Quest Journals Journal of Research in Applied Mathematics Volume 9 ~ Issue 3 (2023) pp: 22-31 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

**Research Paper** 



# Encryption Technique of Concealing Highly Explosive Chemicals with Multiple Odd Magic Squares Constructions

- <sup>1.</sup> Moirangthem Somoliya Devi, *TIITET*, *Bishnupur*, *Manipur*,
- <sup>2.</sup> Salam Samarendra Singh, Department of Mathematics, G.P. Women's College, Imphal,

Manipur

<sup>3.</sup> Longjam Jadumani Singh, Department of Chemistry, Pettigrew College, Ukhrul, Manipur

### Abstract

In this paper, we try to find out a technique of concealing highly explosive chemicals which are the preserve of the military and the government defensive mechanism with the use of encryption technique by applying the odd magic to magic squares. In high explosives, such as RDX, TATB, the explosion propagates by a supersonic detonation, driven by the breakdown of the molecular structure of the material. An explosive can be characterized by the amount of energy it releases when detonated, as well as by its shearing and shock effect, or brisage. Here, we propose a specific rule of establishing odd magic to magic squares derived from odd Algebraic Latin squares and in turn magic to magic generation.

Key word: RDX, TATB, Latin Squares, Magic Squares, RSA-encryption.

*Received 01 Mar., 2023; Revised 10 Mar., 2023; Accepted 12 Mar., 2023* © *The author(s) 2023. Published with open access at www.questjournals.org* 

### I. Introduction

The RSA public key cryptosystem [10] can be described briefly as follows:

- (i) Consider two primes p and q (generally considered of same bit size, i.e. q .
- (ii) n = pq and  $\phi(n) = (p 1)(q 1);$

(iii) Select *e*, *d* such that  $ed = 1 + k \phi(n), k \ge 1$ ;

- (iv) (*n*, *e*) are public key;
- (v) (*n*, *d*) are private key;

(vi) Plaintext message M is encrypted as  $C \alpha M^e \mod n$ ;

(vii) For the decryption; ciphertext C is decrypted as  $M \alpha C^{d} \mod n$ .

There may be many applications of the RSA-scheme; for an easy application of the RSA-scheme, the following highly explosive chemicals are considered.

Pyrotechnics are chemical technologies designed produce explosions, flames, smoke, or noise. Explosives are the most prominent pyrotechnic technology, not merely for useful in military purposes but for commercial ones, such as mining and construction, as well [1].

The term explosives are a specialized one and the term explosives means chemical materials to create an explosion. Explosive materials are used as bursting charges for bombs, missile warheads, grenades, and mines, and as propellants to fire bullets and artillery shells. They are used as blasting charges in military or commercial demolition, for earth-moving for engineering projects, and demolition of buildings and other structures. Explosives are categorized as low or high explosives. In low or deflagrating explosives, such as black powder, the explosion propagates through the material at subsonic speed through an accelerated burning or combustion process. In high explosives, such as RDX, TATB, the explosion propagates by a supersonic detonation, driven by the breakdown of the molecular structure of the material [2].

RDX is a heterocycle and has the molecular shape of a ring. It is an initialism for Research Department explosive [3]. It is an explosive nitroamine widely used in military and industrial applications. It was developed as an explosive which was more powerful than TNT(Trinitrotoulene) and it saw wide use in World War II. In its pure, synthesized state RDX is a white, crystalline solid. It is often used in mixtures with other explosives and

plasticizers, phlegmatizers or desensitizers. RDX is stable in storage and is considered one of the most powerful and brisant of the military high explosives. The velocity of detonation of RDX at a density of 1.76 g/cm<sup>3</sup> is 8750 m/s. It burns rather than explodes and detonates only with a detonator, being unaffected even by small arms fire [4].

### Preparation

It is obtained by reacting white fuming nitric acid (WFNA) with hexamine, producing dinitromethane and ammonium nitrate as byproducts [5].

### Reaction

 $\begin{array}{rrrr} (CH_2)_6N_4 + 10HNO_3 \rightarrow (CH_2\text{-}N\text{-}NO_2)_3 + 3CH_2(NO_2)_2 + \ NH_4NO_3 & + & 3H_2O\\ Hexamine & nitric acid & RDX & dinitromethane & ammonium nitrate & water \\ \textbf{Structure} \end{array}$ 

$$O_2N \longrightarrow C^2 N \longrightarrow NO_2$$
  
 $H_2C \longrightarrow CH_2$   
 $H_2C \longrightarrow CH_2$ 

Structure of RDX

IUPAC Name: 1, 3, 5-Trinitroperhydro-1, 3, 5-triazine Molecular formula:  $C_3H_6N_6O_6$ 

TATB is an aromatic explosive, based on the basic six-carbon benzene ring structure with three nitro functional groups (NO<sub>2</sub>) and three amine (NH<sub>2</sub>) groups attached, alternating around the ring. TATB is a powerful explosive (somewhat less powerful than RDX, but more than TNT), but it is extremely insensitive to shock, vibration, fire, or impact. Because it is so difficult to detonate by accident, even under severe conditions, it has become preferred for applications where extreme safety is required, such as the explosives used in nuclear weapons, where accidental detonation during an airplane crash or rocket misfiring would present extreme dangers [6].

TATB has been found to remain stable at temperatures at least as high as 250°C for prolonged periods of time. TATB is a bright yellow colour. At a pressed density of 1.80, TATB has a velocity of detonation of 7,350 meters per second. TATB has a crystal density of 1.93 grams/cm<sup>3</sup>.

### Preparation

TATB is produced by nitration (a mixture of concentrated nitric acid and concentrated sulphuric acid, catalyst) of 1,3,5-trichlorobenzene to 1,3,5-trichloro-2,4,6-trinitrobenzene, then the chlorine atoms are substituted with amine groups [7].

Reaction

 $H_2SO_4$ 330K  $C_6H_3Cl_3$ 3HNO<sub>3</sub>  $C_6(NO_2)_3Cl_3$  $3H_2O$ ++1,3,5-trichlorobenzene nitric acid 1,3,5-trichloro-2,4,6-trinotrobenzene water 443K  $C_6(NO_2)_3Cl_3$ 3NH<sub>3</sub>  $C_6(NO_2)_3(NH_2)_3 + 3HCl$ +1,3,5-trichloro-2,4,6-trinotrobenzene ammonia TATB hydrochloric acid Structure

Structure of TATB IUPAC Name: 1,3,5-triamino-2,4,6-trinitrobenzene Molecular formula:  $C_6H_6N_6O_6$ 

### 1.1 Magic Square and Public-Key Cryptosystem

There is a specific rule of establishing odd magic squares derived from odd Algebraic Latin squares. Magic Squares are practically important from the properties of its equality in the sum of its rows, columns, diagonals, etc. Since the magic squares  $(n \ge n)$  exist for odd numbers of rows, columns and diagonals only. It can be used in cryptographic analysis as encryption keys for developing magic square ciphers.

We propose the application of encryption algorithm with the help of Odd Magic to Magic Squares is very helpful in concealing these explosives secret. Cryptography is the science of keeping secrets secret. Further, magic square encryption is becoming one of the fascinating techniques. As an alternative approach to handling the explosive compounds which have the components of C-atoms, H-atoms, N-atoms and O-atoms respectively

particularly in RDX and TATB with the encoding process of ASCII characters in the cryptosystems had been thought of in this work. It can also be applicable to all the remaining explosives.

There has been a lot of interest in the construction of safe and effective public key cryptosystems, which ensure the security of the data [8]. The basic idea of a public key cryptosystem is due to Diffie and Hellman [9]. To set up an RSA-Cryptosystem, one must be able to recognize easily whether large numbers are primes or not and make their product  $n = pq_{\text{public.}} n_{\text{is part of the public key, whereas the factors}} p_{\text{and}} q_{\text{of}} n_{\text{are kept}}$ secret and are used as the secret key. The basic idea is that the factors of  $n_{\text{cannot}}$  be converted from  $n_{\text{Rivest}}$ . Shamir and Adleman recommended that n be about 200 digits long key, that is one needs longer key to have more secure [10]. Longer or shorter lengths can be used depending on the relative importance of encryption speed and security in the application at hand. An 80-digit n provides moderate security against an attack using current technology; using 200 digits provides a margin of safety against future developments.

The public-key consists of the modulus n = pq, and an exponent e such that  $d = e^{-1} \mod (p-1)(q-1)$ . To encrypt a plaintext M the user computes  $C = M^e \mod n$  and to decrypt we get the plaintext by calculating  $M = C^d \mod n$ . In order to thwart currently known attacks, the modulus n and thus M and C should have a length of 512-1024 bits [10].

#### II. Methodology

The working methodology of the proposed add-on security of Odd Magic to Magic Square Encryption is discussed as the following subsections.

#### 2.1 **Basic Latin Square**

Let us consider a 3 × 3 odd Latin square with the elements of  $a_{11}, a_{12}, \dots, a_{33}$ . Representing the above in algebraic form of Latin Square, we have

| [ <i>a</i> <sub>11</sub> | $a_{12}$               | $a_{13}$ ]             | XX71 1 1                | [1 | 2 | 3] |
|--------------------------|------------------------|------------------------|-------------------------|----|---|----|
| <i>a</i> <sub>22</sub>   | $a_{_{23}}$            | <b>a</b> <sub>21</sub> | which can be written as | 5  | 6 | 4  |
| <i>a</i> 33              | <b>a</b> <sub>31</sub> | <b>a</b> <sub>32</sub> |                         | 9  | 7 | 8  |
| laphra                   | hic for                | m of I                 | atin Square             | -  |   | -  |

Fig. 1(a). Algebraic form of Latin Square

**Fig. 1(b).** Latin Square  $3 \times 3$ 

In all cases the Latin letters are seen once in each row and column. Here, the sums of all columns are equal but not the sum of the diagonals i.e.  $\sum_{i}^{j} d_{ij} \neq \sum_{j}^{j} d_{ij}$ , where  $a_{11 \neq} a_{21 \neq \dots \neq} a_{33}$  and so on. Then the ultimate normal magic square of  $3 \times 3$  is

| [8 | 1 | 6] |
|----|---|----|
| 3  | 5 | 7  |
| 4  | 9 | 2  |

**Fig. 1(c).** Normal Magic Square of  $3 \times 3$ 

#### 2.2 **Construction of Odd Magic Squares**

Odd magic square is defined as the magic square where the number of columns as well as the number of rows in a matrix becomes odd. The working principle of magic square construction is discussed stepwise [11]. The following three steps of odd ordered magic squares are discussed as

Consecutive natural numbers 1 to  $n^2$  in n rows and n columns are inserted. Find out the values of pivot (i)

$$P = \frac{1+n^2}{2}$$
 and the magic sum,  $S = \frac{n(1+n^2)}{2}$ 

element

Arrange the n\*n matrix in Basic Latin Square to get the column sums equal. (ii)

Select the row associated with P, assign this row as main diagonal elements (keeping the pivot element (iii) in the middle cell) in ascending order or descending order and arrange other (column) elements in an orderly manner to get the desired magic square.

In consequence to the above steps, the Basic Latin Square of  $5 \times 5$  matrix is constructed as in Figure 2.

|            | [ <i>a</i> <sub>11</sub> | <b>a</b> <sub>12</sub> | <i>a</i> <sub>13</sub>                                                        | $a_{_{14}}$            | $a_{15}$ ]             |
|------------|--------------------------|------------------------|-------------------------------------------------------------------------------|------------------------|------------------------|
|            | <i>a</i> <sub>22</sub>   | <i>a</i> <sub>23</sub> | $a_{_{24}}$                                                                   | <b>a</b> <sub>25</sub> | <b>a</b> <sub>21</sub> |
| $\bigcirc$ | <i>a</i> <sub>33</sub>   | $a_{_{34}}$            | $a_{_{35}}$                                                                   | $a_{_{31}}$            | <i>a</i> <sub>32</sub> |
| $\bigcirc$ | <i>a</i> <sub>44</sub>   | $a_{\!_{45}}$          | $a_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $a_{\!_{42}}$          | <b>a</b> <sub>43</sub> |
|            | <i>a</i> <sub>55</sub>   | $a_{51}$               | $a_{52}$                                                                      | $a_{53}$               | $a_{54}$               |
|            |                          |                        |                                                                               |                        | . ~                    |

Fig. 2. Algebraic form of Latin Square Once the algebraic form of Latin Square is constructed in  $n^2$ , then the arrangement of the first magic square is  $a_{22}$ 

simple. In the above Figure 2,  $a_{33}$  is the pivot element. Representing the pivot element in the middle cell of the 5 × 5 matrix, we have,

|                        |                        | <i>a</i> <sub>11</sub> |             | $a_{\!35}$ |
|------------------------|------------------------|------------------------|-------------|------------|
|                        |                        | <i>a</i> <sub>22</sub> | $a_{_{34}}$ |            |
|                        |                        | $\bigcirc$             |             |            |
|                        | <b>a</b> <sub>32</sub> | <i>a</i> <sub>44</sub> |             |            |
| <b>a</b> <sub>31</sub> | <b>a</b> <sub>43</sub> | <b>a</b> <sub>55</sub> |             |            |

Fig. 3. Pivot element in the middle cell

Select the column containing  $a_{33}^{33}$  and insert in the middle column of the 5 × 5 matrix as performed in Figure 2. Then, we can set up as  $a_{44}^{33} a_{44}^{35} a_{55}^{11} a_{22}^{11}$  in the third column i.e. the pivot column. Again, selecting the column containing  $a_{34}^{34}$  and arrange as  $a_{34}^{34} a_{45}^{34} a_{51}^{34} a_{51}^{34} a_{12}^{34} a_{23}^{34}$ . Similarly, for the columns containing  $a_{35}^{35}$ ,  $a_{31}^{31}$  and  $a_{32}^{32}$  we can arrange like  $a_{35}^{35} a_{41}^{34} a_{52}^{34} a_{13}^{34} a_{24}^{34}$ ,  $a_{31}^{34} a_{42}^{35} a_{53}^{34} a_{14}^{34} a_{25}^{34} a_{43}^{32} a_{54}^{34} a_{15}^{34} a_{21}^{34}$ . Finally, we obtain a 5 × 5 magic square as

| <b>a</b> <sub>42</sub>   | <b>a</b> <sub>54</sub> | $a_{\!_{11}}$     | a <sub>23</sub>        | $a_{35}$               |
|--------------------------|------------------------|-------------------|------------------------|------------------------|
| <b>a</b> <sub>53</sub>   | <b>a</b> <sub>15</sub> | a <sub>22</sub> / | <i>a</i> 34            | <b>a</b> <sub>41</sub> |
| $a_{14}$                 | a <sub>21</sub> /      | $\bigcirc$        | <b>a</b> <sub>45</sub> | <b>a</b> <sub>52</sub> |
| a <sub>25</sub>          | <i>a</i> <sub>32</sub> | <i>A</i> 44       | <b>a</b> <sub>51</sub> | <b>a</b> <sub>13</sub> |
| ( <b>a</b> <sub>31</sub> | <i>A</i> <sub>43</sub> | $a_{55}$          | <b>a</b> <sub>12</sub> | <i>a</i> <sub>24</sub> |

**Fig. 4.** Algebraic Magic Square of  $5 \times 5$ 

It can be simplified with a numerical example of a  $5 \times 5$  magic square with the integers 1, 2, 3, ..., 25 as the following.

| [1                                          | 2  | 3  | 4  | ן 5 |  |  |  |  |  |  |
|---------------------------------------------|----|----|----|-----|--|--|--|--|--|--|
| 7                                           | 8  | 9  | 10 | 6   |  |  |  |  |  |  |
| 13                                          | 14 | 15 | 11 | 12  |  |  |  |  |  |  |
| 19                                          | 20 | 16 | 17 | 18  |  |  |  |  |  |  |
| 25                                          | 21 | 22 | 23 | 24  |  |  |  |  |  |  |
| <b>Fig. 5.</b> Magic Square of $5 \times 5$ |    |    |    |     |  |  |  |  |  |  |

## $n^2 + 1$ 25+1

Now, 2 i.e. 2 = 13 represents the pivot element keeping row in the diagonal of the  $5 \times 5$  matrix, we have,



**Fig. 6.** Magic Square of  $5 \times 5$ 

The constant sum in every row, column and diagonal in the above odd magic square is 65 and it is called the magic constant or magic sum.

### 2.3 Construction of 13 × 13 Odd Magic Square

We construct a  $13\times13$  odd magic square so that one can encode any element from the periodic table by comparing with the existing Partial ASCII – Unicode Table 1. The odd magic square of  $13\times13$  is so constructed because most of the elements in periodic table belong in the atomic range of  $13\times13$  i.e. 169. We follow the same protocol what we have performed in Section 2.2. First, we construct the Basic Latin Square of the integers 1, 2, 3, ..., 169 in  $13\times13$  as in Figure 7.

| 1          | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15         | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 14  |
| 29         | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 27  | 28  |
| 43         | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 40  | 41  | 42  |
| 57         | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 53  | 54  | 55  | 56  |
| 71         | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 66  | 67  | 68  | 69  | 70  |
| $\bigcirc$ | 86  | 87  | 88  | 89  | 90  | 91  | 79  | 80  | 81  | 82  | 83  | 84  |
| 99         | 100 | 101 | 102 | 103 | 104 | 92  | 93  | 94  | 95  | 96  | 97  | 98  |
| 113        | 114 | 115 | 116 | 117 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 |
| 127        | 128 | 129 | 130 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 |
| 141        | 142 | 143 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| 155        | 156 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 |
| 169        | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 |

Fig. 7. Basic Latin Square 13×13

$$P = \frac{13^2 + 1}{2}$$
  $P = \frac{169 + 1}{2}$ 

Now, the pivot element 2 i.e. 2 = 85 and fixing the column which includes the pivot element in the middle column i.e. in the 7<sup>th</sup> column and represent the other elements according to Section 2.2. Finally, we get the magic square of the sum

### Fig. 8. MS<sub>1</sub> of 13×13

$$S = \frac{13(1+13^2)}{2} = 1105$$

2 in each column, row and diagonals respectively. The construction of magic squares of  $13 \times 13$  can encode most of the atoms involved in the above mentioned chemicals. One can construct magic squares bigger than  $13 \times 13$  if necessity of more security demands.

| 93  | 108 | 123 | 138 | 153 | 168 | 1  | 16 | 31 | 46 | 61  | 76  | 91  | 1105 |
|-----|-----|-----|-----|-----|-----|----|----|----|----|-----|-----|-----|------|
| 107 | 122 | 137 | 152 | 167 | 13  | 15 | 30 | 45 | 60 | 75  | 90  | 92  | 1105 |
| 121 | 136 | 151 | 166 | 12  | 14  | 29 | 44 | 59 | 74 | 89  | 104 | 106 | 1105 |
| 135 | 150 | 165 | 11  | 26  | 28  | 43 | 58 | 73 | 88 | 103 | 105 | 120 | 1105 |

\*Corresponding Author: Moirangthem Somoliya Devi

| 110<br>5 | 1105 | 1105 | 1105 | 1105 | 1105 | 1105       | 1105 | 1105 | 1105 | 1105 | 1105 | 110<br>5 | 1105 |
|----------|------|------|------|------|------|------------|------|------|------|------|------|----------|------|
| 79       | 94   | 109  | 124  | 139  | 154  | 169        | 2    | 17   | 32   | 47   | 62   | 77       | 1105 |
| 78       | 80   | 95   | 110  | 125  | 140  | 155        | 157  | 3    | 18   | 33   | 48   | 63       | 1105 |
| 64       | 66   | 81   | 96   | 111  | 126  | 141        | 156  | 158  | 4    | 19   | 34   | 49       | 1105 |
| 50       | 65   | 67   | 82   | 97   | 112  | 127        | 142  | 144  | 159  | 5    | 20   | 35       | 1105 |
| 36       | 51   | 53   | 68   | 83   | 98   | 113        | 128  | 143  | 145  | 160  | 6    | 21       | 1105 |
| 22       | 37   | 52   | 54   | 69   | 84   | 99         | 114  | 129  | 131  | 146  | 161  | 7        | 1105 |
| 8        | 23   | 38   | 40   | 55   | 70   | $\bigcirc$ | 100  | 115  | 130  | 132  | 147  | 162      | 1105 |
| 163      | 9    | 24   | 39   | 41   | 56   | 71         | 86   | 101  | 116  | 118  | 133  | 148      | 1105 |
| 149      | 164  | 10   | 25   | 27   | 42   | 57         | 72   | 87   | 102  | 117  | 119  | 134      | 1105 |

And Figure 8 is the first Odd Magic Square of 13×13 formed by using the Latin Square format.

#### 2.4 **Construction of Odd Magic to Magic Square Matrices**

The first so formed magic square is termed as Base-Magic Square and it is denoted by MS<sub>1</sub> as in section 2.2. The working model of odd magic to magic square construction is discussed stepwise [14]. The first column of  $MS_1$  becomes the pivot column of the second magic square which is denoted by  $MS_2$ .

The followings are the steps of odd magic to magic square:

Consecutive natural numbers 1 to  $n^2$  in n rows and n columns are inserted. Find out the values of pivot (i)

$$P = \frac{1+n^2}{2}$$
 and the magic sum,  $S = \frac{n(1+n^2)}{2}$ 

element

Arrange the n\*n matrix in Basic Latin Square to get the column sums equal. (ii)

Select the row associated with P, assign this row as main diagonal elements (keeping the pivot element (iii) in the middle cell) in ascending order or descending order and arrange other (column) elements in an orderly manner to get the desired magic square.

Assign the first magic square so constructed as  $MS_1$  and elements of  $MS_1$  as n\*n matrix similar to the (iv) previous Basic Latin Square.

Insert the first column of MS1 as the pivot column in MS2 and the elements of MS1 in the cells of (v)  $a_{(\frac{n+1}{2})2}, a_{(\frac{n+1}{2})3}, \dots, a_{(\frac{n+1}{2})(\frac{n+1}{2})}$  $a_{(\frac{n+1}{2}-1)(\frac{n+1}{2}+1)}, a_{(\frac{n+1}{2}-2)(\frac{n+1}{2}+2)}, \dots, a_{1n}$ 

$$\frac{(1-2)(\frac{1}{2})}{2}$$
 will replace the diagonal cells of MS<sub>2</sub> a

and the row elements  $a_{(\frac{n+1}{2})(\frac{n+1}{2}+1)}, a_{(\frac{n+1}{2})(\frac{n+1}{2}+2)}, \dots, a_{(\frac{n+1}{2})n}$  on the right of pivot element of MS<sub>1</sub> will replace the

$$a_{n1}, a_{(n-1)2}, \dots, a_{(\frac{n+1}{2}+1)(\frac{n+1}{2}-1)}$$

lower diagonal cells of MS<sub>2</sub> as

Repeat step (iii) till all the vacant cells of  $MS_2$  are filled up as performed in Basic Latin Square. (vi)

In consequence to the above 6 steps, the Odd Magic to Magic Square of 13×13 matrix is constructed as in Figure 9.

| 114 | 143 | 159 | 19  | 48  | 77  | 93         | 122 | 151 | 11  | 27  | 56  | 85  | 1105 |
|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|------|
| 128 | 144 | 4   | 33  | 62  | 91  | 107        | 136 | 165 | 25  | 41  | 70  | 99  | 1105 |
| 142 | 158 | 18  | 47  | 76  | 92  | 121        | 150 | 10  | 39  | 55  | 84  | 113 | 1105 |
| 156 | 3   | 32  | 61  | 90  | 106 | 135        | 164 | 24  | 40  | 69  | 98  | 127 | 1105 |
| 157 | 17  | 46  | 75  | 104 | 120 | 149        | 9   | 38  | 54  | 83  | 112 | 141 | 1105 |
| 2   | 31  | 60  | 89  | 105 | 134 | 163        | 23  | 52  | 68  | 97  | 126 | 155 | 1105 |
| 16  | 45  | 74  | 103 | 119 | 148 | $\bigcirc$ | 37  | 53  | 82  | 111 | 140 | 169 | 1105 |
| 30  | 59  | 88  | 117 | 133 | 162 | 22         | 51  | 67  | 96  | 125 | 154 | 1   | 1105 |
| 44  | 73  | 102 | 118 | 147 | 7   | 36         | 65  | 81  | 110 | 139 | 168 | 15  | 1105 |
| 58  | 87  | 116 | 132 | 161 | 21  | 50         | 66  | 95  | 124 | 153 | 13  | 29  | 1105 |
| 72  | 101 | 130 | 146 | 6   | 35  | 64         | 80  | 109 | 138 | 167 | 14  | 43  | 1105 |
| 86  | 115 | 131 | 160 | 20  | 49  | 78         | 94  | 123 | 152 | 12  | 28  | 57  | 1105 |
| 100 | 129 | 145 | 5   | 34  | 63  | 79         | 108 | 137 | 166 | 26  | 42  | 71  | 1105 |

| 110<br>5 | 1105                                    | 1105 | 1105 | 1105 | 1105 | 1105 | 1105 | 1105 | 1105 | 1105 | 1105 | 110<br>5 | 1105 |
|----------|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|----------|------|
|          | <b>Fig. 9.</b> MS <sub>2</sub> of 13×13 |      |      |      |      |      |      |      |      |      |      |          |      |

### 3. Magic Square Implementation in Public-Key Cryptosystem

For encryption of a message, one needs the Unicode Table to understand the proper number code assigned to every characters. The characters and their associated number code are listed in the Table 1. The first 32 characters (0 through 31) are nonprintable characters, and character #32 is the space. Therefore, they are not shown in the table below.

|       | Table 1. Partial ASCII – Unicode Table |       |       |       |       |       |       |       |       |  |  |  |  |
|-------|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| 33 !  | 34 "                                   | 35 #  | 36 \$ | 37 %  | 38 &  | 39 '  | 40 (  | 41)   | 42 *  |  |  |  |  |
| 43 +  | 44,                                    | 45 -  | 46.   | 47 /  | 48 0  | 49 1  | 50 2  | 51 3  | 52 4  |  |  |  |  |
| 53 5  | 54 6                                   | 55 7  | 56 8  | 57 9  | 58 :  | 59;   | 60 <  | 61 =  | 62 >  |  |  |  |  |
| 63 ?  | 64@                                    | 65 A  | 66 B  | 67 C  | 68 D  | 69 E  | 70 F  | 71 G  | 72 H  |  |  |  |  |
| 73 I  | 74 J                                   | 75 K  | 76 L  | 77 M  | 78 N  | 79 O  | 80 P  | 81 Q  | 82 R  |  |  |  |  |
| 83 S  | 84 T                                   | 85 U  | 86 V  | 87 W  | 88 X  | 89 Y  | 90 Z  | 91[   | 92 \  |  |  |  |  |
| 93 ]  | 94 ^                                   | 95 _  | 96 '  | 97 a  | 98 b  | 99 c  | 100 d | 101 e | 102 f |  |  |  |  |
| 103 g | 104 h                                  | 105 i | 106 j | 107 k | 108 1 | 109 m | 110 n | 111 o | 112 p |  |  |  |  |
| 113 q | 114 r                                  | 115 s | 116 t | 117 u | 118 v | 119 w | 120 x | 121 y | 122 z |  |  |  |  |
| 123 { | 124                                    | 125 } | 126 ~ |       |       |       |       |       |       |  |  |  |  |

There are two basic approaches used to speed up the cryptographic transformations for concealing the highly explosive chemicals. The first approach is to design faster (symmetric or asymmetric) cryptographic algorithms. This approach is not available most of the time. The speed of cryptographic algorithm is typically determined by the number of rounds (in private-key) or by the size of messages (in public-key case). The second case is the parallel cryptographic system. The main idea is to take a large message block [8].

In Ganapathy and Mani's paper [12], the algorithm starts with building  $4 \times 4$  magic square. Incrementally  $8 \times 8$  and  $16 \times 16$  (even magic squares) magic squares are built using  $4 \times 4$  magic squares as building blocks. While constructing the doubly even magic squares the following block is used as the first constructing block.

| -4  | MS <sub>start</sub> | -8  | +12                 |
|-----|---------------------|-----|---------------------|
| -10 | +14                 | -6  | +2                  |
| +8  | -12                 | +4  | MST4 <sub>sum</sub> |
| +6  | -2                  | +10 | -14                 |

|  | Fig. | 10. | Magic | Square | filling | order |
|--|------|-----|-------|--------|---------|-------|
|--|------|-----|-------|--------|---------|-------|

where  $MS_{start}$  = starting number of MS,  $MST4_{sum}$  = Total sum of MS of order 4; -int represents the places to fill the values in MS, starting from  $MST4_{sum}$  and decremented by 2 each time, and +int represents the places to fill the values in MS, starting from  $MS_{start}$  and incremented by 2 each time to get the next number [12].

Here, we develop an odd  $13 \times 13$  magic square and check the security of encryption for sending messages. First, we construct the Latin Square of elements 1, 2, 3, ..., 169 as in the above figure 8 and 9.

Following the steps of section 2.3, the first so formed magic square is termed as Base-Magic Square and denoted by MS<sub>1</sub>. The first column of MS<sub>1</sub> will become the pivot column of the second MS<sub>2</sub>. Then, the pivot row having the cells  $\begin{bmatrix} a_{72} & a_{73} & a_{74} & a_{75} & a_{76} & a_{77} \end{bmatrix}$  will become the diagonal cells above the pivot cells i.e.

| these    | will                   | occ                     | upy                     | $a_{68}$                | $a_{\scriptscriptstyle 59}$ | <i>a</i> <sub>410</sub> | <b>a</b> <sub>311</sub> | <b>a</b> <sub>212</sub> | <b>a</b> <sub>113</sub> | as  | inserted | in | the | $MS_2$ | and   |
|----------|------------------------|-------------------------|-------------------------|-------------------------|-----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----|----------|----|-----|--------|-------|
| $a_{78}$ | <b>a</b> <sub>79</sub> | <b>a</b> <sub>710</sub> | <b>a</b> <sub>711</sub> | <b>a</b> <sub>712</sub> | <b>a</b> <sub>713</sub>     |                         | will                    | occuj                   | ру                      | the | position | (  | of  | the    | cells |

\*Corresponding Author: Moirangthem Somoliya Devi

 $\begin{bmatrix} a_{131} & a_{122} & a_{113} & a_{104} & a_{95} & a_{86} \end{bmatrix}$  respectively. Bah! Still the sums of all the rows, columns and diagonals have the same sum 1105. The magic square MS<sub>2</sub> is obtained by interchanging the cell elements of MS<sub>1</sub> as stated above in the section 2.3. If we go on in this process, we will be convenient to construct a number of magic squares are constructed and encode different atoms according to the number of atoms attached to the compound, it will be more secure. In this paper, only four MS<sub>j</sub> matrices are generated. Other matrices can be generated by taking the same process as we have presented.

To show the relevance of this work to the security of public-key encryption schemes, a public-key cryptosystem RSA is taken.

For a proper understanding, let us select two prime numbers, p = 3 and q = 11 for an easy calculation. We calculate  $n = pq = 3 \times 11 = 33$ . Then, we calculate  $\phi(n) = (p - 1)(q - 1) = 2 \times 10 = 20$ . Now, let us select *e* such that *e* is relatively prime to  $\phi(n) = 20$  and less than  $\phi(n)$ ; we choose e = 7. We determine *d* such that  $de \equiv 1 \mod 20$  and d < 20. The correct value of d = 3, because  $7 \times 3 = 21 = 2 \times 10 + 1$ ; *d* can be calculated using the extended Euclid's algorithm. The resulting keys are public key  $K_U = \{n, e\} = \{33, 7\}$  and private key  $K_R = \{n, d\} = \{33, 3\}$ . To encrypt a message, using eq.  $C = M^7 \mod 33$  and to decrypt the same, we use the eq.  $M = C^3 \mod 33$  are used.

Here, the message to be encrypted is  $C_3H_6N_6O_6$  (RDX). The encoded message due to the ASCII in Table 1 for  $C_3$ ,  $H_6$ ,  $N_6$  and  $O_6$  are [151 81 45 131] by comparing from the magic square tables provided according to the number of atoms attached to the respective elements. The plaintext of  $C_3$  is 151 as occurred in the 3<sup>rd</sup> generated magic square in Figure 11.

| 51  | 81  | 124 | 167 | 28  | 71  | 114        | 144 | 18  | 61  | 104 | 134 | 8   |
|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|
| 65  | 95  | 138 | 12  | 42  | 85  | 128        | 158 | 32  | 75  | 105 | 148 | 22  |
| 66  | 109 | 152 | 26  | 56  | 99  | 142        | 3   | 46  | 89  | 119 | 162 | 36  |
| 80  | 123 | 166 | 27  | 70  | 113 | 156        | 17  | 60  | 103 | 133 | 7   | 50  |
| 94  | 137 | 11  | 41  | 84  | 127 | 157        | 31  | 74  | 117 | 147 | 21  | 64  |
| 108 | 151 | 25  | 55  | 98  | 141 | 2          | 45  | 88  | 118 | 161 | 35  | 78  |
| 122 | 165 | 39  | 69  | 112 | 155 | $\bigcirc$ | 59  | 102 | 132 | 6   | 49  | 79  |
| 136 | 10  | 40  | 83  | 126 | 169 | 30         | 73  | 116 | 146 | 20  | 63  | 93  |
| 150 | 24  | 54  | 97  | 140 | 1   | 44         | 87  | 130 | 160 | 34  | 77  | 107 |
| 164 | 38  | 68  | 111 | 154 | 15  | 58         | 101 | 131 | 5   | 48  | 91  | 121 |
| 9   | 52  | 82  | 125 | 168 | 29  | 72         | 115 | 145 | 19  | 62  | 92  | 135 |
| 23  | 53  | 96  | 139 | 13  | 43  | 86         | 129 | 159 | 33  | 76  | 106 | 149 |
| 37  | 67  | 110 | 153 | 14  | 57  | 100        | 143 | 4   | 47  | 90  | 120 | 163 |

**Fig. 11.** 3<sup>rd</sup> generated Magic Square MS<sub>3</sub>

But the other atoms occur in 6<sup>th</sup> generated magic square as they have 6 atoms each. Their plaintexts are 81, 45 and 131 respectively in Figure 12.

| 60  | 132 | 48  | 120 | 36  | 108 | 24         | 96  | 12  | 84  | 169 | 72  | 144 |
|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|
| 74  | 146 | 62  | 134 | 50  | 122 | 38         | 110 | 26  | 98  | 1   | 86  | 158 |
| 88  | 160 | 76  | 148 | 64  | 136 | 52         | 124 | 27  | 112 | 15  | 100 | 3   |
| 102 | 5   | 90  | 162 | 78  | 150 | 53         | 138 | 41  | 126 | 29  | 114 | 17  |
| 116 | 19  | 104 | 7   | 79  | 164 | 67         | 152 | 55  | 140 | 43  | 128 | 31  |
| 130 | 33  | 105 | 21  | 93  | 9   | 81         | 166 | 69  | 154 | 57  | 142 | 45  |
| 131 | 47  | 119 | 35  | 107 | 23  | $\bigcirc$ | 11  | 83  | 168 | 71  | 156 | 59  |
| 145 | 61  | 133 | 49  | 121 | 37  | 109        | 25  | 97  | 13  | 85  | 157 | 73  |
| 159 | 75  | 147 | 63  | 135 | 51  | 123        | 39  | 111 | 14  | 99  | 2   | 87  |

| 4  | 89  | 161 | 77  | 149 | 65 | 137 | 40 | 125 | 28 | 113 | 16 | 101 |
|----|-----|-----|-----|-----|----|-----|----|-----|----|-----|----|-----|
| 18 | 103 | 6   | 91  | 163 | 66 | 151 | 54 | 139 | 42 | 127 | 30 | 115 |
| 32 | 117 | 20  | 92  | 8   | 80 | 165 | 68 | 153 | 56 | 141 | 44 | 129 |
| 46 | 118 | 34  | 106 | 22  | 94 | 10  | 82 | 167 | 70 | 155 | 58 | 143 |

**Fig. 12.**  $6^{th}$  generated Magic Square MS<sub>6</sub>

The encryption is done by taking the above prime numbers as mentioned earlier. One such process of encryption and decryption in  $C_3$  can be performed as the following Figure 13.



Fig. 13. Encryption and decryption of C3

The scheme is like this, to encrypt  $C_3$ , the numerals which occur at  $67^{th}$  position in the  $3^{rd}$  generated magic square MS<sub>3</sub> in Figure 11 is taken i.e. 151 because C occurs only in the first position of the clear text having 3 atoms. Similarly, to encrypt H<sub>6</sub>, N<sub>6</sub> and O<sub>6</sub>, the numerals occur in the  $72^{nd}$ ,  $78^{th}$  and  $79^{th}$  positions of the  $6^{th}$  generated magic square MS<sub>6</sub> as in Figure 12 respectively are taken.

Thus,  $M_1(C_3) = 151$ ,  $M_2(H_6) = 81$ ,  $M_3(N_6) = 45$ , and  $M_4(O_6) = 131$  respectively according to the position of letters in figures 10 and 11. Hence, the encryptions are done as in [10],  $C_1(C_3) = 151^7 \mod 33 = 13$ ,  $C_2(H_6) = 81^7 \mod 33 = 27$  and  $C_3(N_6) = 45^7 \mod 33 = 12$  and  $C_3(O_6) = 131^7 \mod 33 = 32$ . Thus, the encrypted message of Alice is [13 27 12 32].

Again, when Bob wishes to decrypt the above encryption, he will use the private key (n, d) and for decryption,  $M = C^d \pmod{n}$ . Then  $M_1(C_3) = 13^3 \mod 33 = 151$ ,  $M_2(H_6) = 27^3 \mod 33 = 81$  and  $M_3(N_6) = 12^3 \mod 33 = 45$  and  $M_3(O_6) = 32^3 \mod 33 = 131$  i.e. the original text-message which was sent by Alice is  $C_3H_6N_6O_6$ .

In the way we performed above, the encryption and decryption of  $C_6H_6N_6O_6$  (TATB) can be worked out easily as follows:

Here, to encrypt C<sub>6</sub>, H<sub>6</sub>, N<sub>6</sub> and O<sub>6</sub>, the numerals occur in the  $67^{\text{th}}$ ,  $72^{\text{nd}}$ ,  $78^{\text{th}}$  and  $79^{\text{th}}$  – all the atoms occur only in the  $6^{\text{th}}$  generated magic square MS<sub>6</sub>. Their encoded numerals are [33 81 45 131] taken as in Figure 11. The exception to the above encryption and decryption occurs in the case of C-atoms only, that also falls in MS<sub>6</sub>.

The encryption and decryption of C<sub>6</sub> can be performed as  $C_1(C_6) = 33^7 \mod 33 = 0$  and  $M_1(C_6) = 0^3 \mod 33 = 33$ . Therefore, the encrypted message is [00 27 12 32]. When decrypted the above message by Bob, it is transformed into the plaintext as [33 81 45 131]. Further, it is observed that if the file size increased, then encryption and decryption time will also be increased.

### III. Conclusion.

The Security Model for Public-Key Cryptosystem based on Magic Square will increase the security due to its complexity in encryption because it deals with the magic square formation with Base-Magic Square and sum of the columns, rows and diagonals that cannot be easily traced out. But it will be more complicated in the case of Odd Magic to Magic Squares because there has more complexity to trace out the pivot element and elements to be filled up in the remaining cells in such magic squares. The encryption/decryption is based on cell numerals generated by magic square rather than the ASCII values. Due to its importance and its beautiful, simple structure, the RSA scheme has also attracted many cryptanalysts [13]. But despite intensive research efforts, from a mathematical point of view the only known method to break the RSA scheme is the most obvious one, i.e. to find the factorization of n.

An alternative approach to the existing ASCII based cryptosystem a number based approach is thought of and implemented in the highly explosive chemicals. The technique so developed in this paper is a complicated one by exploring the odd magic to magic square encryption which is applicable to any C-atom present in the explosive compounds.

### **REFERENCES:**

- [1]. [2]. Akhavan, Jacqueline, The Chemistry of Explosives, Cambridge, UK: Royal Society of Chemistry, ISBN 0-85404-640-2, (2004)
- Davis, Tenney L., The Chemistry of Powder and Explosives II, New York: John Wiley & Sons Inc., (1943)
- [3]. Luo, K.-M., Lin, S.-H., Chang, J.-G., Huang, T.-H., "Evaluations of kinetic parameters and critical runaway conditions in the reaction system of hexamine-nitric acid to produce RDX in a non-isothermal batch reactor", Journal of Loss Prevention in the Process Industries, 15 (2): pp. 119–127, doi:10.1016/S0950-4230(01)00027-4. (2002)
- [4]. Department of the Army Technical Manual TM 9-1300-214: Military Explosives. Headquarters, Department of the Army, United States
- [5]. Bachmann, W. E.; Sheehan, John C., "A New Method of Preparing the High Explosive RDX", Journal of the American Chemical Society, 71 (5): pp. 1842–1845, doi:10.1021/ja01173a092, May, (1949)
- Cooper, Paul W., Explosives Engineering, New York: Wiley-VCH, ISBN 0-471-18636-8, (1996) [6].
- Hale, George C., "The Nitration of Hexamethylenetetramine", Journal of the American Chemical Society, 47 (11): pp. 2754–2763, [7]. doi:10.1021/ja01688a017, November, (1925)
- Abisha P.J., Thomas D.G., Subramanian K.G.: Public Key Cryptosystems Based on Free Partially Commutative Monoids and [8]. Groups. INDOCRYPT, pp. 218-227, (2003)
- [9]. Diffie W., Hellman M.: New directions in cryptography. IEEE Transactions on Information Theory, Vol. IT-22, 6; pp. 644-654, (1976)
- [10]. Rivest R. L., Shamir A. and Adleman L.: A method for Obtaining digital signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2): pp. 120-126, February, (1978)
- [11]. Tomba I.: A Technique for constructing Odd-order Magic Squares using Basic Latin Squares, International Journal of Scientific and Research Publications, Vol-2, pp. 550-554, May (2012)
- [12]. Ganapathy G., Mani K.: Add-On Security Model for Public-Key Cryptosystem Based on Magic Square Implementation. Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I., WCECS, San Francisco, USA, (2009)
- Hall C., Golberg I., and Schneir B.: Reaction Attacks Against Several Public Key Cryptosystems. Proceedings of ICICS 1999, [13]. LNCS 1726, pp. 2-12. Springer-Verlag, (1999)
- [14]. Salam S. & Moirangthem S: Construction of Multiple Odd Magic Squares. Asian Journal of Mathematics & Computer Research, 29(1): pp. 42-52, May, (2022)