Quest Journals Journal of Research in Applied Mathematics Volume 9 ~ Issue 5 (2023) pp: 41-45 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Quest

Inverse Square Numbers.

Abdullah I. Mulla.

Received 16 May, 2023; Revised 28 May, 2023; Accepted 31 May, 2023 © *The author(s) 2023. Published with open access at www.questjournals.org*

Abstract:

Inverse Square Numbers are numbers whose square also inverts when the number inverts. If XY is an inverse square number, then $(XY)^2 = ABC$ $(YX)^2 = CBA$.

For example:

We know that 12^2 is 144, If we invert the number 12, we get 21. 21^2 is 441. If you have observed thoroughly, then you will come to know that the number 144 is also inverted = 441.Similarly, We know that 13^2 is 169, if we invert the number 13, we get 31. 31^2 is 961. If you have observed thoroughly, then you will come to know that the number 169 is also inverted = 961.

This Theory will help people in finding squares. A person can easily find the square of 31 if he know the square of 13 and similarly, he can find the square of 21 and other such numbers.

Thus,

 $(12)^2 = 144$ $(21)^2 = 441$

Isn't it interesting ? Such numbers are called Inverse Square Numbers. 10,11,12,13,20,21,22,30,31 are 2 - digit inverse square numbers.

For example :

 $(10)^{2} = 100$ $(01)^{2} = 001$ $(11)^{2} = 121$ $(12)^{2} = 124$ $(21)^{2} = 144$ $(21)^{2} = 441$ $(13)^{2} = 169$ $(31)^{2} = 961$ $(20)^{2} = 400$ $(02)^{2} = 004$ $(22)^{2} = 484$ $(22)^{2} = 484$ $(30)^{2} = 900$ $(03)^{2} = 009$

These are 2 - digit Inverse Square Numbers.

If we add these numbers with 100, then 3-digit Inverse Square Numbers are formed. 100 is also a Inverse Square Number.

For example :

$(100)^2 = 10000$ $(001)^2 = 00001$
$(110)^2 = 12100$ $(011)^2 = 00121$
$(111)^2 = 12321$ $(111)^2 = 12321$
$(112)^2 = 12544$ $(211)^2 = 44521$
$(113)^2 = 12769$ $(311)^2 = 96721$
$(120)^2 = 14400$ $(021)^2 = 00441$
$(122)^2 = 14884$ $(221)^2 = 48841$
$(130)^2 = 16900$ $(031)^2 = 00961$

These are 3-digit Inverse Square Numbers.

To obtain 4-digit Inverse Square Numbers we can just add 1000 in 2-digit Inverse Square Numbers. Here, 1000 is also a Inverse Square Number.

 $(1000)^2 = 1000000$ $(0001)^2 = 0000001$ $(1010)^2 = 1020100$ $(0101)^2 = 0010201$ $(1011)^2 = 1022121$ $(1101)^2 = 1212201$ $(1012)^2 = 1024144$ $(2101)^2 = 4414201$ $(1013)^2 = 1026169$ $(3101)^2 = 9616201$ $(1020)^2 = 1040400$ $(0201)^2 = 0040401$ $(1022)^2 = 1044484$ $(2201)^2 = 4844401$ $(1030)^2 = 1060900$ $(0301)^2 = 0090601$

You might be thinking that, there is a zero in hundredth place. Can we write any number there ?

We can write 1 or 2 in the hundredth place but when the last two digits are 13 or 30, then we are suppose to write 0 or 1 only. (at the hundredth place).

For example :

$(1100)^2 = 1210000$ $(0011)^2 = 0000121$
$(1110)^2 = 1232100$ $(0111)^2 = 0012321$
$(1111)^2 = 1234321$ $(1111)^2 = 1234321$
$(1112)^2 = 1236544$ $(2111)^2 = 4456321$
$(1113)^2 = 1238769$ $(3111)^2 = 9678321$
$(1120)^2 = 1254400$ $(0211)^2 = 0044521$
$(1122)^2 = 1258884$ $(2211)^2 = 4888521$
$(1130)^2 = 1276900$ $(0311)^2 = 0096721$
$(1200)^2 = 1440000$ $(0021)^2 = 0000441$
$(1210)^2 = 1464100$ $(0121)^2 = 0014641$
$(1211)^2 = 1466521$ $(1121)^2 = 1256641$
$(1212)^2 = 1468944$ $(2121)^2 = 4498641$
$(1220)^2 = 1488400$ $(0221)^2 = 0048841$

When the last two digits are 13 or 30 and 2 is used in hundredth place, the Inverse Square Law will fail.

 $(1213)^2 = 1471369$ $(3121)^2 = 9740641 \times$ $(1230)^2 = 1512900$ $(0321)^2 = 00103041 \times$

Also Note: When a digit rather than 1 is repeated more than twice in a number, then that number is not a Inverse Square Number.

 $(1222)^2 = 1493284$ $(2221)^2 = 4823941$ (here, this number is an exception).

To obtain 5-digit Inverse Square Numbers, we can just add 10000 in 2-digit Inverse Square Numbers.

*Corresponding Author: Abdullah I. Mulla.

Here, 10000 is also a Inverse Square Number.

For example :

 $(10000)^2 = 100000000$ $(00001)^2 = 000000001$ $(10010)^2 = 100200100$ $(01001)^2 = 001002001$ $(10011)^2 = 100220121$ $(11001)^2 = 121022001$ $(10012)^2 = 100240144$ $(21001)^2 = 441042001$ $(10013)^2 = 100260169$ $(31001)^2 = 961062001$ $(10020)^2 = 100400400$ $(02001)^2 = 004004001$ $(10022)^2 = 100440484$ $(22001)^2 = 484044001$ $(10030)^2 = 100600900$ $(03001)^2 = 009006001$

You might be thinking that, there are zeroes in hundredth and thousandth places. Can we write any numbers there ?

We can write 1 or 2 in the hundredth and thousandth places but when the last two digits are 13 or 30, then we are suppose to write 0 or 1 only. (at the hundredth and thousandth places).

For example :

 $(11111)^2 = 123454321$ $(11111)^2 = 123454321$ $(11013)^2 = 121286169$ $(31011)^2 = 961682121$ $(12120)^2 = 146894400$ $(02121)^2 = 004498641$

 $(11130)^2 = 123876900$ $(03111)^2 = 009678321$

When the last two digits are 13 or 30 and 2 is used in hundredth or thousandth place, the Inverse Square Law will fail.

 $(11213)^2 = 125731369$ $(31211)^2 = 1002216421 \times$

 $(11230)^2 = 126112900$ $(03211)^2 = 0010310521 \times$

When a digit rather than 1 is repeated more than twice in a number, then that number is not a Inverse Square Number.

 $(12212)^2 = 149132944$ $(21221)^2 = 450330841 \times$

 $(12222)^2 = 149377284$ $(22221)^2 = 493772841 \times$

1 Digit square law.

Here, we come to know about an interesting feature of the digit 1. Now, let's observe,

 $(1)^2 = 1$ $(11)^2 = 121$ $(111)^2 = 12321$ $(1111)^2 = 1234321$ $(11111)^2 = 123454321$ $(111111)^2 = 12345654321$ $(1111111)^2 = 123456787654321$ $(11111111)^2 = 123456787654321$

Inverse Square Law :

10,11,12,13,20,21,22,30,31 are 2-digit inverse square numbers. We can add these numbers with 100 to get 3-digit, 1000 to get 4-digit, 10000 to get 5-digit and similarly 10000000 to get 8-digit inverse square numbers. It means that, there are infinite inverse square numbers. We can write 1 or 2 in the places of zeroes to discover new inverse square numbers. If the last two digits of the inverse square number is 13 or 30, then we can write only 1 in place of zeroes. If any digit rather than 1 is repeated more than twice in a number, then that number is not a inverse square number. Any number made with the help of the digits = 1,2 or 1,2,0 is a inverse square number.

References :

- [1]. Maharashtra State Board, Navneet, std 10th Mathematics Digest (part 1) book chapter 3 "Arithmetic Progression".(Year of publication = 2022) by **Navneet.**
- [2]. Numerical Methods. (Year of publication = 2006) by Dr P. Kandasamy, Dr K. Thilagavathy and Dr K. Gunavathi
- [3]. Encyclopaedia of Mathematics.