
Quest Journals 

Journal of Research in Applied Mathematics 

Volume 9 ~ Issue 8 (2023) pp: 07-10 

ISSN (Online): 2394-0743  ISSN (Print): 2394-0735 

www.questjournals.org  

 

 

 

*Corresponding Author: Mahmoud M. El-Borai                                                                                          7 | Page 

Review Paper 

On some nonlinear fractional integro-partial differential 

equations with respect to functions 

Mahmoud M. El-Borai 

m_m_elborai@yahoo.com 

Hussein A.H. Salem 

HssDina@alexu.edu.eg 

A. Tarek S.A. 

Ahmedelsayed2890@gmail.com 

Department of Mathematics and Computer Science Faculty of Science Alexandria University, 

and Al-Khatib Hazar M. Kh. 

hazarelkhateb@yahoo.com 

Faculty of Science- Al Bath University of Syria 

Abstract 

Some nonlinear fractional integro-partial differential equations with respect to functions are considered. The 

solutions of the considered equations are given. With the help of the theory parabolic partial differential 

equations, we obtain exact solutions and the uniqueness of the solutions. 

Keywords: Cauchy problem,  Parabolic partial differential equations- Fractional integral equations with 

respect to functions- Integro partial differential equations- Nonlinear integral differential equations. 

Mathematics Subject Classifications: 34A12- 34A40- 37D60- 47D62- 43G20. 

Received 01 August, 2023; Revised 08 August, 2023; Accepted 11 August, 2023 © The author(s) 

2023. Published with open access at www.questjournals.org 

1-Introduction 

Consider the following nonlinear fractional integro-partial differential equations with respect to functions: 

𝑢(𝑥, 𝑡) =  𝜑(𝑥) +
1

Γ(𝛼)
∫ [{𝜓(𝑡) − 𝜓(𝑠)}𝛼−1 𝑑𝜓(𝑠)

𝑑𝑠
(𝐿𝑢(𝑥, 𝑠) + 𝑣(𝑥, 𝑠))]

𝑡

0
𝑑𝑠  ,         (1.1)             

Where0 <∝≤ 1, Γ(. ) is the gamma function, 𝜓 is a given bijective function, continuous and nonnegative on an 

interval 𝐽 = [0, 𝑇], 𝑇 > 0,  such that 𝜓(0) = 0 and the derivative  
𝑑𝜓(𝑡)

𝑑𝑡
 is continuous and positive on 𝐽,  

𝐿𝑢(𝑥, 𝑡) =  ∑ 𝑎𝑞(𝑥)𝐷𝑥
𝑞

𝑢(𝑥, 𝑡)𝑞=2𝑚  ,  𝑞 = (𝑞1, … , 𝑞𝑛) is a multi-index,  

𝑣(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝑤1(𝑥, 𝑡), …,𝑤𝑘(𝑥, 𝑡)),                                                                             (1.2) 

  𝑤𝑖(𝑥, 𝑡) =  ∑ 𝑏𝑞𝑖(𝑥, 𝑡)𝐷𝑥
𝑞

𝑢(𝑥, 𝑡)𝑞<2𝑚 , 

𝑓 is defined on 𝑅𝑛𝑋 𝐽 𝑋 𝑆 , where  𝑆 is a bounded and closed subset of 𝑅𝑘. 

We suppose that 𝑓 is continuous and bounded on 𝑅𝑛𝑋𝐽𝑋𝑆 and satisfies the following Lipchitz condition: 
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|𝑓(𝑥, 𝑡, 𝑤1, … , 𝑤𝑘) − 𝑓(𝑥, 𝑡, 𝑤1
∗, … , 𝑤𝑘

∗| ≤ 𝐾| ∑ |𝑤𝑖 − 𝑤𝑖
∗|𝑘

𝑖=1 ,                                  (1.3) 

 for all 𝑤𝑖 , 𝑤𝑖
∗ ∈ 𝑆, (𝑥, 𝑡) ∈ 𝑅𝑛𝑋𝐽, 𝐾 is a positive constant , (𝐾 is independent of 𝑥, 𝑡, 𝑤𝑖 , 𝑤𝑖

∗).  

The linear partial differential operator 𝐿 is supposed to be uniformly elliptic on 𝑅𝑛  , i.e. there is a positive 

number 𝑐 such that for every 𝑥 ∈ 𝑅𝑛 and for every 𝑦 ∈ 𝑅𝑛, the following inequality is satisfied: 

(−1)𝑚−1 ∑ 𝑎𝑞(𝑥)𝑦𝑞 ≥ 𝑐|𝑦|2𝑚
|𝑞|=2𝑚       ,                                                                                 (1.4) 

    ( |𝑦|2 = 𝑦1
2 + ⋯ + 𝑦𝑛

2) , the number 𝑐 is independent of 𝑥, 𝑡 𝑎𝑛𝑑 𝑦, 𝜑  is a given bounded continuous 

function on 𝑅𝑛. 

Let suppose the following conditions 

(C1):  All the coefficients 𝑎𝑞  are continuous and bounded on 𝑅𝑛,  |𝑞| = 2𝑚, 

(𝐶2):  All the coefficients 𝑎𝑞  satisfy a 𝐻𝑜 ..𝑙𝑑𝑒𝑟 condition ,namely there exists a positive constant 𝐾 and a 

constant 𝜖𝛽(0,1) such that 

|𝑎𝑞(𝑥) − 𝑎𝑞(𝑦)| ≤ 𝐾|𝑥 − 𝑦|𝛽, for all 𝑥, 𝑦 ∈ 𝑅𝑛 , 𝑡 ∈ 𝐽, 

(𝐶3): The partial derivatives 𝐷𝑥
𝑞

𝑎𝑞(𝑥) are continuous and bounded on𝑅𝑛, 

(𝐶4):  All the coefficients 𝑏𝑞𝑖(𝑥, 𝑡)  and all the partial derivatives 𝐷𝑥
𝑞

𝑏𝑞𝑖(𝑥, 𝑡) are bounded and continuous on 

𝑅𝑛𝑋𝐽, 𝑖 = 1, … , 𝑘, |𝑞| < 2𝑚. 

In section 2, we shall write some results about the Cauchy problem of parabolic partial differential equation. In 

section 3, we shall solve equation (1.1) 

2- A Cauchy problem 

Consider the following Cauchy problem: 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝐿𝑢(𝑥, 𝑡) ,                                                                                 (2.1) 

𝑢(𝑥, 0) = 𝜑(𝑥),                                                                                    (2.1) 

Where 𝝋(𝒙) is a continuous and bounded functions defined on 𝑹𝒏.  

According to the conditions (C1),…,(C3), there is a Green function 𝐺(𝑥, 𝑦, 𝑡) such that the unique solution 

of the Cauchy problem (2.1), (2.2) is given by: 

𝑢(𝑥, 𝑡) = ∫ 𝐺(𝑥, 𝑦, 𝑡)𝜑(𝑦)𝑑𝑦
𝑅𝑛 . 

The Green function 𝐺 satisfies the following properties: 

(P1):  𝐷𝑥
𝑞

𝐺  , 𝐷𝑦
𝑞

𝐺  are continuous and bounded on 𝑅𝑛𝑋𝑅𝑛𝑋𝐽 , |𝑞| ≤ 2𝑚, 

(P2): }𝐷𝑥
𝑞

𝐷𝑦
𝑝

𝐺(𝑥, 𝑦, 𝑡) ≤
𝐾𝜂(𝑥−𝑦,𝑡)

𝑡𝜈1
,  where  𝜂(𝑥, 𝑡) = exp [−𝜈2 |𝑥|2𝑚 𝑡1 2𝑚−1⁄ ]⁄ , 𝜈1=

1

2𝑚(|𝑝|+|𝑞|+𝑛)
 , 𝐾, 𝜈2 are 

positive constants and |𝑞| < 2𝑚, |𝑝| ≤ 2𝑚, 𝑝 = (𝑝1, … , 𝑝𝑛)  is a multi-index, 

see [1]. 



On some nonlinear fractional integro-partial differential equations with respect to functions 

*Corresponding Author: Mahmoud M. El-Borai                                                                                        9 | Page 

3- Uniqueness and existence of solutions 

Theorem 3.1. 

Let 𝑢  , 𝐷𝑥
𝑞

𝑢 be continuous and bounded functions on 𝑅𝑛𝑋𝐽. If 𝑢 is a solution of (1.1), then that solution is 

unique. 

Proof. According to the results in [2-4], we can write 

𝑢(𝑥, 𝑡) = ∫ ∫ 𝐺(𝑥, 𝑦, 𝜃𝜓𝛼(𝑡))𝜑(𝑦)𝑑𝑦𝑑𝜃
𝑅𝑛

∞

0

+ 

∫ ∫ ∫ Λ(𝑡, 𝑠, Θ)𝐺(𝑥, 𝑦, 𝜃(𝜓(𝑡) − 𝜓(𝑠)𝛼)𝑣(𝑦, 𝑠)𝑑𝑦𝑑𝜃𝑑𝑠
𝑅𝑛

∞

0

𝑡

0
,                               (3.1) 

Where Λ(𝑡, 𝑠, 𝜃) = 𝛼𝜃(𝜓(𝑡) − 𝜓(𝑠))
𝛼−1

𝜁𝛼(𝜃),  𝜁𝛼  is a probability density function defined on (0, ∞). 

Let 𝑢1, 𝑢2 be two solutions of equation (1.1). Using (3.1), we can write: 

𝑢1(𝑥, 𝑡) − 𝑢2(𝑥, 𝑡) = ∫ ∫ ∫ 𝛬(𝑡, 𝑠, 𝛩)𝐺(𝑥, 𝑦, 𝜃(𝜓(𝑡) − 𝜓(𝑠)𝛼)(𝑣1(𝑥, 𝑡) − 𝑣2(𝑥, 𝑡)𝑑𝑦𝑑𝜃𝑑𝑠,

𝑅𝑛

∞

0

𝑡

0

 

Where 𝑣𝑗(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡, 𝑤1𝑗(𝑥, 𝑡), … , 𝑤𝑘𝑗(𝑥, 𝑡)) , 𝑗 = 1,2, 

𝑤𝑖𝑗(𝑥, 𝑡) = ∑ 𝑏𝑞𝑖(𝑥, 𝑡)𝐷𝑥
𝑞

𝑢𝑗(𝑥, 𝑡)
𝑞<2𝑚

. 

According to the conditions of the function 𝜓 and the properties (P1), (P2) of the Green function 𝐺 and the 

condition (1.2), we can find a constant 𝐾 > 0 and a constant 𝛾 ∈ (0,1) such that 

𝑀𝑎𝑥𝑥∈𝑅𝑛|𝑢1(𝑥, 𝑡) − 𝑢2(𝑥, 𝑡)| ≤ 𝐾 ∫ (𝑡 − 𝑠)𝛾−1𝑀𝑎𝑥𝑥∈𝑅𝑛
𝑡

0
|𝑢1(𝑥, 𝑠) − 𝑢2(𝑥, 𝑠)|𝑑𝑠, 

See [2-6] 

This complete the proof of the theorem.. 

Theorem 3.2. 

Equation (1.2) has a unique solution 𝑣 such that 𝐷𝑥
𝑞

𝑣 is continuous and bounded on 𝑅𝑛𝑋𝐽, for all |𝑞| < 2𝑚. 

Proof. We shall use the method of successive approximations Let  {𝑣𝑛}  be a sequence defined by : 

𝑣𝑛+1(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, ∑ 𝑏𝑞1(𝑥, 𝑡)𝐷𝑥
𝑞

𝑢𝑛(𝑥, 𝑡), … , ∑ 𝑏𝑞𝑘(𝑥, 𝑡)𝐷𝑥
𝑞

𝑢𝑛(𝑥, 𝑡))𝑞<2𝑚𝑞<2𝑚 , 

Where: 

𝑢𝑛(𝑥, 𝑡) = ∫ ∫ 𝐺(𝑥, 𝑦, 𝜃𝜓𝛼(𝑡))𝜑(𝑦)𝑑𝑦𝑑𝜃

𝑅𝑛

+ ∫ ∫ ∫ Λ(𝑡, 𝑠, Θ)𝐺(𝑥, 𝑦, Θ(𝜓(𝑡) − 𝜓(𝑠))
𝛼

𝑣𝑛(𝑦, 𝑠)𝑑𝑦𝑑𝜃𝑑𝑠

𝑅𝑛

∞

0

𝑡

0

∞

0

 

Thus we can find a positive constant 𝐾 and a constant 𝛾 ∈ (0,1) such that: 

𝑀𝑎𝑥𝑥𝜖𝑅𝑛 |𝑣𝑛+1(𝑥, 𝑡) − 𝑣𝑛(𝑥, 𝑡)| ≤ 𝐾 ∫(𝑡 − 𝑠)𝛾𝑀𝑎𝑥𝑥∈𝑅𝑛 |𝑣𝑛(𝑥, 𝑠) − 𝑣𝑛−1(𝑥, 𝑠)𝑑𝑠

𝑡

0
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It is easy to get: 

𝑀𝑎𝑥𝑥𝜖𝑅𝑛 |𝑣𝑛+1(𝑥, 𝑡) − 𝑣𝑛(𝑥, 𝑡)| ≤
𝑀𝐾𝑛Γ𝑛(𝛾)𝑡𝑛𝛾

Γ(𝑛𝛾+1)
, 

Thus the sequence {𝑣𝑛(𝑥, 𝑡)} uniformly converges to a function 𝑣(𝑥, 𝑡) on 𝑅𝑛𝑋𝐽. It is clear that  

𝐷𝑥
𝑞

𝑣(𝑥, 𝑡) ,  𝐷𝑥
𝑞

𝑢(𝑥, 𝑡) are continuous and bounded on 𝑅𝑛𝑋𝐽 for all |𝑞| < 2𝑚.  

Hence the required result. (See [7-20]). 
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