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I. Introduction 
Consider the following abstract fractional integral equations with respect to functions: 

𝑢(𝑡) = 𝑢0 +
1

Γ(𝛽)
∫[𝜓(𝑡) − 𝜓(𝑠)]𝛽−1  

𝑑𝜓(𝑠)

𝑑𝑠

𝑡

0

𝐴𝑢(𝑠)𝑑𝑠 +
1

Γ(𝛽)
∫[𝜓(𝑡) − 𝜓(𝑠)]𝛽−1  

𝑑𝜓(𝑠)

𝑑𝑠
𝑓(𝑠‚𝐿(𝑠)𝑢(𝑠))𝑑𝑠

𝑡

0

 

  Where 0 < 𝛽 ≤ 1‚ 𝐴 is a linear closed operator defined on  a dense set 𝑆  in a Banach space 𝐸‚  and 𝜓 is a real 

bijective functions, which has continuous derivative  
𝑑𝜓(𝑠)

𝑑𝑠
 on a finite closed interval  𝐽 = [0‚𝑇]‚ 𝜓(0) =0, 

𝜓(t) ≥ 0‚  
𝑑𝜓(𝑡)

𝑑𝑡
> 0 on J  , Γ(∙) 

Is the gamma function,  𝐿(𝑡)𝑢(𝑡) = (𝐵1(𝑡)𝑢(𝑡). … … . 𝐵𝑟(𝑡)𝑢(𝑡)), 𝐵1(𝑡). … … … . 𝐵𝑟(𝑡) are families of linear 

closed operators, defined on dense sets 𝑆1 … … . 𝑆𝑟 ⊃ 𝑆 𝑟𝑒𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑖𝑛 𝐸. 𝑓 is a given abstract function defined 

on 𝐽 × 𝐸𝑟𝑡𝑜 𝐸 . 

It is assumed that 𝐴 generates 𝛼- times integrated semi groups {𝑄(𝑡): 𝑡 ∈ 𝐽} ,0 < 𝛼 ≤ 1 such that {𝑄(𝑡): 𝑡 ∈ 𝐽} 

Is a family of linear bounded operators on 𝐸 𝑡𝑜 𝐸, with the following properties : 

(i) 𝑄(𝑡)  is strongly continuous on 𝐽. 

(ii) The operator  (𝜆𝐼 − 𝐴)−1 exists and: 

(𝜆𝐼 − 𝐴)−1 =  𝜆𝛼 ∫ 𝑒−𝜆𝑡𝑄(𝑡)𝑑𝑡
∞

0
                                                       (1.2) 

 for all  𝜆 > 𝜆0 > 0, the interval (𝜆0‚∞) is contained in the resolvent of 𝐴 , 𝑄(𝑡)ℎ ∈ 𝑆‚ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 > 0‚ ℎ ∈
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𝐸 . 

(iii) 𝑄(𝑡)ℎ =
𝑡𝛼

Γ(𝛼+1)
 ℎ + ∫ 𝐴 𝑄(𝑠) ℎ 𝑑𝑠  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  ℎ ∈ 𝐸  

𝑡

0
.         (1.3) 

In section 2, we shell study the linear case. 

In section 3, we solve the equation (1.1). 

In section 4, we give an example. 

The applications can be founded in the theory of elasticity and also in the quantum mechanics, see [1-3]. 

 

II. The linear case 
Let us study now equation (1.1), when 𝑓 depends only on 𝑡. 

In other words, let us try to solve the following equation: 

𝑢(𝑡) = 𝑢0 +
1

Γ(𝛽)
∫[𝜓(𝑡) − (𝑠)𝜓]𝛽−1  

𝑑𝜓(𝑠)

𝑑𝑠

𝑡

0

𝐴𝑢(𝑠)𝑑𝑠

+
1

Γ(𝛽)
∫[𝜓(𝑡) − (𝑠)𝜓]𝛽−1  

𝑑𝜓(𝑠)

𝑑𝑠
𝑓(𝑠)𝑑𝑠

𝑡

0

 ,              (2‚1) 

Where 𝑓 is a given abstract continuous function on 𝐽, with values in 𝐸.  Suppose that the abstract derivative 
𝑑𝑓 

𝑑𝑡
 

exists and continuous  on 𝐽 . 

We shall consider the following operators: 

Λ(t) = ∫ 𝜁𝛽(𝜃)𝑄(𝑡𝛽𝜃)𝑑𝜃

∞

0

 

Λ
∗
(𝑡) = 𝛽𝑡𝛽−1 ∫ 𝜃𝜁𝛽(𝜃)𝑄(𝑡𝛽𝜃)𝑑𝜃

∞

0

 

Where  𝜁𝛽(𝑡) is a probability density function defined on [0‚∞] by 

𝜁𝛽(𝑡) =
1

𝛽
𝑡

−1−
1
𝛽 ρ𝛽 (𝑡

−
1
𝛽)                                                            (2‚2) 

    ρ𝛽 is the one-sided stable probability density function.  

The Laplace transform of these functions are given: 

∫ 𝑒−𝑝𝑡 ρ𝛽(𝑡)𝑑𝑡 = exp (−𝑝𝛽)                                                         (2‚3)

∞

0

 

∫ 𝑒−𝑝𝑡 𝜁𝛽(𝑡) (𝑡)𝑑𝑡 = ∑
(−𝑝)𝑗

Γ(1 + 𝛽𝑗)

∞

𝑗=0

∞

0

 

We shall consider the following definitions: 

𝑑𝛼𝑓(𝑡)

𝑑𝑡𝛼
=

1

Γ(1 − 𝛼)

𝑑

𝑑𝑡
∫(𝑡 − 𝑠)−𝛼

𝑡

0

𝑓(𝑠)𝑑𝑠                                                        

=
1

Γ(1 − 𝛼)
∫(𝑡 − 𝑠)−𝛼

𝑡

0

𝑑𝑓(𝑠)

𝑑𝑠
𝑑𝑠 +

𝑡−𝛼

Γ(1 − 𝛼)
𝑓(0)                     

𝐼𝛼𝑓(𝑡) =
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠             0 < 𝛼 < 1                                   

𝑡

0
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(see [4-12]. 

Theorem 1.1.  

The solution 𝑢(𝑡) of equation (2,1) is given by 𝑢(𝑡) = 𝑣(𝜓(𝑡)) ,where  

𝑣(𝑡) =
𝑑𝛼𝛽

𝑑𝑡𝛼𝛽 [Λ(𝑡)𝑢0 + ∫ Λ∗(𝑡 − 𝜂)𝑓(𝜂)𝑑𝜂
𝑡

0
]  

 

  Proof. 

Consider the equation: 

𝑣(𝑡) = 𝑢0 +
1

Γ(𝛽)
∫(𝑡 − 𝑠)𝛽−1[𝐴𝑣(𝑠) + 𝑓(𝜓−1(𝑠))]𝑑𝑠

𝑡

0

 

Where  𝜓−1is the inverse function of 𝜓. 

Set  𝑠 = (𝜓(𝜏)), so : 

𝑣(𝑡) = 𝑢0 +
1

Γ(𝛽)
∫ (𝑡 − 𝜓(𝜏))𝛽−1[𝐴𝑣(𝜓(𝜏)) + 𝑓𝜏))]

𝑑𝜓(𝜏)

𝑑𝜏

𝜓−1(𝑡)

0
𝑑𝜏  

Thus 𝑢(𝑡) = 𝑣(𝜓(𝑡)). 

Now  let us try to find 𝑣. 

Let�̃�(𝑝) 𝑎𝑛𝑑 �̃�(𝑝) be the Laplace transforms of 𝑣(𝑡), and 𝑔(𝑡) respectively, where 𝑔(𝑡) = 𝑓(𝜓−1(𝑡))  . 

It is easy to find: 

�̃�(𝑝) = (𝑝𝛽𝐼 − 𝐴)−1[𝑝𝛽−1𝑢0 + �̃�(𝑝)]. 

Using (1,2) and (2,4), we get  

�̃�(𝑝) = ∫ 𝑝𝛼𝛽𝑒−𝑡𝑝𝛽

∞

0

𝑄(𝑡)[𝑝𝛽−1𝑢0 + �̃�(𝑝)]𝑑𝑡                        (2‚5) 

From (2,3), we can write: 

exp(−𝑡𝑝𝛽) = ∫ 𝑒−𝑝𝜃𝑡

1
𝛽

𝜌𝛽(𝜃)𝑑𝜃                                         (2‚6)

∞

0

  

Differentiating (2,6) with respect to 𝑝 , we get    

exp(−𝑡𝑝𝛽) = 𝑝1−𝛽𝛽−1 ∫ 𝜃𝑡
1
𝛽

−1
𝑒−𝑝𝜃𝑡

1
𝛽

𝜌𝛽(𝜃)𝑑𝜃

∞

0

                        (2‚7) 

From (2,5), (2,6) and (2,7) one gets: 

�̃�(𝑝) =  𝑝𝛼𝛽 ∫ 𝑒−𝑝𝑡 [∫ 𝜌𝛽(𝜃)𝑄 (
𝑡𝛽

𝜃𝛽
)

∞

0

𝑢0 𝑑𝜃 ]

∞

0

dt

+ 𝑝𝛼𝛽 ∫ 𝑒−𝑝𝑡 [∫ 𝛽𝜃−𝛽𝑡𝛽−1𝜌𝛽(𝜃)𝑄 (
𝑡𝛽

𝜃𝛽
)

∞

0

�̃�(𝑝)𝑑𝜃 ]

∞

0

dt      (2‚8) 

From (2,2) and (2,8), one gets: 
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�̃�(𝑝) =  𝑝𝛼𝛽 ∫ 𝑒−𝑝𝑡 [∫ 𝜁𝛽(𝜃)𝑄(𝑡𝛽𝜃)

∞

0

𝑢0 𝑑𝜃 ]

∞

0

dp + 𝑝𝛼𝛽 ∫ 𝑒−𝑝𝑡 [∫ 𝜃𝛽𝑡𝛽−1𝜁𝛽(𝜃)𝑄(𝑡𝛽𝜃)

∞

0

�̃�(𝑝)𝑑𝜃 ]

∞

0

d𝑝 (2‚9). 

According to properties of the Laplace transform of fractional derivatives and noticing that 𝑄(0) is the zero 

dement in 𝐸, one gets from (2,9): 

𝑣(𝑡) =
𝑑𝛼𝛽

𝑑𝑡𝛼𝛽
   [Λ(𝑡)𝑢0 + ∫ Λ∗(𝑡 − 𝜂)𝑔(𝜂)𝑑𝜂

𝑡

0

]                              (2‚10) 

Hence the required result.  

Noticing that: 

𝑑𝛼𝛽

𝑑𝑡𝛼𝛽
 𝑡𝛼𝛽 = Γ(𝛼𝛽 + 1)‚ ∫ 𝜃𝛼𝜁𝛽(𝜃)𝑑𝜃 =

Γ(𝛼 + 1)

Γ(𝛼𝛽 + 1)

∞

0

 

And using (1,3), (2,10), we get: 

𝑣(𝑡) = 𝑢0 +
𝑑𝛼𝛽

𝑑𝑡𝛼𝛽
∫ ∫ 𝜁𝛽(𝑠)𝐴𝑄(𝑠)𝑢0𝑑𝑠𝑑𝜃 +

𝑑𝛼𝛽

𝑑𝑡𝛼𝛽
∫ Λ∗(𝑡 − 𝜂)𝑔(𝜂)𝑑𝜂                                          (2‚11)

𝑡

0

𝜃𝑡𝛽

0

∞

𝑜

 

It is easy to rewrite formula (2,11) in the following form: 

𝑣(𝑡) = 𝑢0 +
𝑑𝛼𝛽

𝑑𝑡𝛼𝛽
∫ ∫ 𝜁𝛽𝐴𝑄(𝑠)𝑢0𝑑𝑠 + ∫ Λ∗(𝑡 − 𝜂)

𝑑𝛼𝛽

𝑑𝑡𝛼𝛽
𝑔0(𝜂)𝑑𝜂 +

𝑑𝛼𝛽

𝑑𝑡𝛼𝛽
∫ Λ∗(𝑡 − 𝜂)𝑔(𝜂)𝑑𝜂

𝑡

0

𝑡

0

𝜃𝑡𝛽

0

∞

0

 

Where g0(𝑠) = 𝑔(𝑠) − 𝑔(0)                                                (2‚12)         

 

Also, we can rewrite formula (2,12), in the following form 

𝑣(𝑡) = 𝑢0 +
𝑑𝛼𝛽

𝑑𝑡𝛼𝛽
∫ Λ∗(𝑡 − 𝜂)[𝑔(0) + 𝐴𝑢0]𝑑𝜂 + ∫ Λ∗(𝑡 − 𝜂)

𝑑𝛼𝛽

𝑑𝑡𝛼𝛽
𝑔0(𝜂)𝑑𝜂

𝑡

0

 𝑤ℎ𝑒𝑟𝑒 𝑢0 ∈ 𝑆.   (2‚13)

𝑡

0

  

If (0) = 𝑢(0) = 0̃ ‚ 0̃ 𝑖𝑠 𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑖𝑛 𝐸 , we can write 

𝑣(𝑡) = ∫ Λ∗

𝑡

0

(𝑡 − 𝜂)
𝑑𝛼𝛽

𝑑𝜂𝛼𝛽
𝑔(𝜂)𝑑𝜂 

In this case, we get: 

𝑢(𝑡) = 𝑣(𝜓(𝑡)) = ∫ Λ(𝜓(𝑡) − 𝜂)
𝑑𝛼𝛽

𝑑𝜂𝛼𝛽 𝑔(𝜂)𝑑𝜂
𝜓(𝑡)

0
.        (2.14) 

III. Nonlieaner integral equations  
Consider the following equation: 

𝑢(𝑡) =
1

Γ(β)
∫[𝜓(𝑡) − 𝜓(𝑠)]𝛽−1

𝑑𝜓(𝑠)

𝑑𝑠
𝐴𝑢(𝑠)𝑑𝑠 +

1

Γ(𝛽)

𝑡

0

∫[𝜓(𝑡) − 𝜓(𝑠)]𝛽−1
𝑑𝜓(𝑠)

𝑑𝑠
𝑓∗(𝑠‚𝐿(𝑠)𝑢(𝑠))𝑑𝑠

𝑡

0

  (3‚1) 

Where 𝑓∗(𝑡, 𝐿(𝑡)𝑢(𝑡)) =
1

Γ(𝛼𝛽)
∫ (𝑡 − 𝑠)𝛼𝛽−1𝑓(𝑠, 𝐿(𝑠)𝑢(𝑠)𝑑𝑠

𝑡

0
. 

It is assumed that 𝑓 is uniformly Holdre continuous in 𝑡 ∈ 𝐽 ,that is: 
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‖𝑓(𝑡2‚𝑣) − 𝑓(𝑡1‚𝑣)‖ ≤ 𝐾(𝑡1 − 𝑡2)𝑐‚ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡2  > 𝑡1‚  𝑡1‚𝑡2  ∈ 𝐽 (3‚2)  

Where 𝑣 ∈ 𝐸𝑟 𝑎𝑛𝑑 𝐾‚ 𝑐 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑠𝑛𝑡𝑠‚ 𝑐 ≤ 1, ‖∙‖ 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚 𝑖𝑛 𝐸. 

It is assumed also that the Lipchitz condition 

‖𝑓(𝑡‚𝑣∗) − 𝑓(𝑡‚𝑣)‖ ≤ 𝐾 ∑ ‖𝑣𝑖
∗ − 𝑣𝑖

𝑖=𝑟

𝑖=1

‖                                             (3‚3) 

Is satisfied for all 𝑣‚ 𝑣∗ ∈ 𝐸, (𝑣 = (𝑣1‚ ⋯ ‚𝑣𝑟)‚  𝑣∗ = (𝑣1
∗‚ ⋯ ‚𝑣𝑟

∗)), 

Where 𝐾 is a positive constant.  

About the operators 𝐵1(t)‚ ⋯ ‚𝐵𝑟(𝑡), we assumed that functions 𝐵1(𝑡)ℎ,…..,𝐵𝑟(𝑡)ℎ ,are uniformly Holder 

continuous in 𝐽 for ℎ ∈ ⋂ 𝑆𝑖
𝑟
𝑖=1 . 

It is assumed also that  

‖𝐵(𝑡2)𝑄(𝑡1)ℎ‖ ≤
𝐾

𝑡1
𝛾 ‖ℎ‖                                                                       (3‚4) 

Where 𝐾 is positive constant, 0 < 𝛾 < 1‚ 𝑡2 ∈ 𝐽‚ 𝑡1 ∈ (0‚𝑇]. 

We notice that the solution 𝑢(𝑡) of equation (8,1) can be represented  by   

  𝑢(𝑡) = 𝑣(𝜓(𝑡))                                                                                            (3‚5) 

Where  

𝑣(𝑡) =
1

Γ(𝛽)
∫(𝑡 − 𝑠)𝛽−1𝐴𝑣(𝑠)𝑑𝑠 +

1

Γ(𝛽)
∫

(t − s)𝛽−1𝑓∗ (𝜓−1(𝑠)‚𝐿(𝜓−1(𝑠))𝑣(𝜓−1(𝑠))) 𝑑𝑠 

(3‚6)

𝑡

0

𝑡

0

 

Set 𝑉(𝑡) = 𝑓(𝑡‚𝐿(𝑡)𝑢(𝑡))‚ we can write , by using formula (2,14), the following representation: 

𝑣(𝑡) = ∫ Λ∗(𝑡 − 𝜂)𝑉(𝜓−1(𝜂))𝑑𝜂

𝑡

0

 

Thus 

𝑢(𝑡) = 𝑣(𝜓(𝑡)) = ∫ Λ∗

𝑡

0

(𝜓(𝑡) − 𝜓(𝜂))
𝑑𝜓(𝜂)

𝑑𝜂
𝑉(𝜂)𝑑𝜂          (3‚7) 

Let 𝐶𝐸(𝐽) be the set of all abstract continuous functions 𝑢 on J , with values in 𝐸. 

We define a distance function 𝑑(𝑢‚𝑣) by  

𝑑(𝑢‚𝑣) = max
𝑡∈𝐽

[𝑒−𝜆𝑡‖𝑢(𝑡) − 𝑣(𝑡)‖]  

 Where 𝜆 is a positive number . It is clear that (𝐶𝐸(𝐽)‚ 𝑑(𝑢‚𝑣)) is a complete metric space. 

We shall solve equation (3.7). 

Theorem 3.1. If 𝑢1‚𝑢2 ∈  𝐶𝐸(𝐽) are two solutions of equation (3,7), then 𝑢1(𝑡)=𝑢2(𝑡), for all 𝑡 ∈ 𝐽. 

Proof. 

According to the conditions (3,3), (3,4), and gets  

||𝑉1(𝑡) − 𝑉2(𝑡)|| ≤ 
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 ≤ 𝐾 ∫ [𝜓(𝑡) − 𝜓(𝜂)]𝛿−1‖𝑉1(𝜂) − 𝑉2(𝜂)‖
𝑡

0
𝑑𝜂    

Where 𝛿 = 𝛽(1 − ᴕ)‚𝐾 is a positive constant , 𝑉𝑖(𝑡) = 𝑓(𝑡‚𝐿(𝑡)𝑢𝑖)‚ 𝑖 = 1‚2. 

According to the properties of the function 𝜓 and the mean value theorem, we can find a positive constant 𝐾 

such that  

‖𝑉1(𝑡) − 𝑉2(𝑡)‖ ≤ 𝐾 ∫(𝑡 − 𝜂)𝛿−1

𝑡

0

‖𝑉1(𝜂) − 𝑉2(𝜂)‖𝑑𝜂 

It is easy to see that  

‖𝑉1(𝑡) − 𝑉2(𝑡)‖ ≤ 𝐾𝜆1−𝛿𝑑(𝑉1. 𝑉2) ∫ 𝑒𝜆𝑠

𝑡−
1
𝜆

0

𝑑𝑠 + 𝐾𝑑(𝑉1. 𝑉2) ∫ 𝑒𝜆𝑠(𝑡 − 𝑠)𝛿−1𝑑𝑠

𝑡

0

 

Thus  

𝑑(𝑉1. 𝑉2) ≤ 𝐾 (
1

𝜆
)

𝛿

(1 +
1

𝛿
)𝑑(𝑉1. 𝑉2) 

Choosing 𝜆 sufficiently large such that ᴕ = 𝐾 (
1

𝜆
)

𝛿

(1 +
1

𝛿
) < 1‚  

We get 𝑑(𝑉1. 𝑉2) = 0. Hence the required result. 

Theorem 3.2. Equation (3,7) has a unique solution 𝑢 ∈ 𝐶𝐸(𝐽). 

Proof. Set  

Vk(t) = f(t. L(t)uk(t)) 
Thus 

𝑑(𝑉𝑘+1, 𝑉𝑘) ≤ 𝜈𝑑(𝑉𝑘, 𝑉𝑘−1) 
By induction, we get  

𝑑(𝑉𝑘+1, 𝑉𝑘) ≤ 𝜈𝑘 𝑑(𝑉1. 𝑉2)  
where 𝑉0 is zero approximation, which can be takes the zero element in 𝐸.Thus the sequence 
{𝑉𝑅(𝑡)} uniforomaly converges in the space 𝐶𝐸(𝐽) to  a continuous abstract function 𝑉(𝑡), which satisfies  

𝑉(𝑡) = 𝑓(𝑡. 𝐿(𝑡)𝑢(𝑡)) 

Hence the required result.  (see [13-22]. 

4-Example 

Let 𝑝 > 1, 0 < 𝛼 <
𝑝−1

𝑝
 . suppose that 𝐿𝑝[0.1] is the set of all measurable functions 𝑓 such that  ∫ |𝑓(𝑥)|𝑝𝑑𝑥

1

0
 

exists. 

Define an operator 𝐴 by: 

(𝐴𝑓)(𝑥) = −
𝑑(𝑓(𝑥))

𝑑𝑥
+

𝛼

𝑥
𝑓(𝑥)  

 

 The domain of definition 𝑆 of 𝐴 is the set of all absolutely continuous functions 𝑓 defined on [0.1] with 𝑓(0) =

0.
𝑑𝑓

𝑑𝑥
 ∈ 𝐿𝑝[0.1]. 

The considered operator 𝐴 generates the integrated semi group 𝑄(𝑡), where 

(𝑄(𝑡)𝑓)(𝑥) = ∫ 𝑥𝛼(𝑥 − 𝑠)−𝛼𝑓(𝑥 − 𝑠)𝐻(𝑥 − 𝑠)𝑑𝑠.  𝑥 ∈ [0.1]

𝑡

0

 

 𝐻   Is the Heaviside function. 

 Consider the following equations 

𝑢(𝑥. 𝑡) = 𝜑(𝑥) +
1

Γ(𝛽)
∫ [𝜓(𝑡) − 𝜓(𝑠)]𝛽−1 𝑑𝜓(𝑠)

𝑑𝑠
{−

𝜕𝑢(𝑥.𝑠)

𝜕𝑥
+

𝛼

𝑥
𝑢(𝑥. 𝑠)} 𝑑𝑠 +

1

Γ(𝛽)
∫ [𝜓(𝑡) −

𝑡

0

𝑡

0

𝜓(𝑠)]𝛽−1 𝑑𝜓(𝑠)

𝑑𝑠
𝑓(𝑥. 𝑠)𝑑𝑠, 

𝑢(𝑥. 𝑡) =
1

Γ(𝛽)
∫[𝜓(𝑡) − 𝜓(𝑠)]𝛽−1

𝑑𝜓(𝑠)

𝑑𝑠
{−

𝜕𝑢(𝑥. 𝑠)

𝜕𝑥
+

𝛼

𝑥
𝑢(𝑥. 𝑠)} 𝑑𝑠

𝑡

0

+
1

Γ(𝛽)
∫[𝜓(𝑡) − 𝜓(𝑠)]𝛽−1

𝑑𝜓(𝑠)

𝑑𝑠
𝑓∗(𝑥. 𝑠. 𝑢(𝑥. 𝑠))𝑑𝑠

𝑡

0

 

𝑓∗(𝑥. 𝑠. 𝑢(𝑥. 𝑡)) =
1

Γ(𝛼𝛽)
∫(𝑡 − 𝑠)𝛽−1𝑓(𝑥. 𝑠. 𝑢(𝑥. 𝑠))𝑑𝑠

𝑡

0
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These equations can be solved as in section 3. 
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