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l. INTRODUCTION
K. Kenmotsu [1] explored a class of non-Sasakian contact Riemannian manifolds in 2020 known as
Kenmotsu manifolds. In fact, Kenmotsu demonstrated that a locally Kenmotsu manifold is a warped product of

a Kahlerian manifold with a warping function f (t) = se'and an interval | , where s is a non-zero constant,
called I x; N . A Kenmotsu manifold is an illustration of hyperbolic space.

Pokhariya and Mishra [5], on the other hand, proposed and examined a novel curvature tensor known
as the W, - curvature tensor in a Riemanian manifold. Pokhriyal [4]’s investigation into some of the traits of this

tensor of curvature in a Sasakian manifold. Matsumoto et al... have investigated the W, - curvature tensor in
P — Sasakian and Kenmostu manifolds, respectively. [7] and U.C. De note with [9].

In the current study, we look into a few curvature criteria on Kenmotsu manifolds. Kenmotsu
manifolds with W2 =0and W2 - semisymmetric manifolds are the subjects of our initial analysis. In aside from

that, we look at Kenmotsu manifolds satisfying E Cand P , Where B is the C-Bouchner curvature, C isthe
Weyl-conformal curvature and P is the tensor of the Weyl-projective curvature.

Il.  PRELIMINARIES

Let M be an almost contact metric manifold of n dimensions with structure (#,&,1m,9), where g is
the Riemannian metric fulfilling g, & is a vector field, 77 is a 1-formand ¢ is a tensor field of type (1,1).

¢ =—1+n®&, n(é)=1, nog=0, & =0, (2.
(X, dY) =g(X,Y)—n(X)n(Y), 9(X,&)=n(X), (2.2)

on M for all vector fields X, Y . If
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(V@)Y = g(X,Y)S —n(Y)¢#X, (2.3)
Vy&=X=n(X)S. (2.4)

In this case, (M, @, £, 77, ) is referred to as an almost Kenmotsu Manifold [2]. V signifies the Riemannian
connection of @ .

In Kenmotsu manifolds, the relationships listed below hold true [2]:

R(X.,Y)Z ={g(X,2)Y —g(Y,Z)X}, (2.5)
R(X,Y)& ={n(X)Y —=n(Y)X}, (2.6)
R(&, X)Y ={n(Y)X —9(X,Y)&}, (2.7)
R(&, X)& ={X —n(X)¢}, (2.8)
S(X,&) =—(n=Dn(X), (2.9)

Q& =—(n-1¢. (2.10)

In the paper Pokhariyal and Mishra [5], the curvature tensor W, is defined.

1
(n-1)
where S is a tensor of the form (0,2) in the Ricci space.

W,(X,Y,U,V)=R(X,Y,U,V)+

[g(X,U)S(Y,V)—g(Y,U)S(X,V)], (211)

Assume a Kenmotsu manifold satisfying W, = 0; in this case, (2.12) becomes true.
ROXY UV) = 200 US(X V) - (X U)SEY V)L (2.12)

With the help of X =U =& from (2.12) and (2.8), (2.9), we have

S(Y,V)=a*(n-Dg(Y,V). (2.13)
An Einstein manifold is consequently M .

Re-inserting (2.12) into (2.13) yields the following
R(X,Y,U,V)=2a’[g(Y,U)g(X,V)-g(X,U)g(Y V)] (2.14)

Corollary 2.1. Due to the fact that a Kenmotsu manifold satisfying W, = Ois a space with constant
curvature —1, it is local isometric to the hyperbolic space.

Definition 2.1. If a Kenmotsu manifold with W, -semisymmetry is satisfied
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R(X,Y)-W, =0, (2.15)

where R(X,Y)is the tensor algebra derivation for each point on the manifold for the tangent vectors X and
Y.

The condition can be easily shown to hold for the Kenmotsu manifold’s W2 -curvature tensor.
(W, (X,Y)Z) =0. (2.16)
Theorem 2.1. The Kenmotsu M manifolds that make up an Einstein manifold are W, -semisymmetric.
Proof. Since R(X,Y)-W, =0, we have

R(X, Y)W, (U,V)Z —W,(R(X,Y)U,V)Z

(2.17)
-W,(U,R(X,Y)V)Z -W,U,V)R(X,Y)Z =0.
By inserting X =& in (2.17) and taking the inner product with &, we may obtain.
9(R(.YIW,(U,V)Z,8) - gW,(R(S,Y)U.V)Z, &) (2.18)

—gW,(U,R(£,YV)Z,8) -gW,(U,V)R(£,Y)Z,&) =0.

We arrive to (2.7) in reference (2.18).

—9(Y,W,(U,V)Z) -n(W,(U,V)Z)n(Y) +g(Y,U)n(W,(£,V)Z)
=)W, (Y,V)Z) +g(Y.V)nW, (U, £)Z) - n(V)nW, U, Y)Z) (2.19)
+9(Y, Z)nW, (U ,V)&) = n(Z)nW, (U ,V)Y) = 0.

We obtain when we insert (2.16) into reference (2.19)
a’W,(U,V,Z,Y)=0. (2.20)

When [(2.11) and (2.20)] are taken into account, it is evident that

RU.V,Z,Y) :(n—l_l)[g(\/,Z)S(U,Y)—g(U,Z)S(V,Y)]. (2.21)

A contract (2.21), which we have
S(vV,2)=(@1-mg(V.2). (2.22)
In light of (2.12) and (2.23) once more, we obtain

RU.V,Z,Y)=[gWU.Z)g(V.Y)-g(V,Z)g(U.,Y)]. (2.23)

Corollary 2.2. The hyperbolic space has a constant curvature of —1 and is locally isometric to a
W, -semisymmetric Kenmotsu manifold.
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. ENGAGING KENMOTSU MANIFOLDS WITH B(X.Y)-W, =0

According to the C-Bouchner curvature tensor's definition, B [6]

B(X,Y)Z =R(X,Y)Z + !
(n+

+0(#X, Z)PY —S(FY, Z)gX + 9(#X,Z)QgY —g(4Y,Z)QeX +2S(X,Y )¢z

+29(#X,Y)Q4Z —S(X,Z)n(Y)S +S(Y, Z)n(X)E —n(X)n(Z)QY +n(Y)n(2)QX] (3.1

(p(:n3)l)[9(¢x Z)Y —g(BY , Z)¢X +29(#X,Y)gZ] - ((p 4))[g(x 2)Y

3) [9(X,2)n(Y)S =a(Y,Z2)n(X)S+n(X)n(Z)Y —n(Y)n(Z)X].

3 [S(X,Z)Y =S(Y,Z)X +9(X,Z)QY —g(Y,Z)QX

—-g(Y,Z)X]+
(n+
The reduction of X =& in (3.1) using (2.1), (2.7), (2.9) and (2.10),
B(£,Y)Z =K[7(Z)Y - g(Y,Z)¢], (32)

(n-0) (p-4_ _p 1.

where K =[1-
(n+3) (n+3) (n+3)

In a Kenmotsu manifold, it's possible that
B(X,Y)W, =0. (3.3)
This being the case,

B(X,Y)W,(U,V)Z -W,(B(X,Y)U,V)Z

_ a (3.4)
-W, (U, B(X,Y)V)Z -W,(U,V)B(X,Y)Z =0.
When we use (3.4) to enter X = & and extract the inner product, we obtain
g(B(S Y)W, (U,V)Z,£) - gW, (B(£,Y)U,V)Z,¢) (35)

—gW,(U,B(&,YIV)Z, &) - gW,(U,V)B(£,Y)Z,£) =0.

Utilizing (3.2) in (3.5), as in our example,

0=Km(Y)nW, U, V)Z) =K, g(Y,W, (U ,V)Z) - KU)W, (Y,V)Z)
+ K9 (Y, U)n(W,(S.V)Z) - Kn(V)n(W,(U,Y)Z) + Kyg (Y, V)nW, (U, 5)Z) (3.6)
—Kn(2)nW, U, V)Y) +K,g(Y,Z)nW,(U,V)3).

When we enter (2.16), (2.11) and (3.6), we get

K,g(Y,W,(U,V)Z)=0. (3.7)
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By using [(2.1), (2.8), (2.9) and (2.11)] and this provides us with U =Z =¢.

S(Y,V)=@Q-n)g(V,Y). (3.8)

As a result, the following can be said:

Theorem 3.2. Einstein manifolds are defined as M satisfying B(X.Y) ‘W, =0.

IV.  ENGAGING KENMOTSU MANIFOLDS WITH C(X.Y) ‘W, =0

According to what is written in the Weyl-conformal curvature tensor's definition [3], C

C(XY)Z =R(X,Y)Z —ﬁ[S(Y,Z)x ~S(X,Z)Y +g(Y,Z)QX

(4.1)
r
-0(X,2) QY]+ ——— Z)X —g(X,2)Y].
9, 2)QV]+ e 1Y, Z)X ~g(X.2)V]
Using (2.1), (2.7), (2.9), (2.10) and (2.11), X =& in (4.1) is reduced.
C(EY)Z =Kig(Y,2)E +Kp(Z)Y +K;S(Y, 2)E, (4.2)
where K/ =f1—20=D T g g 02D T koo
(n-2) (n-H(n-2) (n-2) (n-1)(n-2) (n-2)
Assume that a Kenmotsu manifold exists.
C(X,Y)W, =0. (4.3)
This being the case,
C(X,Y)W,(U,V)Z-W,(C(X,Y)U,V)Z (4.
~W,(U,C(X,YV)Z-W,(U,V)C(X,Y)Z =0. '
With the reference equation's X = & formula and the inner product of &, we obtain
9(C(EYW,(UV)Z,8) - gW,(C(£ YU V)Z,8) (45)

—g(W,(U,C(£,YIV)Z,8) - gW, (U ,V)C(£Y)Z,&) =0.

We obtain (2.16), (4.2) in (4.5)
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0=K, g(Y.W,(U,V)Z) +K, S(Y,W,(U.V)Z) - K, g(Y,U)n(W, (£,V)Z)
— Ky SOV, U)W, (EV)Z) - K, Y V)W, (U, £)Z) — K, S(Y V)W, (U,&)Z)  (46)
—K, 90, Z)n(W, (U ,V)E) - K, S(Y, Z)nW, (U V)E).
We get (2.16) by substituting it into (4.6).
K, g(Y W, (U,V)Z)+ K, S(Y,W, (U, V)Z) =0. 4.7)

Given U =Z =& and the references (2.1), (2.8), (2.9) and (2.11), we have

S(V,QY) =(1-n)S(V,Y). (4.8)
As evidence for
QY =(1-n)Y. (4.9)
That produces
S(Y,V) = (1-n)g(V,Y). (4.10)

As a result, the following can be said.

Theorem 4.3. An Einstein manifold isa M Kenmotsu manifold that satisfies the E(X.Y) ‘W, =0
definition.

V. ENGAGING KENMOTSU MANIFOLDS WITH P(X.Y) ‘W, =0

As stated in [8], the Weyl-projective curvature tensor E is defined.

1

P(X,Y)Z =R(X,Y)Z - oD

[S(Y,Z)X =S(X,2Z)Y]. (5.)
Reducing X =¢& in (5.1) using (2.7), (2.9) and (2.11) results in

P(EY)Z =—g(Y.2)E— T+ S(Y,Z)& (52)
(n-1)

Now look at the Kenmotsu manifold satisfying.

P(X,Y)W, =0. (5.3)

This instance demonstrates that

P(X,Y)W,(U,V)Z -W,(P(X,Y)U,V)Z

_ ” (5.4)
—W, (U, P(X,Y)V)Z =W, (U,V)P(X,Y)Z =0.
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By entering X = &into (5.4) and taking the inner product, we obtain

g(P(E,Y)W,(U,V)Z,&) - gW, (P(£,Y)U,V)Z,E)
—gW,(U,P(EYIV)Z,E) - gW, (U V)P(E,Y)Z,&) =0.

By utilizing (5.2) in (5.5), we obtain

(5.5)

0- g(Y,Wz(u,V)Z)—m—fDS(Y,Wz(U V)Z)+g(Y U)W, (£V)2)

: 1
1o S UMW EVIZ) + g VU, 2)+ s

£900, ZMWU V)2 + T SO 2N U V)2,

We get (2.1), (2.6), (2.7), (2.9), (2.11) when we place them in (5.6).

+

S(Y.V)nW,(U,5)Z)  (5.6)

1

—a’g(Y W,(U,V)Z) + oD S(Y,W,(U,V)Z) =0. (5.7)
With the aid of (2.11) and (2.8), (2.9) and U = Z = &, we have
S(V,QY) =(@A-n)S(V,Y). (5.8)
This is to say,
QY = (L—n)Y. (5.9)
Which outcome
S(Y.,V)=(@2-nmg(V,Y). (5.10)

As a result, we may state that

Theorem 5.4. Kenmotsu manifolds with Einstein manifolds satisfy the equation I3(X Y)W, =0.
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