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Abstract

It is known that thermal conductivity of copper exhibits some ran-
dommness. This means that the resulting temperature distribution would
also exhibit some element of randomness. It is therefore necessary to in-
vestigate the effect of the randomness of the thermal conductivity on the
temperature profile. Hence, in this work, we consider a stochastic heat
equation in which the thermal conductivity is a random parameter. From
the literature, we found that thermal conductivity of copper is 401 watts
per meter per kelvin (wm~'k~!) hence, we assume it to be a normally
distributed random wariable with mean 401 and wvariance 0.02 and drew
samples from this data. The solution of the heat equation at each sample
point of the thermal conductivity of the copper material was obtained
through the method of separation of wariables, while the Monte Carlo
method was used to obtain the stochastic mean and standard deviation
of the random heat equation. The algorithm was implemented in python
programming language. The results showed that at constant time, an in-
crease in sample size brings the maximum stochastic mean closer to the
maximum temperature profile while, for a given amount of sample size,
an increase in time leads to an inerease in the deviation of the maximum
stochastic mean from the maximum temperature profile.
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l. Introduction

Temperature prediction is very important in many sectors of our economy for both prevention and maintenance
of certain materials and equipments. The heat equation is used to describe the evolution of temperature of a
given material or medium in time and space along side parameters such as thermal conductivity.

Different materials have different thermal conductivity values [6] thus, in this study we have narrowed our
scope to use the thermal conductivity of copper to arrive at specific result.
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Copper is a metallic substance with very high thermal conductivity and
conducts heat and electricity very well. Based on it’s importance in human
existence, lots of studies have being conducted on the various forms of copper
[9, 13]. Though, copper exist with some amount of impurities, it is said to be
one of the metals that exist naturally in a usable form [7].

The heat equation which is a partial differential equation in space and time is

subject to parametric uncertainty due to the thermal conductivity parameter in
it. In the heat equation, thermal conductivity of material is an input parameter
that must be determined for a complete analytic solution. The means by which
we try to get the value for the thermal conductivity of any given material cannot
be void of some assumptions thus, our input parameter becomes an uncertain
input parameter which turns our model to a stochastic model.
In this paper, we focused on a non-intrusive Monte Carlo simulation method for
the quantification of uncertainty in the heat equation with thermal conduectivity
of copper as a random input parameter and temperature as our quantity of
interest (Q.I).

Results from simulations and experiments all have inherent uncertainties in
their input parameters [11]. Uncertainty quantification (UQ)) tries to solve the
problem of how uncertain results from computational models or experiments
can be. Results of uncertainty quantification are mostly statistical because
uncertainties are basically probabilistic in nature [10]. Uncertainties exist in two
forms; epistemic uncertainties which oceur as a result of lack of knowledge of the
syvstem and aleatory uncertainties which oceur as a result of natural randomness
of the system [15]. Uncertainty quantification methods have being successfully

of the system [15]. Uncertainty quantification methods have being successfully
applied in different disciplines of science and engineering, see [12, 3, 2] and
references in them for more details. In this paper, we focus on the application
of UQ) in a well known partial differential equation model using a non-intrusive
Monte Carlo method.

Monte Carlo method is one of the most used non-intrusive methods of un-
certainty quantification due to its simple mode of implementation with realistic
results [4]. Uncertainty quantification using Monte Carlo method has been ap-
plied by Murugan nd Ganguli [14] in the study of the performance of helicopter
with interest on the thrust and power coefficients, in which they discovered
that about 20 — 25% power was needed by an helicopter for axial climb. Seven
aeroelastic parameters including rotor radius and rotor angular velocity were
considered as random variables. A method to guantify uncertainty in cloud
computing that parallelizes the Monte Carlo method in the clond was presented
by [4]. Data from a random forest machine learning model was used by [8] where
they employed the Monte Carlo method to quantify uncertainties propagated
from nitrogen use efficiency prediction (NUE) using two NUE indicators. Their
report showed the input parameters whose randomness affected predictions of
NUE in various models considered. The uncertainty associated with tempera-
ture in an experimental heat transfer model using Monte Carlo method with
temperature as the random parameter was studied by [5]. They found out that
the values for temperature follow the Gaussian probability distribution. The
probability density function of the solution of the randomized heat equation
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was the interest of [1], they considered a random diffusion coefficient, random
boundary condition and an initial condition that is given as a stochastic process
in the heat equation. The method applied for their problem was a polynomial
approximation method.

To the best of our knowledge, the problem of quantifying uncertainty of
the random heat equation with a random thermal conductivity parameter us-
ing Monte Carlo method has not being done. Moreover, the particular initial
boundary condition of sin(mz) is seen as trivial as such has not been used for
this purpose.

The rest of the paper is organised as follows; section 2 deals with the formu-
lation of the stochastic heat equation, method of solution in section 3, results
and discussions in section 4 and conclusion in section 5.

Il.  Problem Formulation
The heat equation, also known as the diffusion equation, can be stated as

ou 0%
o (1)

where u = u(z, t) is the temperature at any given time ¢ and distance = along
the material under study. The constant o2, is the thermal conductivity of the
material which is the ratio of rate of heat flow to the product of the specific
heat capacity and the density of the material.

The measurement of the values of specific heat capacity, heat flow rate and
material density are subject to uncertainties which result to uncertain thermal
conductivity values of various materials. equation 1 now becomes

du  0*u
= (53 = (2)
ot or
where { is a random parameter representing thermal conduetivity which follows
the normal probability distribution function. To complete our problem, we

consider a Dirichlet boundary condition and a simple sine function as the initial
condition. Thus, the complete stochastic heat equation now becomes

ou u
ot o
U(0,t) = U(1,) = 0,
U(z,0) = sin(mz),
¢~ N, 0%).

0 re(0,1), t=0, (3)

3 methodology

An analytic solution of equation 3 can be found by using the method of sepa-
ration of variables. Due to the random input parameter {,we have a random
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output u(z,t,(). For the standard Monte Carlo method, we take several real-
izations of the random output and find moments of the set of realizations from
u(z,t,{). For more complex problems, there exist other variants of Monte Carlo
methods which converges faster than the standard Monte Carlo method these
include Multilevel Monte Carlo (MLMC), multifidelity Monte Carlo (MFMC)
and Multimodal Monte Carlo (MMMC)[17].

The method of separation of variables [16] provides a solution of the form

u(z,t) = X(2)T (1) (4)
differentiating the solution form partially and putting back into (3) we get
X(z) = Asin(Az) 4+ Beos(Azx). (5)
Applying the boundary conditions, we get
X(z) = Bsin(nmz), n=1,223, .. (6)
and
T(t) = Ce~ " 0% n=123, .. (7)

putting 6 and 7 into 4 with the idea of solution from a linear combination of
solutions, we have

u(x,t) = Z D, sin(n’rr:r)e_{”}?c‘ n=1273, .. (8)
n=1
the constants [),, are determined using Fourier sine series analysis. Using our
initial value condition and orthogonality property of the sine funetion, we have
D, as
D =1 (9)
and
D,=0, n>=2 (10)
Thus, our complete analytic solution becomes
u(z,t) = sin(rz)e™ ¢! (11)
which is the temperature distribution at time ¢ and distance 2.
To obtain the solution for the stochastic equation, we applied the Monte

Carlo method using equation 11 for M normally distributed random samples of
the thermal conductivity parameter to obtain M realizations of u(z,t, () from

u;(z,t,() = sin(:rr::':)le_’FQC‘t (12)

For the Monte Carlo simulation, where i = 1,2, ..., M.

Using the python programming language, we set our Monte Carlo algorithm as
follows:

(1) Draw normally distributed random samples from {; ~ N(401,0.02),

(2) Compute u;(z,t,¢) fori =1,2,..., M,

(3) Compute stochastic mean as u(z,t,() =% = Z:il Uj,

)
(4) Compute stochastic standard deviation as o, = \/ 5 Z?il(“'i —m)?
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4 Result

Equipped with the method of solution from the previous section, we gathered
data for the thermal conductivity to input into our computational model. We
compared the stochastic mean temperature and the deterministic mean of the
temperature profile the heat equation over a unit length of copper at room
temperature. Our data for the thermal conductivity of copper was obtained
from survey [7] . We used 401 watts per meters per kelvin(wm'k~!) as the
mean thermal conductivity value of copper with a variance of 0.02 and assumed
thermal conductivity to be normally distributed with mean 401 and variance
0.02 for the Monte Carlo simulation. In order to get a good visual presentation
of our solution, we scale the value the thermal conductivity of copper down by
dividing it by 1000. In fig 1, we kept time constant at 1 unit and varied the
random samples from 100 to 100000 and in fig 2, we kept the random samples
constant as 1000 realizations and varied the time as 0.3,0.6,0.9,1.2 and 1.5.
In the figures below, "sto mean” stands for stochastic mean, "C.I” stands for
confidence interval and ”deter mean”™ stands for temperature profile of the heat
equation.
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Figure 1: results time t=1 with different numbers of random samples
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From figure 1, the maximum temperature, for both the temperature pro-
file and stochastic mean distribution, remained the same for all sample sizes
considered. this can be seen in all four graphs presented. Both solutions show
similar temperature distribution in over 50% of the given distance of the mate-
rial. The difference between the two solutions can be observed around the mid
point of the distance where the stochastic solution is a little higher than the
temperature profile which accounts for the uncertainties due to the uncertain

input parameter.

Both solutions remained within the boundaries of the 68%

confidence interval of the generated data. The distance between the peaks of
the boundaries of the confidence interval remained constant with inecrease in

sample size.
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Figure 2: results for constant size of random samples at different time points
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In figure 2, we used 1000 random variables to run the Monte Carlo simulation
for 5 different time points. Our results showed similar temperature distribution
for t = 0.3 and t = 0.6 in hoth stochastic solution and deterministie solution.
The results also show a reduction in temperature as time increases in both
solutions. As time increases, we see a change in the difference between the
maximum temperature of the stochastic solution and that of the temperature
profile which implies an increases in the uncertainty level of the input parameter.
There was also an increase in the difference between the confidence intervals as
time increases while, both solutions remain within the confidence interval. This
also confirms an increase in uncertainty due to increase in time.

5 Conclusion

The effect of random thermal conductivity of the heat distribution in a cop-
per material has been investigated by applving Monte-Carlo analysis to one-
dimensional heat equation which is solved by the method of separation of vari-
ables. The results show that a random thermal conductivity propagates a ran-
dom Temperature that exhibits the behaviour of the initial temperature. The
Monte Carlo approach also gave results that are very significant, when compared
with the temperature profile, which clearly showed the effect of the uncertainty
of the input parameter on the output. For more research into the accuracy of
the method used for this study, one can consider other methods of uncertainty
quantification like the collocation methods and compare to these results so far
obtained. Quartiles and percentiles of the generated results can also be caleu-
lated to further expose the uncertainties propagated by the input parameter.
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