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ABSTRACT

We deal with integral equations with a singular kernel of Carlman type. A method to approach to the solution of
these equations is given. Infinite matrix theory is used to determine the Fourier coefficients of the solution in the
expansion in a series of orthogonal polynomials.
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I. Introduction

In this paper we introduce a method for solving integral equations with singular kernel of the Carlman
type. Although the formulas suitable for expressing the solutions are known [9], the complexity of these formulas
leads to choosing the use of numerical techniques for solving the equations in question. Moreover, the approach
proposed here can be easily extended to the resolution of more complex singular equations of which there are no
known formulas suitable for expressing the solutions. These equations have been extensively treated using the
classical numerical methods for their resolution, see for example [7] and the bibliography cited therein. However,
the approach proposed here is entirely different. We derive an infinite system to which Schimidt theory [1,4,5] is
applicable and whose solution is the sequence of Fourier coefficients of the solution of the integral equation under
consideration. More precisely, setting as system of orthogonal functions with respect to which the expansions of
the known functions involved in the integral equation are considered, a system of orthogonal polynomials, the
method described here allows the computation of the Fourier coefficients of the solution with respect to the same
system of orthogonal polynomials. The Chebyshev polynomials are chosen, but with suitable modifications the
method can be generalized to any other choice of orthogonal polynomials. The sequence of the Fourier coefficients
is determined with the solution of an infinite system. Then the algorithm for the construction of the matrix of this
system is determined.

Finally we highlight that the use of infinite systems has already been adopted for the resolution of systems
of ordinary differential equations (see for instance [3]).
The remaining part of the paper is organized as follows. In Sections 2 we propose and discuss the method to solve
Carlman integral equation and in Section 3 a particular case is considered.

I1. A method to solve Carlman integral equation
Denoted by a(t) and e(t) two functions defined in the interval [—%,%] and by A a given real number, let us
consider the equation

h h
a(@ult) + MT}H{u@)}=-e(), - 3 <t< > 2.1

where u(t) is the unknown function and 7; is the operator which applied to a function f(t) defined for |t| < g ,
carries out the transformation
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T} = p —h/zadf = ;il_r}(} f_t|>sadf, -3 <t< >

of the integral taking the Cauchy principal value. The function T{f (¢)} represents the finite Hilbert transform of
f(t). Itis not restrictive to identify the interval in which (2.1) is considered with interval (—1,1). Furthermore, if

yO = uEVI=F,  a(®) = Jg

1fh/2 & 1. f f&) h h
|

is placed, the equation (2.1) becomes

Afty@  dg

a@y® +—| 77—

T 1§ — t/1 — &2

We will assume in the following that the functions a(t) and e(t) satisfy the Dini-Lipschitz condition, i.e. that the
modulus of continuity of these functions goes to 0 faster than log~'t as t —» 0. We will find the solution of (2.2)

satisfying the same smoothness regularity. By the Dini-Lipschitz theorem (see [2]), we will have

a(t) = Z @ T (),  ltI<1 (23)

k=0

[ee]

e(t) = Z e T (t),  lt<1, (24)

k=0
<)

YO = al®, i<l @5

k=0

=e(t), —1<t<1, (2.2)

where {T,(t)}=o is the system of the first kind Chebyshev polynomials and the sequences
{ar =0, {ex}r=0, {Cr}r=o represent the sequences of the Fourier coefficients of the functions a(t), e(t), y(t),
respectively, with respect to the previous system of orthogonal polynomials. Solving equation (2.2) is therefore
the same to determining the elements of the sequence {c; }r—o-
Assuming that function y(t) in the forms (2.5) is a solution of (2.2), we have

1 1 Tp(§) d§

a(t) T T (8) + %{CO f_lla\/%} tIa ) e = e®, 1<t <1 (26)

Denoted with U, (t) the nth Chebyshev polynomial of the second kind, it results
T{A -V, =U, 1 (), —1<t<ln=1 (2.7)
T{A-&)2T()} =0, —-1<t<1 (28)

(see [6]). By (2.7) and (2.8), the (2.6) becomes

o]

a(t) ) T, )+ 1) U, (t)=e(t), —-1<t<]1,
kZokk kZlkk

and then

a(t) ) T () + AciTo(t) + 1 ) c U (B) =e(t), —-1<t<1. (2.9)
;Z:o klk 0 ; k+1Uk

In order to represent the left side of (2.9) as a series of the first kind Chebyshev polynomials so as to be able to
compare the coefficients of this expansion with the some ones of (2.4), we premise the following

Lemma 2.1 Let {T}, (t)}r=, and {U, (£)}z-, be the sequences of the first and second kind Chebyshev polynomials,
respectively. Then

Upy(6) = To() +2 ) Tpe(t), n=>1, (2.10)
Upne1(8) =2 ) Tors1(0), n = 0. (2.11)
; ;

Proof. We will prove (2.10) and (2.11) for n = 1 and n = 0, respectively. Then supposed true at index n, we will
prove true for n + 1. Recalling the definition of the first and second kind Chebyshev polynomials, proving (2.10)
and (2.11) for n = 1 and n = 0 respectively, is the same to show
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sin 39 sin 29
- =1+ 2cos 29, - = 2cosd,
sind sind
whered = arccos t, which are easily satisfied.
From
2T, (t) = U, (t) — U,_,(t), n>2, (2.12)
(see [8]), it follows
Uzns2(t) = Upp(t) + 2T2p42(2), n=0 (2.13)

and
Uznt3() = Ugni1(6) + 2Ton45(0), n=0. (2.14)

Assuming (2.10) and (2.11) true at index n, (2.13) and (2.14) become
n

Uzps2(t) = To(t) + 2 Z Toi (t) + 2T 4, (2),
k=1

Unnis(® = 2 ) Topa () + 2Tns ©),
k=0

that is

n+1
Upn+2(t) = To(t) + 2 Z Ty (1),
n+1 =1

Uzpns3(t) = 2 z Top41(0).
k=0

Therefore (2.10) and (2.11) are proved with the index n+1. m

We are now able to determine the infinite system whose solution {c, };-, represents the sequence of the Fourier
coefficients of the solution y(t) of (2.2).

Theorem 2.1 Let {a;}r-, and {e; }reo be the sequences of the Fourier coefficients of the known functions a(t)
and e(t), respectively, in (2.3), (2.4). Then the infinite system

1 1
ayCo + Ez Ak Cox + z (E Azp+1 T 7\) Cok+1 = €o, (2.15)
k=1 k=0
1 1 1
EZ(aZrHl—k + Ani141)Ck + <a0 + Ea4n+2) Con+1 T Z [E (Azk-2n+1 + Aokszner) + 2}\] Cok+2
k=0 k=n

+ 3 z (azk—2n t A2kt2n+2)C2k+1 = €2n41, T

k=n+1
- ~0,1,. (2.16)
n—
1
Z (azn—k + Aznyr)cr + <a0 += > a4n) Con + Z [ (azk-2n+1 + Qoppons1) + 27\] Cok+1
k=0 k=n

+ EZ(a2k—2n+2 + Qora2n42)Cok42 = €2na2y N =12,.., (2.17)

k=n
ordered taking (2.15) as the first equation and as following (2.16) and (2.17) alternately, has as solution the
Fourier coefficients {c; };—, of the solution y(t) of (2.2).

Proof. In VIeW of (2.10), (2.11), from (2. 9) we have

a(t) Z e T (8) + Aci To (1) + 27\2 Cok+2 Z T4 (0) + 7\2 a1 To () + 2}\2 Cak+1 Z T,;(t)

=e(t), —1<t<1
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a(t) Z Cka(t) + )\Z C2k+1 To(t) + 27\ Z Z C2j+2 T2k+1(t) + Z Z CZj+1 TZk(t) = e(t), —1 <t< 1
k=0 k=0 k=0 j=k k=1j=k

Thus, by (2.3) and (2. 4) we try

Z an T, (t) Z a Ty () + ?\Z Cakr1 To(E) + 21 Z Z Czj+2 Tors1(8) + Z Z C2jt1 T2k (8)

k=0 j=

:ZenTn(t), —1<t<1,
n=0

and makmg the Cauchy product

Z Z a T (t) g Tn—i (£) + 7\2 Car+1 To(t) + 27\{2 Z Co+2 Ton+1(t) + Z Z Cok+1 TZn(t)} =
n=0 k= o n=0k=n n=1k=n

Z e, T,(t),-1<t<1 (2.18)

n=0

Taking into account that 2T m (O T, () = m+n(t) + T,m 1 (t), (see [8]), from (2 18) we deduce

Zzza"cn kT +5 Zzak Cn—kTin—2101 () +7\Z Care+1 To(t)

n=0 k=0 nOk— =

+ 27\{2 Z Co+2 Tons1 (0) + Z Z Cok+1 TZn(t)} =
- n=0 k=n n=1k=n
z e To(D),—1 <t < 1. (2.19)
n=0
Being
o n )
Z Z Ak Cpg Tin—2i (t) = z ay ¢ To(t) + Z Z(akck+n + i) Tn (2),
n=0 k=0 k=0 n=1k=
(2.19) glves
oo n
1
. Z Z ak n i Tn(®) +5 Z Qe To (O +5 ) ) (@i + i) Ta(0) + AZ o To ()
n=0 k=0 n=1 Igo=0 o
+ 27\{2 Z Coks2 Tans1(t) z Z Cok+1 TZn} = Z enTn(0), -1<t<1,
. n=0 k=n n=0
l.e.

1 (o] [00)
{aoco + Ez akCk + 7\2 C2k+1] To ()
k=1

2n 0
{ Z A Con-k T3 Z(ak Ck42n T Ck Akszn) + 27\2 Cok+1 }TZn
k=n

0{

e, T,(0), —1<t<1l  (2.20)

MS
i~

1l
[y

n

+

NgE

1 (o]
> ag Con+1-k T > Z(ak Ck+2n+1 T Ck Akazn+1) 27\2 C2k+2} Tont1
k=0 k=0 k=

MSﬁ

n

0

Finally, comparing the Fourier coefficients of the functions on left and right sides of (2.20), we have

1 [00) (o]
aycy + EZ agc, + AZ Cok+1 = €o
2n+1 o)

1
> Z AxCon+1-k + Zz(akck+2n+1 + Crprznt) + 2}\2 Cok+2 = €2n+1s n=01,..
k=0 k=0 k=n
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2n oo oo

1 1

Ez AgCon-r t EZ(akann + CQyyan) + 27\2 Cok+1 = €2n, M = 1,2, ...
k=0 k=0 k=n

and then the system (2.15)-(2.17). m

The next result ensures the applicability of the Schimidt theory on infinite systems to (2.15)-(2.17).

Theorem 2.2 Assume that a(t) satisfies the Dini-Lipschitz condition. Let {b,, ; };; =0 be the matrix of the system
(2.15)-(2.17).Then the series

Z b2,  k=01,.., 2.21)

are convergent.
Proof. We begin by remarking that the series (2.21) with k=0 is the series of the squares of the Fourier coefficients
of a(t) with respect to the first kind Chebyshev polynomials. The assumption on the function a(t) ensures that the

Parseval identity
o 1 Z
z:a,Z1 = <f a? (t)dt) ,
— -1

n=0

is true. Therefore the convergence of (2.21) is proved with k=0.
In order to prove the convergence of (2.21) for k>0, we consider the other series

1
7 Z (@pr + ane)?, k=12, .., (2.22)

n=k+1

obtained from (2.21) deleting the first k terms. Therefore the convergence of (2.21) will be ensured if we try the
convergence of (2.22). This again follows from the Parseval identity true for the function a(t).m
The solution of the infinite system (2.15)-(2.17) is given by

ck=1imc,gr), k=0,1,..
T—00
With
)
™ _ Lk
k AT’
where
Too, » Apo
A(r)_ =y ) )
aOr y Oy
Qoo @10 -+ Aro  €o
Qo1 A1 -0 A1 &
Al((r)_
Qor 4478 ne Ay ey
box bix - b 0

e = zbni by, mk=01,..
=0

In this way the extremal solution {c,};-, of the system (2.15)-(2.17) is determined, i.e. the solution which
minimizes the sum of the series Y5, c2. We observe that the square integrable solution y(t) of (2.2) corresponds

to the extremal solution, which minimizes the integral f_ll y2(t)dt.

I11. A particular case
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If the function a(t) is constant, in which case can assume a(t)=1, the infinite system (2.15)-(2.17) simplifies
considerable. In fact, being

. _{o, k #0,
k=1 k=0,

the matrix {b,, x }; k=0 Of (2.15)-(2.17) turns out to be

| 0O 2 0 A
o 22 0 2» O
a 2. 0 2\
0 a 2» O
0 0 a 22
0 0 0 a

0

OO oo ow
OO OO QD >

However, if a(t)=1, instead of the system with the previous matrix, it is suitable to solve the system indicated in
the following
Theorem 3.1 Assume a(t)=1 and let {e, };—, be the sequence of the Fourier coefficients with respect to the first
kind Chebyshev polynomials of the known function e(t) in (2.2).
Then the infinite system

2¢y + 2Acy — ¢y, = 2e4 — ey,

Ck + 27\Ck+1 — Ck42 = €k — €k42, k = 1,2, (31)

has as solution the Fourier coefficients {c, }z=, of the solution y(t) of (2.2).
Proof. In view of (2.7) and (2.8), the equation (2.2) gives

Z . T() + AZ o U = e(0), -1 <t<1. (3.2)

k=0 k=0
We will determine the series expansion by the second kind Chebyshev polynomials of the functions on the left
and right sides of (3.2). By using (2.4) and (2.12) in (3.2), we have

1 1
Up() + 51U, (O +5 ) lUe(®) = U] +2 ) i Ui®
k=2 k=0

1 1o
= eoU(6) + 51Uy (6) + Ez e [Un () — Up_,(®)], —1<t<1.
k=2

Finally, ordering with respect to the second kind Chebyshev polynomials

1 1 1
(Co +Ac; — zcz) Up(0) + Z (E Cie + ACy1 — Eck+2) Ur(t)
k=1 o
1 1
- (eo —Eez) Uy (®) +§Z(ek e DU, —1 <t <1,
k=1

Making equal the Fourier coefficients with respect to Chebychev polynomials of the functions on the left and right
sides of the previous identity, we deduce (3.1).m

The system (3.1), if it is solved using the Schimidt theory, has the advantage that the matrix {o,, ; } x=o defined
in the previous section takes the form
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5+4)? 0 -1 0 0 0
0 2+4)\2 0 -1 0 0
-1 0 2+4)? 0 -1 0
0 -1 0 2+4)2 0 -1
0 0 -1 0 2+4)\2 0
0 0 0 -1 0 2+4)2

Finally we remark that if the known functions a(t) and e(t) in (2.2) are polynomials, then the solution y(t) is itself
a polynomial and the system (2.15)-(2.17) becomes a finite system.
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