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I. Introduction 
In this paper we introduce a method for solving integral equations with singular kernel of the Carlman 

type. Although the formulas suitable for expressing the solutions are known [9], the complexity of these formulas 

leads to choosing the use of numerical techniques for solving the equations in question. Moreover, the approach 

proposed here can be easily extended to the resolution of more complex singular equations of which there are no 

known formulas suitable for expressing the solutions. These equations have been extensively treated using the 

classical numerical methods for their resolution, see for example [7] and the bibliography cited therein. However, 

the approach proposed here is entirely different. We derive an infinite system to which Schimidt theory [1,4,5] is 

applicable and whose solution is the sequence of Fourier coefficients of the solution of the integral equation under 

consideration. More precisely, setting as system of orthogonal functions with respect to which the expansions of 

the known functions involved in the integral equation are considered, a system of orthogonal polynomials, the 

method described here allows the computation of the Fourier coefficients of the solution with respect to the same 

system of orthogonal polynomials. The Chebyshev polynomials are chosen, but with suitable modifications the 

method can be generalized to any other choice of orthogonal polynomials. The sequence of the Fourier coefficients 

is determined with the solution of an infinite system. Then the algorithm for the construction of the matrix of this 

system is determined. 

Finally we highlight that the use of infinite systems has already been adopted for the resolution of systems 

of ordinary differential equations (see for instance [3]). 

The remaining part of the paper is organized as follows. In Sections 2 we propose and discuss the method to solve 

Carlman integral equation and in Section 3 a particular case is considered. 

 

II. A method to solve Carlman integral equation 

Denoted by 𝛼(𝑡) and  𝑒(𝑡) two functions defined in the interval  [−
ℎ

2
,

ℎ

2
] and by 𝜆  a given real number, let us 

consider the equation 

𝛼(𝑡)𝑢(𝑡) + 𝜆{𝒯}𝑡{𝑢(𝜉)} = 𝑒(𝑡) ,     −
ℎ

2
< 𝑡 <

ℎ

2
,                                     (2.1) 

where 𝑢(𝑡) is the unknown function and 𝒯𝑡 is the operator which applied to a function 𝑓(𝑡) defined for |𝑡| ≤
ℎ

2
 , 

carries out the transformation 
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𝒯𝑡{𝑓(𝜉)} =
1

𝜋
∫

𝑓(𝜉)

𝜉 − 𝑡

ℎ/2

−ℎ/2

𝑑𝜉 ≔
1

𝜋
lim
𝜀→0

∫
𝑓(𝜉)

𝜉 − 𝑡|𝜉−𝑡|>𝜀

𝑑𝜉 , −
ℎ

2
< 𝑡 <

ℎ

2
, 

of the integral taking the Cauchy principal value. The function 𝒯{𝑓(𝜉)} represents the finite Hilbert transform of 

𝑓(𝑡). It is not restrictive to identify the interval in which (2.1) is considered with interval (−1,1). Furthermore, if 

𝑦(𝑡) = 𝑢(𝑡)√1 − 𝑡2,    𝑎(𝑡) =
𝛼(𝑡)

√1 − 𝑡2
, 

is placed, the equation (2.1) becomes 

𝑎(𝑡)𝑦(𝑡) +
𝜆

𝜋
∫

𝑦(𝜉)

𝜉 − 𝑡

1

−1

𝑑𝜉

√1 − 𝜉2
= 𝑒(𝑡) ,   − 1 < 𝑡 < 1,             (2.2) 

We will assume in the following that the functions 𝑎(𝑡) and 𝑒(𝑡) satisfy the Dini-Lipschitz condition, i.e. that the 

modulus of continuity of these functions goes to 0 faster than 𝑙𝑜𝑔−1𝑡 as 𝑡 →  0. We will find the solution of (2.2) 

satisfying the same smoothness regularity. By the Dini-Lipschitz theorem (see [2]), we will have 

𝑎(𝑡) = ∑ 𝑎𝑘𝑇𝑘(𝑡)

∞

𝑘=0

,           |𝑡| ≤ 1,    (2.3) 

𝑒(𝑡) = ∑ 𝑒𝑘𝑇𝑘(𝑡)

∞

𝑘=0

,           |𝑡| ≤ 1,    (2.4) 

𝑦(𝑡) = ∑ 𝑐𝑘𝑇𝑘(𝑡)

∞

𝑘=0

,           |𝑡| ≤ 1,    (2.5) 

 

where {𝑇𝑘(𝑡)}𝑘=0
∞  is the system of the first kind Chebyshev polynomials and the sequences 

{𝑎𝑘}𝑘=0
∞ , {𝑒𝑘}𝑘=0

∞ , {𝑐𝑘}𝑘=0
∞  represent the sequences of the Fourier coefficients of the functions 𝑎(𝑡), 𝑒(𝑡), 𝑦(𝑡), 

respectively, with respect to the previous system of orthogonal polynomials. Solving equation (2.2) is therefore 

the same to determining the elements of the sequence {𝑐𝑘}𝑘=0
∞ . 

Assuming that function y(t) in the forms (2.5) is a solution of (2.2), we have 

𝑎(𝑡) ∑ 𝑐𝑘𝑇𝑘(𝑡) +
𝜆

𝜋

∞
𝑘=0 {𝑐0 ∫

1

𝜉−𝑡

1

−1

𝑑𝜉

√1−𝜉2
} + ∑ 𝑐𝑘 ∫

𝑇𝑘(𝜉)

𝜉−𝑡

1

−1

𝑑𝜉

√1−𝜉2
∞
𝑘=1 = 𝑒(𝑡), −1 < 𝑡 < 1.    (2.6)  

 

Denoted with 𝑈𝑛(𝑡) the nth Chebyshev polynomial of the second kind, it results 

𝒯𝑡{(1 − 𝜉2)−1 2⁄ 𝑇𝑛(𝜉)} = 𝑈𝑛−1(𝑡) ,     − 1 < 𝑡 < 1, 𝑛 ≥ 1,       (2.7) 

𝒯𝑡{(1 − 𝜉2)−1 2⁄ 𝑇0(𝜉)} = 0,     − 1 < 𝑡 < 1      (2.8) 

 

(see [6]). By (2.7) and (2.8), the (2.6) becomes 

𝑎(𝑡) ∑ 𝑐𝑘𝑇𝑘(𝑡) + 𝜆 ∑ 𝑐𝑘𝑈𝑘−1

∞

𝑘=1

∞

𝑘=0

(𝑡) = 𝑒(𝑡) ,      − 1 < 𝑡 < 1, 

 

and then 

𝑎(𝑡) ∑ 𝑐𝑘𝑇𝑘(𝑡) + 𝜆𝑐1𝑇0(𝑡) + 𝜆 ∑ 𝑐𝑘+1𝑈𝑘

∞

𝑘=1

∞

𝑘=0

(𝑡) = 𝑒(𝑡) ,      − 1 < 𝑡 < 1.            (2.9) 

 

In order to represent the left side of (2.9) as a series of the first kind Chebyshev polynomials so as to be able to 

compare the coefficients of this expansion with the some ones of (2.4), we premise the following 

Lemma 2.1 Let {𝑇𝑘(𝑡)}𝑘=0
∞  and {𝑈𝑘(𝑡)}𝑘=0

∞  be the sequences of the first and second kind Chebyshev polynomials, 

respectively. Then 

𝑈2𝑛(𝑡) = 𝑇0(𝑡) + 2 ∑ 𝑇2𝑘(𝑡),           𝑛 ≥ 1,             (2.10)

𝑛

𝑘=1

 

𝑈2𝑛+1(𝑡) = 2 ∑ 𝑇2𝑘+1(𝑡),           𝑛 ≥ 0.                 (2.11)

𝑛

𝑘=0

 

 

Proof. We will prove (2.10) and (2.11) for 𝑛 = 1 and 𝑛 = 0, respectively. Then supposed true at index 𝑛, we will 

prove true for 𝑛 + 1. Recalling the definition of the first and second kind Chebyshev polynomials, proving (2.10) 

and (2.11) for 𝑛 = 1 and 𝑛 = 0 respectively, is the same to show 
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sin 3𝜗

sin 𝜗
= 1 + 2 cos 2𝜗,                 

sin 2𝜗

sin 𝜗
= 2 cos 𝜗,         

where𝜗 = arccos 𝑡, which are easily satisfied.      

From 

2𝑇𝑛(𝑡) = 𝑈𝑛(𝑡) − 𝑈𝑛−2(𝑡),                    𝑛 ≥ 2,           (2.12) 

 

 (see [8]), it follows 

𝑈2𝑛+2(𝑡) = 𝑈2𝑛(𝑡) + 2𝑇2𝑛+2(𝑡),               𝑛 ≥ 0       (2.13) 

and 

𝑈2𝑛+3(𝑡) = 𝑈2𝑛+1(𝑡) + 2𝑇2𝑛+3(𝑡),          𝑛 ≥ 0.          (2.14) 
 

Assuming (2.10) and (2.11) true at index n, (2.13) and (2.14) become 

𝑈2𝑛+2(𝑡) = 𝑇0(𝑡) + 2 ∑ 𝑇2𝑘(𝑡) + 2𝑇2𝑛+2

𝑛

𝑘=1

(𝑡), 

 

𝑈2𝑛+3(𝑡) = 2 ∑ 𝑇2𝑘+1(𝑡) + 2𝑇2𝑛+3

𝑛

𝑘=0

(𝑡), 

 

that is 

𝑈2𝑛+2(𝑡) = 𝑇0(𝑡) + 2 ∑ 𝑇2𝑘(𝑡)

𝑛+1

𝑘=1

, 

𝑈2𝑛+3(𝑡) = 2 ∑ 𝑇2𝑘+1(𝑡)

𝑛+1

𝑘=0

. 

 

 

Therefore (2.10) and (2.11) are proved with the index n+1. ■  

We are now able to determine the infinite system whose solution {𝑐𝑘}𝑘=0
∞  represents the sequence of the Fourier 

coefficients of the solution y(t) of (2.2). 

Theorem 2.1 Let {𝑎𝑘}𝑘=0
∞  and {𝑒𝑘}𝑘=0

∞   be the sequences of the Fourier coefficients of the known functions a(t) 

and e(t), respectively, in (2.3), (2.4). Then the infinite system 

𝑎0𝑐0 +
1

2
∑ 𝑎2𝑘

∞

𝑘=1

𝑐2𝑘 + ∑ (
1

2
𝑎2𝑘+1 + λ) 𝑐2𝑘+1

∞

𝑘=0

= 𝑒0,                                 (2.15) 

1

2
∑(𝑎2𝑛+1−𝑘 + 𝑎2𝑛+1+𝑘)𝑐𝑘

2𝑛

𝑘=0

+ (𝑎0 +
1

2
𝑎4𝑛+2) 𝑐2𝑛+1 + ∑ [

1

2
(𝑎2𝑘−2𝑛+1 + 𝑎2𝑘+2𝑛+1) + 2λ] 𝑐2𝑘+2

∞

𝑘=𝑛

+
1

2
∑ (𝑎2𝑘−2𝑛 + 𝑎2𝑘+2𝑛+2)𝑐2𝑘+1

∞

𝑘=𝑛+1

= 𝑒2𝑛+1,  𝑛

= 0,1, …,                                                                           (2.16) 

1

2
∑ (𝑎2𝑛−𝑘 + 𝑎2𝑛+𝑘)𝑐𝑘

2𝑛−1

𝑘=0

+ (𝑎0 +
1

2
𝑎4𝑛) 𝑐2𝑛 + ∑ [

1

2
(𝑎2𝑘−2𝑛+1 + 𝑎2𝑘+2𝑛+1) + 2λ] 𝑐2𝑘+1

∞

𝑘=𝑛

+
1

2
∑(𝑎2𝑘−2𝑛+2 + 𝑎2𝑘+2𝑛+2)𝑐2𝑘+2

∞

𝑘=𝑛

= 𝑒2𝑛+2,  𝑛 = 1,2, …,    (2.17) 

ordered taking (2.15) as the first equation and as following (2.16) and (2.17) alternately, has as solution the 

Fourier coefficients {𝑐𝑘}𝑘=0
∞  of the solution y(t) of (2.2). 

 

Proof. In view of (2.10), (2.11), from (2.9) we have 

𝑎(𝑡) ∑ 𝑐𝑘

∞

𝑘=0

𝑇𝑘(𝑡) + λ𝑐1𝑇0(𝑡) + 2λ ∑ 𝑐2𝑘+2

∞

𝑘=0

∑ 𝑇2𝑗+1(𝑡)

𝑘

𝑗=0

+ λ ∑ 𝑐2𝑘+1

∞

𝑘=1

𝑇0(𝑡) + 2λ ∑ 𝑐2𝑘+1

∞

𝑘=1

∑ 𝑇2𝑗(𝑡)

𝑘

𝑗=1

= 𝑒(𝑡),   −1 < 𝑡 < 1, 
i.e. 
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𝑎(𝑡) ∑ 𝑐𝑘𝑇𝑘(𝑡)

∞

𝑘=0

+ λ ∑ 𝑐2𝑘+1

∞

𝑘=0

𝑇0(𝑡) + 2λ {∑ ∑ 𝑐2𝑗+2

∞

𝑗=𝑘

∞

𝑘=0

𝑇2𝑘+1(𝑡) + ∑ ∑ 𝑐2𝑗+1

∞

𝑗=𝑘

∞

𝑘=1

𝑇2𝑘(𝑡)} = 𝑒(𝑡), −1 < 𝑡 < 1 

Thus, by (2.3) and (2.4), we try 

∑ 𝑎𝑛

∞

𝑛=0

𝑇𝑛(𝑡) ∑ 𝑐𝑘𝑇𝑘(𝑡)

∞

𝑘=0

+ λ ∑ 𝑐2𝑘+1

∞

𝑘=0

𝑇0(𝑡) + 2λ {∑ ∑ 𝑐2𝑗+2

∞

𝑗=𝑘

∞

𝑘=0

𝑇2𝑘+1(𝑡) + ∑ ∑ 𝑐2𝑗+1

∞

𝑗=𝑘

∞

𝑘=1

𝑇2𝑘(𝑡)}

= ∑ 𝑒𝑛𝑇𝑛(𝑡)

∞

𝑛=0

,   −1 < 𝑡 < 1, 

and making the Cauchy product 

∑ ∑ 𝑎𝑘𝑇𝑘(𝑡)𝑐𝑛−𝑘

∞

𝑘=0

∞

𝑛=0

𝑇𝑛−𝑘(𝑡) + λ ∑ 𝑐2𝑘+1

∞

𝑘=0

𝑇0(𝑡) + 2λ {∑ ∑ 𝑐2𝑘+2

∞

𝑘=𝑛

∞

𝑛=0

𝑇2𝑛+1(𝑡) + ∑ ∑ 𝑐2𝑘+1

∞

𝑘=𝑛

∞

𝑛=1

𝑇2𝑛(𝑡)} = 

∑ 𝑒𝑛𝑇𝑛(𝑡)

∞

𝑛=0

, −1 < 𝑡 < 1.                                         (2.18) 

Taking into account that 2𝑇𝑚(𝑡)𝑇𝑛(𝑡) = 𝑇𝑚+𝑛(𝑡) + 𝑇|𝑚−𝑛|(𝑡), (see [8]), from (2.18) we deduce 

1

2
∑ ∑ 𝑎𝑘𝑐𝑛−𝑘

∞

𝑘=0

∞

𝑛=0

𝑇𝑛(𝑡) +
1

2
∑ ∑ 𝑎𝑘

𝑛

𝑘=0

∞

𝑛=0

𝑐𝑛−𝑘𝑇|𝑛−2𝑘|(𝑡) + λ ∑ 𝑐2𝑘+1

∞

𝑘=0

𝑇0(𝑡)

+ 2λ {∑ ∑ 𝑐2𝑘+2

∞

𝑘=𝑛

∞

𝑛=0

𝑇2𝑛+1(𝑡) + ∑ ∑ 𝑐2𝑘+1

∞

𝑘=𝑛

∞

𝑛=1

𝑇2𝑛(𝑡)} = 

∑ 𝑒𝑛𝑇𝑛(𝑡)

∞

𝑛=0

, −1 < 𝑡 < 1.                           (2.19) 

Being 

∑ ∑ 𝑎𝑘𝑐𝑛−𝑘

𝑛

𝑘=0

∞

𝑛=0

𝑇|𝑛−2𝑘|(𝑡) = ∑ 𝑎𝑘

∞

𝑘=0

𝑐𝑘𝑇0(𝑡) + ∑ ∑(𝑎𝑘𝑐𝑘+𝑛 + 𝑐𝑘𝑎𝑘+𝑛)𝑇𝑛(𝑡)

∞

𝑘=0

∞

𝑛=1

, 

(2.19) gives 

1

2
∑ ∑ 𝑎𝑘

𝑛

𝑘=0

∞

𝑛=0

𝑐𝑛−𝑘𝑇𝑛(𝑡) +
1

2
∑ 𝑎𝑘

∞

𝑘=0

𝑐𝑘𝑇0(𝑡) +
1

2
∑ ∑(𝑎𝑘𝑐𝑛+𝑘 + 𝑐𝑘𝑎𝑘+𝑛)𝑇𝑛(𝑡)

𝑛

𝑘=0

∞

𝑛=1

+ λ ∑ 𝑐2𝑘+1

∞

𝑘=0

𝑇0(𝑡)

+ 2λ {∑ ∑ 𝑐2𝑘+2

∞

𝑘=𝑛

∞

𝑛=0

𝑇2𝑛+1(𝑡) + ∑ ∑ 𝑐2𝑘+1

∞

𝑘=𝑛

∞

𝑛=1

𝑇2𝑛} = ∑ 𝑒𝑛𝑇𝑛(𝑡)

∞

𝑛=0

,   −1 < 𝑡 < 1, 

i.e. 

{a0c0 +
1

2
∑ akck

∞

k=1

+ λ ∑ c2k+1

∞

k=0

} T0(t)

+ ∑ {
1

2
∑ ak c2n−k

2n

k=0

  +
1

2
  ∑(ak ck+2n + ck ak+2n)

∞

k=0

+ 2λ ∑ c2k+1

∞

k=n

 } T2n

∞

n=1

+   ∑ {
1

2
∑ ak c2n+1−k

2n+1

k=0

 

∞

n=0

+
1

2
  ∑(ak ck+2n+1 + ck ak+2n+1)

∞

k=0

+ 2λ ∑ c2k+2

∞

k=n

}  T2n+1

= ∑ en Tn(t)

∞

n=0

 ,   − 1 < t < 1.          (2.20) 

 

Finally, comparing the Fourier coefficients of the functions on left and right sides of (2.20), we have 

 

𝑎0𝑐0 +
1

2
∑ 𝑎𝑘𝑐𝑘

∞

𝑘=1

+ λ ∑ 𝑐2𝑘+1

∞

𝑘=0

= 𝑒0 

1

2
∑ 𝑎𝑘𝑐2𝑛+1−𝑘

2𝑛+1

𝑘=0

+
1

2
∑(𝑎𝑘𝑐𝑘+2𝑛+1 + 𝑐𝑘𝑎𝑘+2𝑛+1)

∞

𝑘=0

+ 2λ ∑ 𝑐2𝑘+2

∞

𝑘=𝑛

= 𝑒2𝑛+1,   𝑛 = 0,1, …. 
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1

2
∑ 𝑎𝑘𝑐2𝑛−𝑘

2𝑛

𝑘=0

+
1

2
∑(𝑎𝑘𝑐𝑘+2𝑛 + 𝑐𝑘𝑎𝑘+2𝑛)

∞

𝑘=0

+ 2λ ∑ 𝑐2𝑘+1

∞

𝑘=𝑛

= 𝑒2𝑛, 𝑛 = 1,2, …. 

 

and then the system (2.15)-(2.17). ■ 

The next result ensures the applicability of the Schimidt theory on infinite systems to (2.15)-(2.17). 

Theorem 2.2 Assume that a(t) satisfies the Dini-Lipschitz condition. Let {𝑏𝑛,𝑘}𝑛,𝑘=0
∞  be the matrix of the system 

(2.15)-(2.17).Then the series  

∑ 𝑏𝑛,𝑘
2

∞

𝑛=0

,   𝑘 = 0,1, … .,               (2.21) 

are convergent. 

Proof. We begin by remarking that the series (2.21) with k=0 is the series of the squares of the Fourier coefficients 

of a(t) with respect to the first kind Chebyshev polynomials. The assumption on the function a(t) ensures that the 

Parseval identity 

∑ 𝑎𝑛
2

∞

𝑛=0

= (∫ 𝑎2
1

−1

(𝑡)𝑑𝑡)

1
2

, 

 

is true. Therefore the convergence of (2.21) is proved with k=0.     

In order to prove the convergence of (2.21) for k>0, we consider the other series 

1

4
∑ (𝑎𝑛−𝑘 + 𝑎𝑛+𝑘)2

∞

𝑛=𝑘+1

,   𝑘 = 1,2, …,                 (2.22) 

 

obtained from (2.21) deleting the first k terms. Therefore the convergence of (2.21) will be ensured if we try the 

convergence of (2.22). This again follows from the Parseval identity true for the function a(t).■         

The solution of the infinite system (2.15)-(2.17) is given by 

𝑐𝑘 = lim
𝑟→∞

𝑐𝑘
(𝑟)

,   𝑘 = 0,1, …, 

 

With 

𝑐𝑘
(𝑟)

=
△𝑘

(𝑟)

△(𝑟)
, 

where 

△(r)= |

𝛼00, . . . , 𝛼𝑟0

. . . , . . . , . . .
𝛼0𝑟 . . . , 𝛼𝑟𝑟

|, 

 

 𝛼00 𝛼10 … 𝛼𝑟0 𝑒0 

 𝛼01 𝛼11 … 𝛼𝑟1 𝑒1 
 … … … … … 

△k
(r)

= … … … … … 

 𝛼0𝑟 𝛼1𝑟 … 𝛼𝑟𝑟 𝑒𝑟 
 𝑏0𝑘 𝑏1𝑘 … 𝑏𝑟𝑘 0 

 

 α𝑛𝑘 = ∑ 𝑏𝑛𝑗

∞

𝑗=0

𝑏𝑘𝑗 ,   𝑛, 𝑘 = 0,1, …. 

 

In this way the extremal solution {𝑐𝑘}𝑘=0
∞  of the system (2.15)-(2.17) is determined, i.e. the solution which 

minimizes the sum of the series ∑ 𝑐𝑘
2∞

𝑘=0 . We observe that the square integrable solution y(t) of (2.2) corresponds 

to the extremal solution, which minimizes the integral ∫ 𝑦2(𝑡)𝑑𝑡
1

−1
. 

 

 

 

 

III. A particular case 
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If the function a(t) is constant, in which case can assume a(t)=1, the infinite system (2.15)-(2.17) simplifies 

considerable. In fact, being 

 

𝑎𝑘 = {
0, 𝑘 ≠ 0,
1 𝑘 = 0,

 

 

the matrix {𝑏𝑛,𝑘}𝑛,𝑘=0
∞  of (2.15)-(2.17) turns out to be 

 

a0 λ 0 λ 0 λ … 

0 a0 2λ 0 2λ 0 … 

0 0 a0 2λ 0 2λ … 

0 0 0 a0 2λ 0 … 

0 0 0 0 a0 2λ … 

0 0 0 0 0 a0 … 

… … … … … … … 

… … … … … … … 

 

 

 

 

However, if a(t)=1, instead of the system with the previous matrix, it is suitable to solve the system indicated in 

the following 

Theorem 3.1 Assume a(t)=1 and let {𝑒𝑘}𝑘=0
∞  be the sequence of the Fourier coefficients with respect to the first 

kind Chebyshev polynomials of the known function e(t) in (2.2). 

Then the infinite system 

2𝑐0 + 2λ𝑐1 − 𝑐2 = 2𝑒0 − 𝑒2, 
 

𝑐𝑘 + 2λ𝑐𝑘+1 − 𝑐𝑘+2 = 𝑒𝑘 − 𝑒𝑘+2,  𝑘 = 1,2, …                 (3.1)     

 

has as solution the Fourier coefficients {𝑐𝑘}𝑘=0
∞  of the solution y(t) of (2.2). 

Proof. In view of (2.7) and (2.8), the equation (2.2) gives 

∑ 𝑐𝑘𝑇𝑘(𝑡)

∞

𝑘=0

+ λ ∑ 𝑐𝑘+1

∞

𝑘=0

𝑈𝑘(𝑡) = 𝑒(𝑡), −1 < 𝑡 < 1.       (3.2) 

We will determine the series expansion by the second kind Chebyshev polynomials of the functions on the left 

and right sides of (3.2). By using (2.4) and (2.12) in (3.2), we have 

𝑐0𝑈0(𝑡) +
1

2
𝑐1𝑈1(𝑡) +

1

2
∑ 𝑐𝑘[𝑈𝑘(𝑡)

∞

𝑘=2

− 𝑈𝑘−2] + λ ∑ 𝑐𝑘+1

∞

𝑘=0

𝑈𝑘(𝑡)

= 𝑒0𝑈0(𝑡) +
1

2
𝑒1𝑈1(𝑡) +

1

2
∑ 𝑒𝑘[𝑈𝑘(𝑡)

∞

𝑘=2

− 𝑈𝑘−2(𝑡)] ,   − 1 < 𝑡 < 1. 

 

Finally, ordering with respect to the second kind Chebyshev polynomials 

(𝑐0 + λ𝑐1 −
1

2
𝑐2) 𝑈0(𝑡) + ∑ (

1

2
𝑐𝑘 + λ𝑐𝑘+1 −

1

2
𝑐𝑘+2) 𝑈𝑘(𝑡)

∝

𝑘=1

= (𝑒0 −
1

2
𝑒2) 𝑈0(𝑡) +

1

2
∑(𝑒𝑘 − 𝑒𝑘+2)𝑈𝑘(𝑡)

∞

𝑘=1

, −1 < 𝑡 < 1. 

 

Making equal the Fourier coefficients with respect to Chebychev polynomials of the functions on the left and right 

sides of the previous identity, we deduce (3.1).■  

 

The system (3.1), if it is solved using the Schimidt theory, has the advantage that the matrix {α𝑛,𝑘}𝑛,𝑘=0
∞  defined 

in the previous section takes the form 
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5+4λ2 0 -1 0 0 0 … 

0 2+4λ2 0 -1 0 0 … 

-1 0 2+4λ2 0 -1 0 … 

0 -1 0 2+4λ2 0 -1 … 

0 0 -1 0 2+4λ2 0 … 

0 0 0 -1 0 2+4λ2 … 

… … … … … … … 

… … … … … … … 

 

Finally we remark that if the known functions a(t) and e(t) in (2.2) are polynomials, then the solution y(t) is itself 

a polynomial and the system (2.15)-(2.17) becomes a finite system. 
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