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ABSTRACT: In this paper, we employ the well-known Auto-Regressive Integrated Moving Average (ARIMA) 

family of Time Series (TS) forecast algorithms reviewed in Rahardja (2020), as a convenient way to forecast 

automatically in R software, while taking into account the TS attributes in terms of parameters (p, d, q, and P, 

D, Q), using Spectral Decomposition algorithm. We execute such ARIMA-family univariate automatic 

forecasting via ‘auto.arima()’ function in R. Familiarity with Box-Jenkins methods (1976) is not required to 

forecast via such an automatic R function. For a walkthrough example, we apply such automatic R function to 

the famous monthly airline passenger data-series example. 
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I. INTRODUCTION 
In this scientific age, numerous organizations need to forecast their future (counts) of products or 

service. For instance, in various fields such as business, finance, economic, etc., they need to forecast their 

periodic (daily, weekly, monthly, quarterly, annually) request (counts). For instance, weekly mango sales, 

monthly salmon sales, yearly jewelry sales, etc. 
However, with the fast-paced world, many forecasters or researchers in various fields of study, cannot 

afford to sort out what rigorous statistical methods and computing algorithms are available [1–15] to implement 

their forecasts. Previously, such statistical methods and computing algorithms are summarized in Rahardja 

(2020) paper [16].  

As a brief recap, the Rahardja (2020) paper [16] organized the literature review into the 3-family 

category of Statistical Time-Series (TS) forecasting methods (see Table 1 in that paper, for the listings of each 

TS-method’s name and its model equation). Recall that such 3-family category TS models are the Exponential 

Smoothing Model (ESM) family [2–15], the Auto-Regressive Integrated Moving Average (ARIMA) family 

models, which are a form of Box-Jenkins model [1], and the Unobserved Component Model (UCM) family, 

which is also called the Structural Models in the TS literature [7]. The ARIMA-family can handle much more 

complex models beyond the ESM-family and are beyond the scope of what Excel [17] can compute. The UCM-
family can further handle what typically cannot be captured by ESM-family and/or ARIMA-family models but 

beyond the scope of this paper.  

Among many past research [17–18] have summarized several TS-forecast implementation options. For 

instance, implementing the ESM-family univariate forecast via Excel [17], or executing batch forecasting via 

the SAS Forecast Studio automatic/drop-down menu [18]. Now, we would like to summarize how to implement 

univariate forecast for ARIMA models via an automatic R function, ‘auto.arima()’ [19–20], from its lengthy and 

complete source, to dive-in deeper.  

In this paper, we manage the sections as follow. In Section 2 we explain the materials and methods. In 

Section 3, we present the results and discussion. Finally in Section 4, we conclude our paper. 

 

II. MATERIALS AND METHODS 
 The materials used here are TS dataset (monthly ‘Airline Passengers’) and the statistics R software 

(free-and-downloadable). The methods used here are the famous TS-forecasting methods, the ARIMA-family 

models. We implement such ARIMA forecast via an automatic R function, ‘auto.arima()’ [19–20].  
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The famous Airline Passengers dataset in R provides a 144-monthly totals of a US airline passengers, 

from 1949 to 1960 (see Figure 1). Such dataset is available online via Google search. The dataset is also 
available from an inbuilt dataset of R called ‘Air Passengers’. The source of the dataset is from Box and Jenkins 

(1976) famous book [1], “Time Series Analysis: Forecasting and Control,” page 531.   

 

 
Figure 1: The ‘Airline Passengers’ dataset in R (converted as TS object). 

 

In R, we define TS as a series of values, each associated with the timestamp also measured over regular 

intervals (daily, weekly, monthly, quarterly, yearly). The R software stores the TS data in the TS object and is 
created using the ‘ts()’ function as a base distribution. The syntax declaration of the TS function is given as 

‘ts(data, start, end, frequency)’. Here, the ‘data’ specify values in the TS, the ‘start’ specifies the first forecast 

observations in a TS value, the ‘end’ specifies the last observation value in a TS, and ‘frequency’ specifies 

periods of observations (month, quarter, annual). Before we start using the ‘ts()’ function, we need to load the 

‘forecast-Package,’ in what follows (as R-code). 

 

#--- Load the ‘forecast-Package’ ---# 

install.packages('forecast') 

library(forecast) 

 

There are multiple pathways to enter TS dataset into R. For beginners, since TS dataset are not too big, 
the easiest and most common pathway is to save them as a text file format (.txt) and then copy-paste them into 

R, as an array of data (separated by commas). In any pathway, any TS dataset read into R software still need to 

be converted to a TS object/entity, which is totally different than any other type of data [21–24]. Here, although 

the ‘Air Passengers’ dataset is available already as inbuilt R dataset, we will still briefly demonstrate the easiest 

way for beginners, to create an array and convert it to a TS object/entity, in the R-code below. 

 

#--- Example 1 (Create An Array of Data) ---# 

AirPassengers <- c(112, 118, 132, 129, 121, 135, 148, 148, 136, 119, 104, 118, 

115, 126, 141, 135, 125, 149, 170, 170, 158, 133, 114, 140, 

145, 150, 178, 163, 172, 178, 199, 199, 184, 162, 146, 166, 

171, 180, 193, 181, 183, 218, 230, 242, 209, 191, 172, 194, 

196, 196, 236, 235, 229, 243, 264, 272, 237, 211, 180, 201, 
204, 188, 235, 227, 234, 264, 302, 293, 259, 229, 203, 229, 

242, 233, 267, 269, 270, 315, 364, 347, 312, 274, 237, 278, 

284, 277, 317, 313, 318, 374, 413, 405, 355, 306, 271, 306, 

315, 301, 356, 348, 355, 422, 465, 467, 404, 347, 305, 336, 

340, 318, 362, 348, 363, 435, 491, 505, 404, 359, 310, 337, 

360, 342, 406, 396, 420, 472, 548, 559, 463, 407, 362, 405, 

417, 391, 419, 461, 472, 535, 622, 606, 508, 461, 390, 432) 

 

#--- Convert Dataset Into TS Object ---#  

# Since it is a monthly data, frequency is set to 12. 

AirPassengers.TS <- ts(AirPassengers, start=c(1949,1), end=c(1960,12),frequency=12) 
# Hence start date is January 1949 while the end date is December 1960. 

## To plot the TS object to observe any pattern as an initial check 

plot(AirPassengers.TS, ylab='Number of Passengers', main='TS plot of Airline Passengers') 
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Next, after the dataset is converted to a TS dataset, now it is ready to forecast using the automatic 

ARIMA forecasting function of R, the “auto.arima()”. We can then proceed to the next section. 
On a brief note, pretend that we did not enter/create the dataset in R, as an array. In other words, at this 

point, let’s start R-coding from zero. Since the ‘Air Passengers’ dataset is already available as inbuilt R dataset, 

we can easily load them and do several checks on the dataset. 

 

#--- Example 2 (Load An Inbuilt R Dataset) ---# 

##Load the Forecast Package 

install.packages('forecast') 

library(forecast) 

##Load the Air Passengers’ Dataset and View Its Class 

data("AirPassengers") 

class(AirPassengers) 
##Display the Dataset to see any patterns such as trends, level, seasonality 

AirPassengers 

##Check on date values to see the range of the dataset 

start(AirPassengers) 

end(AirPassengers) 

#Hence start date is January 1949 while the end date is December 1960 

##Find out any Missing Values 

sum(is.na(AirPassengers)) 

##Check the Summary of the Dataset 

summary(AirPassengers) 

##Plot the Dataset to precheck any visually detectable pattern 

plot(AirPassengers) 
 

Subsequently, we can then proceed to the next section, i.e., to forecast using the automatic ARIMA 

forecasting function of R, the “auto.arima()”.  

 

III. RESULTS AND DISCUSSION                                                                                                             
Here in this section, we provide the results and discussion of a walkthrough example (the ‘Air 

Passengers’ dataset) on univariate TS forecast computing via the R automatic ARIMA function “auto.arima()”. 

To recap briefly, the “auto.arima()” function in R uses a variation of the Hyndman-Khandakar algorithm 

(Hyndman & Khandakar, 2008) [19–20], which combines unit root tests, minimization of the Aikaike 
Information Criteria (AIC) [25–26] and the maximum likelihood estimation (MLE) [27] to obtain an ARIMA 

[28] model. Below is a simple walkthrough R-code example (continuing from the previously ran R-code): 

 

 #--- Build the ARIMA Model Using auto.arima() Function ---# 

mymodel <- auto.arima(AirPassengers) 

mymodel 

#ARIMA(211)(010)12 

##Plot the Residuals (to check any obvious patterns) 

plot.ts(mymodel$residuals) 

##Forecast the Values for the for the next targeted several years (say 3 yrs) 

myforecast <- forecast(mymodel, level=c(95), h=3*12) 
plot(myforecast) 

##Validate the Model by Selecting Lag Values via Ljung-Box test or any other ways 

Box.test(mymodel$resid, lag=5, type="Ljung-Box") 

Box.test(mymodel$resid, lag=10, type="Ljung-Box") 

Box.test(mymodel$resid, lag=15, type="Ljung-Box")  

 

As a recap, basically the Ljung-Box [29] test works as follows. The Ljung-Box is a ‘portmanteau’ test 

[30] that assesses the null hypothesis that a series of residuals exhibits no autocorrelation for a fixed number of 

lags L, against the alternative that some autocorrelation coefficient ρ(k), k = 1, ..., L is nonzero. In other words, 

the null hypothesis of Ljung-Box test is that the residuals are white noise (WN); versus the alternative 

hypothesis that the residuals are not WN. If the p-value is in-favor of the Null Hypothesis (i.e., the p-value is 

greater than the pre-specified alpha level of confidence), then stop. Meaning, your model is good (accurate) 
enough at such alpha level. Typically, alpha is pre-specified to be 5% level. Otherwise, when the Null 
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Hypothesis is rejected (i.e., in-favor of the Alternative Hypothesis), then repeat until your model is good 

enough, for example, by varying the lag, or any other methods which are beyond the scope of this paper. 
Here, in this example, there is no obvious patterns from the residuals plot and looking at the p-values 

(0.7116, 0.562, 0.7104) for lags=5, 10, 15, subsequently, the Null Hypothesis cannot be rejected and we can say 

that our model fit is adequate and hence accurate. Therefore, we can conclude from the (automatic R function) 

output, the resulting ARIMA(2,1,1)(0,1,0)12 model, with such ARIMA parameters adequately fits the data well. 

We can see such (automatically selected) model in Figure 2. 

 

 
Figure 2: A forecast model resulting from the “auto.arima()” function on the ‘Air Passengers’ dataset. 

 
In Figure 2, we have the 12-year (144-month) TS dataset plot from January 1949 to December 1960 (in black 

lines) and the subsequent 3-year (36-month) ‘Air Passengers’ volume of forecasts (in blue lines for points 

estimates and in the grey-shaded areas, corresponding to the 95% confidence intervals estimates), from January 

1961 to December 1963. As we can see, there are level (intercept), trend (slope), and seasonality, resulting from 

the automatic ARIMA parameters output: the ARIMA(2,1,1)(0,1,0)12 model, with the 12-month seasonality, 

represented by the lower-case symbol. 

 

IV. CONCLUSION 
In this paper, we have demonstrated a quick-and-easy univariate-computing option of TS-forecasting 

via R “auto.arima()” automatic function [17–21]. We conclude that such an automatic R "auto.arima()" function 

is very useful-and-convenient way to implement forecast using the famous ARIMA-family of the TS methods 

[2–15] reviewed in Rahardja [16], while taking into account TS attributes in terms of ARIMA parameters (p, d, 

q, and P, D, Q). This automatic R-pathway of TS-forecast option requires very small computing resource. 

Familiarity with the Box-Jenkins methods [1] is not required to forecast via such automatic R function.  

Using a TS (144-month) ‘Air Passengers’ dataset as a walkthrough example, we have illustrated the 

application of “auto.arima()” function in R to forecast the future 36-month period projections of ‘Air 

Passengers’ volume. Additionally, we also have demonstrated the application of Ljung-Box test [29] to test 

whether the residuals are WN.  

Therefore, this automatic “auto.arima()”function in R is highly recommendable for many users without 

any knowledge of Box-Jenkins methods [1] due to its user-friendliness, economic viability (free-downloadable 
software), and requires a very small computing resource. Such an automatic ARIMA function in R will select a 

local optimum (baseline) solution among ARIMA-family candidate models. For a starter, such baseline output 

model is adequate. 

Moreover, there are many non-automatic ways to improve a univariate-TS forecast (still in R) beyond a 

baseline forecast found by the “auto.arima()” function, which cannot be captured by ARIMA-family and/or its 

ESM-equivalent family models (as listed in Rahardja [16] paper). For instance, via the following functions 

under the forecast-Package: arima(), ets(), ts(), stl(), and/or the function ucm() under the rucm-Package; or any 

other deterministic (non-stochastic) models. However, such non-automatic forecasting ways are beyond the 

scope of this paper.  
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