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I. INTRODUCTION  
K. Kenmotsu [1] explored a class of non-Sasakian contact Riemannian manifolds in 2020 known as 

Kenmotsu manifolds.  In fact, Kenmotsu demonstrated that a locally Kenmotsu manifold is a warped product of 

a Kahlerian manifold with a warping function 
tsetf )( and an interval I , where s is a non-zero constant, 

called NI f .  A Kenmotsu manifold is an illustration of hyperbolic space. 

 

Pokhariya and Mishra [5], on the other hand, proposed and examined a novel curvature tensor known 

as the 2W - curvature tensor in a Riemanian manifold. Pokhriyal [4]’s investigation into some of the traits of this 

tensor of curvature in a Sasakian manifold. Matsumoto et al... have investigated the 2W - curvature tensor in 

P Sasakian and Kenmostu manifolds, respectively. [7] and U.C. De note with [9]. 

 

In the current study, we look into a few curvature criteria on Kenmotsu manifolds.  Kenmotsu 

manifolds with 02 W and 2W - semisymmetric manifolds are the subjects of our initial analysis. In aside from 

that, we look at Kenmotsu manifolds satisfying B , C and P , where B  is the C-Bouchner curvature, C  is the 

Weyl-conformal curvature and P  is the tensor of the Weyl-projective curvature. 

 

 

II. PRELIMINARIES   
 

Let M
~

 be an almost contact metric manifold of n dimensions with structure ),,,( g , where g  is 

the Riemannian metric fulfilling g ,   is a vector field,   is a 1-form and   is a tensor field of type )1,1( . 

 

                                        ,2   I  ,1)(    ,0   ,0                                           )1.2(  

 

                                  ),()(),(),( YXYXgYXg     ),(),( XXg                                     )2.2(  

 

on M for all vector fields ,X Y .   If  
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                                                               ,)(),()( XYYXgYX                                               )3.2(  

 

                                                                        .)(  XXX                                                             )4.2(  

 

In this case, ),,,,( gM  is referred to as an almost Kenmotsu Manifold [2].  signifies the Riemannian 

connection of g . 

 

In Kenmotsu manifolds, the relationships listed below hold true [2]: 

 

                                                   },),(),({),( XZYgYZXgZYXR                                               )5.2(  

 

                                                        },)()({),( XYYXYXR                                                       )6.2(  

 

                                                      },),()({),(  YXgXYYXR                                                   )7.2(  

 

                                                              },)({),(  XXXR                                                          )8.2(  

 

                                                                  ),()1(),( XnXS                                                           )9.2(  

 

                                                                         .)1(   nQ                                                                )10.2(  

 
 

In the paper Pokhariyal and Mishra [5], the curvature tensor 2W  is defined. 

 

              )],,(),(),(),([
)1(

1
),,,(),,,(2 VXSUYgVYSUXg

n
VUYXRVUYXW 


      )11.2(     

where S is a tensor of the form )2,0( in the Ricci space.       

 

Assume a Kenmotsu manifold satisfying 02 W ;  in this case, (2.12) becomes true. 

 

                          )].,(),(),(),([
)1(

1
),,,( VYSUXgVXSUYg

n
VUYXR 


                           )12.2(                

 

With the help of UX  from (2.12) and (2.8), (2.9), we have 

 

                                                  ).,()1(),( 2 VYgnVYS                                                                 )13.2(  

 

An Einstein manifold is consequently M . 

 

 Re-inserting (2.12) into (2.13) yields the following 

 

                                   )].,(),(),(),([),,,( 2 VYgUXgVXgUYgVUYXR                            )14.2(  

 

Corollary 2.1.  Due to the fact that a Kenmotsu manifold satisfying 02 W is a space with constant 

curvature 1 , it is local isometric to the hyperbolic space. 

 

Definition 2.1. If a Kenmotsu manifold with 2W -semisymmetry is satisfied 
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                                                          ,0),( 2 WYXR                                                                )15.2(  

 

where ),( YXR is the tensor algebra derivation for each point on the manifold for the tangent vectors X and 

Y . 

 

The condition can be easily shown to hold for the Kenmotsu manifold’s 2W -curvature tensor. 

 

                                                                    .0)),(( 2 ZYXW                                                         )16.2(  

 

Theorem 2.1. The Kenmotsu M manifolds that make up an Einstein manifold are 2W -semisymmetric. 

 

Proof.  Since 0),( 2 WYXR , we have 

 

                                       
.0),(),()),(,(

),),((),(),(

22

22





ZYXRVUWZVYXRUW

ZVUYXRWZVUWYXR
                                  )17.2(                                                                

 

By inserting X in (2.17) and taking the inner product with  , we may obtain. 

 

                               
.0),),(),((),)),(,((

),),),(((),),(),((

22

22









ZYRVUWgZVYRUWg

ZVUYRWgZVUWYRg
                          )18.2(    

 

We arrive to (2.7) in reference (2.18). 

 

                            

.0)),(()()),((),(

)),(()()),((),()),(()(

)),((),()()),(()),(,(

22

222

222







YVUWZVUWZYg

ZYUWVZUWVYgZVYWU

ZVWUYgYZVUWZVUWYg







            )19.2(     

 
We obtain when we insert (2.16) into reference (2.19)     

 

                                                                      .0),,,(2

2 YZVUW                                                       )20.2(    

 

When [(2.11) and (2.20)] are taken into account, it is evident that                                                

 

               )].,(),(),(),([
)1(

1
),,,( YVSZUgYUSZVg

n
YZVUR 


                                 )21.2(  

 
A contract (2.21), which we have 

 

                                                        ).,()1(),( ZVgnZVS                                                              )22.2(  

 
In light of (2.12) and (2.23) once more, we obtain 

 

                            )].,(),(),(),([),,,( YUgZVgYVgZUgYZVUR                                  )23.2(  

 

Corollary 2.2.  The hyperbolic space has a constant curvature of 1  and is locally isometric to a 

2W -semisymmetric Kenmotsu manifold. 
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III. ENGAGING KENMOTSU MANIFOLDS WITH  0).( 2 WYXB  

 

According to the C-Bouchner curvature tensor's definition, B [6] 

].)()()()()(),()(),([
)3(

]),(

),([
)3(

)4(
]),(2),(),([

)3(

)1(

])()()()()(),()(),(),(2

),(2),(),(),(),(

),(),(),(),([
)3(

1
),(),(

XZYYZXXZYgYZXg
n

p
XZYg

YZXg
n

p
ZYXgXZYgYZXg

n

np

QXZYQYZXXZYSYZXSZQYXg

ZYXSXQZYgYQZXgXZYSYZXg

QXZYgQYZXgXZYSYZXS
n

ZYXRZYXB

































        )1.3(  

The reduction of X in (3.1) using (2.1), (2.7), (2.9) and (2.10), 

                                                   ],),()([),(  ZYgYZKZYB                                            )2.3(  

 

where ]
)3()3(

)4(

)3(

)1(
1[














n

p

n

p

n

n
K . 

 
In a Kenmotsu manifold, it's possible that 

 

                                                              .0).,( 2 WYXB                                                                )3.3(  

 
This being the case, 

 

                                   

.0),(),()),(,(

),),((),(),(

22

22





ZYXBVUWZVYXBUW

ZVUYXBWZVUWYXB
                                  )4.3(  

 

When we use (3.4) to enter X and extract the inner product, we obtain 

 

                                 

.0),),(),((),)),(,((

),),),(((),),(),((

22

22









ZYBVUWgZVYBUWg

ZVUYBWgZVUWYBg
                          )5.3(    

 

Utilizing (3.2) in (3.5), as in our example, 

 

           

).),((),()),(()(

)),((),()),(()()),((),(

)),(()()),(,()),(()(0

2121

212121

212121







VUWZYgKYVUWZK

ZUWVYgKZYUWVKZVWUYgK

ZVYWUKZVUWYgKZVUWYK







            )6.3(     

 
When we enter (2.16), (2.11) and (3.6), we get 

 

                                                                .0)),(,( 21 ZVUWYgK                                                       )7.3(  
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By using [(2.1), (2.8), (2.9) and (2.11)] and this provides us with  ZU .   

 

                                                           ).,()1(),( YVgnVYS                                                             )8.3(  

 

 

As a result, the following can be said: 

Theorem 3.2.  Einstein manifolds are defined as M  satisfying .0).( 2 WYXB  

 

IV. ENGAGING KENMOTSU MANIFOLDS WITH  0).( 2 WYXC  

 

According to what is written in the Weyl-conformal curvature tensor's definition [3], C  

                            

].),(),([
)2)(1(

]),(

),(),(),([
)2(

1
),().(

YZXgXZYg
nn

r
QYZXg

QXZYgYZXSXZYS
n

ZYXRZYXC











            )1.4(  

Using (2.1), (2.7), (2.9), (2.10) and (2.11), X in (4.1) is reduced. 

                                    ,),()(),(),( 321  ZYSKYZKZYgKZYC                               )2.4(   

 

where ]
)2)(1()2(

)1(
21[1









nn

r

n

n
K , ]

)2)(1()2(

)1(
1[2









nn

r

n

n
K and ].

)2(

1
[3






n
K     

                                

Assume that a Kenmotsu manifold exists. 

                                                                       .0).,( 2 WYXC                                                        )3.4(  

 
This being the case, 

 

                                   
.0),(),()),(,(

),),((),(),(

22

22





ZYXCVUWZVYXCUW

ZVUYXCWZVUWYXC
                                   )4.4(  

 

With the reference equation's X formula and the inner product of  , we obtain 

 

                                     
.0),),(),((),)),(,((

),),),(((),),(),((

22

22









ZYCVUWgZVYCUWg

ZVUYCWgZVUWYCg
                       )5.4(    

 

We obtain (2.16), (4.2) in (4.5) 
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).),((),()),((),(

)),((),()),((),()),((),(

)),((),()),(,()),(,(0

2322

232223

222322







VUWZYSKVUWZYgK

ZUWVYSKZUWVYgKZVWUYSK

ZVWUYgKZVUWYSKZVUWYgK

























        )6.4(         

 

We get (2.16) by substituting it into (4.6). 

 

                                 .0)),(,()),(,( 2322 





ZVUWYSKZVUWYgK                                            )7.4(  

 

Given  ZU  and the references (2.1), (2.8), (2.9) and (2.11), we have 

 

                                                             ).,()1(),( YVSnQYVS                                                        )8.4(  

 

As evidence for 

                                                                          .)1( YnQY                                                             )9.4(  

That produces 

                                                                      ).,()1(),( YVgnVYS                                               )10.4(  

 
As a result, the following can be said. 

Theorem 4.3.  An Einstein manifold is a M  Kenmotsu manifold that satisfies the 0).( 2 WYXC  

definition. 

V. ENGAGING KENMOTSU MANIFOLDS WITH  0).( 2 WYXP  

 

As stated in [8], the Weyl-projective curvature tensor P is defined. 

                                            ].),(),([
)1(

1
),(),( YZXSXZYS

n
ZYXRZYXP 


                     )1.5(  

Reducing X  in (5.1) using (2.7), (2.9) and (2.11) results in 

                                                             .),(
)1(

1
),(),(  ZYS

n
ZYgZYP


                               )2.5(  

Now look at the Kenmotsu manifold satisfying. 

                                                                   .0).,( 2 WYXP                                                             )3.5(  

 

This instance demonstrates that 

                                  
.0),(),()),(,(

),),((),(),(

22

22





ZYXPVUWZVYXPUW

ZVUYXPWZVUWYXP
                                   )4.5(  
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By entering X into (5.4) and taking the inner product, we obtain 

 

                                      
.0),),(),((),)),(,((

),),),(((),),(),((
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ZYPVUWgZVYPUWg

ZVUYPWgZVUWYPg
                       )5.5(    

By utilizing (5.2) in (5.5), we obtain 

).),((),(
)1(

1
)),((),(

)),((),(
)1(

1
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VUWZYg

ZUWVYS
n

ZUWVYgZVWUYS
n

ZVWUYgZVUWYS
n
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        )6.5(  

We get (2.1), (2.6), (2.7), (2.9), (2.11) when we place them in (5.6). 

                            .0)),(,(
)1(

1
)),(,( 22

2 


 ZVUWYS
n

ZVUWYg                                            )7.5(  

With the aid of (2.11) and (2.8), (2.9) and  ZU , we have 

                                                          ).,()1(),( YVSnQYVS                                                        )8.5(  

 
This is to say, 

                                                                          .)1( YnQY                                                             )9.5(  

Which outcome 

                                                                     ).,()1(),( YVgnVYS                                               )10.5(  

 
As a result, we may state that 

 

Theorem 5.4.  Kenmotsu manifolds with Einstein manifolds satisfy the equation .0).( 2 WYXP  
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