}{2}v_b(P) - \frac{1}{2}f(P)$ and and, therefore, $A(P) = \frac{1}{2} f(P) = v_i(P) + \frac{1}{2} v_b(P) - \chi(P)$ $\frac{1}{2}f(P) = v_i(P) + \frac{1}{2}$ $A(P) = \frac{1}{2} f(P) = v_i(P) + \frac{1}{2} v_b(P) - \chi(P)$ (the Pick formula).

IV. MEDIAL SUBDIVISIONS

Let P be a lattice polygonal imagewith a given lattice decomposition into primitive triangles. We define the medial subdivision mP of P in the following way. Each edge is divided by its middle point into two edges. In each triangle, the three middle points of its edges are connected by three new edges; the triangle is thus divided into four equal sized smaller triangles. We also refine the integral lattice such that it contains all

points with coordinates $\begin{pmatrix} - & - \\ 2 & 2 \end{pmatrix}$ $\left(\begin{array}{c} a & b \\ c & d \end{array} \right)$ (*a* and *b* integers). We then expand the plane by $(x, y) \rightarrow (2x, 2y)$; the refined lattice turns into the original integral lattice. Each middle point of an edge becomes a lattice vertex; each new triangle becomes a primitive lattice triangle. The numbers of the various elements of mP are related to those of P by the following formulas:

$$
v_i (mP) = v_i (P) + e_i (P)
$$

\n
$$
v_b (mP) = 2v_b (P)
$$

\n
$$
e_i (mP) = 2e_i (P) + 3f (P)
$$

\n
$$
e_b (mP) = 2e_b (P)
$$

\n
$$
f (mP) = 4f (P)
$$

The Euler characteristic is invariant under the medial subdivision operation:
\n
$$
\chi(mP) = v(mP) - e(mP) + f(mP) = v_i(mP) - e_i(mP) + f(mP)
$$
\n
$$
= v_i(P) + e_i(P) - 2e_i(P) - 3f(P) + 4f(P)
$$
\n
$$
= v_i(P) - e_i(P) + f(P) = v(P) - e(P) + f(P) = \chi(P)
$$

The Pick formula can be rewritten in the following way:

$$
\chi(P) = v_i(P) + \frac{1}{2}v_b(P) - \frac{1}{2}f(P)
$$

^{*}Corresponding Author: Jack Weinstein 82 | Page

It is obviously an invariant under medial subdivision. Alternatively,
\n
$$
v_i(mP) + \frac{1}{2}v_b(mP) - \frac{1}{2}f(mP) = v_i(P) + e_i(P) + v_b(P) - 2 \cdot f(P) =
$$
\n
$$
v_i(P) + \frac{3}{2}f(P) - \frac{1}{2}v_b(P) + v_b(P) - 2 \cdot f(P) = v_i(P) + \frac{1}{2}v_b(P) - \frac{1}{2}f(P)
$$

V. UNIQUENESS OF THE EULER CHARACTERISTIC

Consider the class LP of all lattice polygonal images P , each with a given lattice decomposition. Our first uniqueness result is

Theorem 1. If
$$
\lambda : \mathcal{LP} \to R
$$
 is a function defined by
\n
$$
\lambda(P) = \alpha \cdot v_i(P) + \beta \cdot e_i(P) + \gamma \cdot f(P), \ \alpha, \beta, \gamma \in R,
$$

and satisfying $\lambda(mP) = \lambda(P)$ for each $P \in \mathcal{LP}$.

Then $\lambda = \kappa \cdot \chi : \mathcal{LP} \to \mathbb{R}$, where $\kappa \in \mathbb{R}$ is a constant and the function is defined by
 $(\kappa \cdot \chi)(P) = \kappa \cdot (\nu_i(P) - e_i(P) + f(P)).$

$$
(\kappa \cdot \chi)(P) = \kappa \cdot (v_i(P) - e_i(P) + f(P)).
$$

Proof: If $P \in \mathcal{LP}$, then

$$
(\kappa \cdot \chi)(P) = \kappa \cdot (\nu_i(P) - e_i(P) + f(P)).
$$

, then

$$
\lambda(mP) = \alpha \cdot \nu_i(mP) + \beta \cdot e_i(mP) + \gamma \cdot f(mP)
$$

$$
= \alpha \cdot (\nu_i(P) + e_i(P)) + \beta \cdot (2e_i(P) + 3f(P)) + 4\gamma \cdot f(P)
$$

$$
= \alpha \cdot \nu_i(P) + (\alpha + 2\beta) \cdot e_i(P) + (3\beta + 4\gamma) \cdot f(P)
$$

The invariance condition $\lambda(mP) = \lambda(P)$ implies

$$
= \lambda(P) \text{ implies}
$$

$$
(\alpha + \beta) \cdot e_i(P) + 3(\beta + \gamma) \cdot f(P) = 0
$$

For the image P_1 that contains one triangle with vertices $(-1,0)$, $(0,0)$, $(0,1)$: $e_i(P_1) = 0$, $f(P_1) = 1$, then $\beta + \gamma = 0$. For the image P_2 that contains the triangle in P_1 and one more triangle with vertices (0,0), (0,1), (1,1): $e_i(P_2) = 1$, $f(P_2) = 2$, then $\alpha + \beta = 0$. Therefore, $\alpha = -\beta = \gamma$ and we derive the result

result
\n
$$
\lambda(P) = \gamma \cdot (v_i(P) - e_i(P) + f(P))
$$

VI. UNIQUENESS OF THE PICK FORMULA

Our second uniqueness result is

Theorem 2. If
$$
\lambda : \mathcal{LP} \to R
$$
 is a function defined by
\n
$$
\lambda(P) = \alpha \cdot v_i(P) + \beta \cdot v_b(P) + \gamma \cdot f(P), \ \alpha, \beta, \gamma \in R,
$$

and satisfying $\lambda(mP) = \lambda(P)$ for each $P \in \mathcal{LP}$.

Then
$$
\lambda = \kappa \cdot \chi : \mathcal{LP} \to R
$$
, where $\kappa \in R$ is a constant and the function is defined by
\n
$$
(\kappa \cdot \chi)(P) = \kappa \cdot \left(v_i(P) + \frac{1}{2} v_b(P) - \frac{1}{2} f(P) \right).
$$

Proof: If $P \in \mathcal{LP}$, then

Uniqueness Resultsfor the Euler Characteristic and the Pick Formula
\n
$$
\lambda(mP) = \alpha \cdot v_i (mP) + \beta \cdot v_b (mP) + \gamma \cdot f (mP)
$$
\n
$$
= \alpha \cdot (v_i (P) + e_i (P)) + 2\beta \cdot v_b (P) + 4\gamma \cdot f (P)
$$

The invariance condition $\lambda(mP) = \lambda(P)$ implies

T) implies

$$
\alpha \cdot e_i(P) + \beta \cdot v_b(P) + 3\gamma \cdot f(P) = 0
$$

Since $e_i(P) = \frac{3}{2} f(P) - \frac{1}{2} v_b(P)$, we get

$$
\alpha \cdot \left(\frac{3}{2}f(P) - \frac{1}{2}v_b(P)\right) + \beta \cdot v_b(P) + 3\gamma \cdot f(P) = 0
$$

therefore,

$$
\left(\beta - \frac{\alpha}{2}\right) \cdot v_b(P) + 3 \cdot \left(\frac{\alpha}{2} + \gamma\right) \cdot f(P) = 0
$$

 $\lambda \{mP\} = \alpha \cdot \gamma_1(mP) + \beta \cdot \gamma_1(mP) + \gamma \cdot f(mP)$

The incuriance condition $\lambda(\alpha P) = \lambda'(\beta) + \alpha(\gamma f) + \beta \cdot \gamma_1(P) + 4\gamma \cdot f(P)$

The incuriance condition $\lambda(\alpha P) = \lambda(P) + \beta \cdot \gamma_1(P) + 3\gamma \cdot f(P) = 0$

Since $c_1(P) + \frac{3}{2}f(P) - \frac{1}{2}\gamma_1(P)$, we For the image P_1 that contains one triangle with vertices $(-1,0)$, $(0,0)$, $(0,1)$: $v_b(P_1) = 3$, $f(P_1) = 1$, then $3\beta + 3\gamma = 0$. For the image P_2 that contains the triangle in P_1 and one more triangle with vertices $(0,0)$, $(0,1)$, $(1,1)$: $v_b(P_2) = 4$, $f(P_2) = 2$, then $\alpha + 4\beta + 6\gamma = 0$. Therefore, $2\alpha = \beta = -2\gamma$ and we derive the result $\left(\frac{1}{v_{\cdot}(P)+\frac{1}{v_{\cdot}}(P)-\frac{1}{f(P)}}\right)$

We the result
\n
$$
\lambda(P) = (-2\gamma) \cdot \left(v_i(P) + \frac{1}{2} v_b(P) - \frac{1}{2} f(P) \right)
$$

REFERENCES

- [1]. R. W. Gaskell, M. S. Klamkin, P. Watson, *Triangulations and Pick's theorem*, Math. Magazine 49 (1): 35-37 (1976).
- [2]. G. A. Pick, *GeometrischeszurZahlenlehre*, Sitzenber. Lotos (Prague) 19 (1899), pp. 311-319.
- [3]. Ross Honsberger, *Ingenuity in Mathematics,* Random House / Springer, New Mathematical Library, 1970; reprinted: Math. Assoc. ofAmerica, New York, 1998; Essay 5: *The FareySeries*, pp. 24-37.
- [4]. W. W. Funkenbusch, From Euler's formula to Pick's formula using an edge theorem, Amer. Math, Monthly 81: 647-648 (1974).
[5]. M. Aigner & G. M. Ziegler, *Proofs from THE BOOK*, 6th ed., Springer, 2018; Chapter 13:
- M. Aigner & G. M. Ziegler, *Proofs from THE BOOK*, 6th ed., Springer, 2018; Chapter 13: *Three applications of Euler's formula*, pp. 89-94.