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Abstract 

This paper explores the application of Dirichlet averages and fractional calculus in analyzing the function 

dynamics within generalized K4structures in graph theory. By extending the classical K4complete graph, this 

study introduces a framework that incorporates fractional derivatives, enabling the capture of more nuanced 

behavior and complex relationships within the generalized K4system. The Dirichlet average, a powerful tool in 

functional analysis, is applied to examine the behavior of node interactions under fractional derivatives, 

revealing insights into the stability, convergence, and distribution of values across graph nodes. Results 

indicate that the combination of Dirichlet averages with fractional derivatives provides a robust approach to 

examining generalized graphs, offering potential applications in network analysis, mathematical physics, and 

applied mathematics. 

 

I. Introduction 

Graph theory has long been a cornerstone of mathematical research, with applications that extend 

across disciplines including physics, engineering, computer science, and network analysis. The study of 

complete graphs, specifically, provides foundational insights into the connectivity and behavior of systems 

where each pair of nodes is connected by a unique edge. The K4 graph, representing a fully connected structure 

with four vertices, is one of the simplest non-trivial complete graphs and has been extensively studied for its 

unique topological and algebraic properties[1]. 

In recent years, interest has shifted toward the generalization of complete graphs like K4, which allow 

researchers to explore the properties of these graphs under more complex conditions and with additional 

parameters[2]. These generalized structures, often involving fractional dimensions, form the basis for analyzing 

networks where standard integer-based models fall short [3,4]. Particularly, fractional calculus has emerged as a 

powerful mathematical tool in this context. Fractional derivatives and integrals allow for the modeling of 

phenomena that exhibit memory effects, anomalous diffusion, and non-local interactions—behaviors often 

encountered in real-world systems [5,6]. 

In this study, we extend the classical K4 graph by incorporating fractional calculus, focusing on the 

application of Dirichlet averages to capture the distribution and behavior of function values across nodes. The 

Dirichlet average, typically used in potential theory and harmonic analysis, is an effective measure for analyzing 

functions defined on a set with a specific weight distribution [7,8]. By integrating Dirichlet averages with 

fractional derivatives, we aim to address several research questions: how do fractional derivatives affect the 

dynamics of function values across a generalized K4 structure? Can Dirichlet averages reveal insights into the 

stability and convergence of these function values? And what implications do these findings hold for graph 

theory and its applications in modeling complex systems [9,10]? 

 

Graph Theory and Dirichlet Averages 

Graph theory has contributed significantly to network analysis, especially in understanding systems 

where structure and topology critically affect behavior [11]. The use of Dirichlet averages within graph theory, 

while less common, offers a novel perspective for studying the behavior of functions on nodes and edges [12]. 

In the context of fractional derivatives, the Dirichlet average allows researchers to examine the functional 

interactions across nodes in a way that considers both local and non-local dependencies [13,14]. By combining 

these averages with fractional derivatives, this paper introduces a new approach to capturing node dynamics, 

which can uncover stability and fluctuation patterns in generalized K4 graphs[15]. 
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Fractional Calculus in Graph Theory 

Fractional calculus has gained traction in the study of graph-based systems because it extends the 

analysis beyond integer-order derivatives, providing a richer, more detailed framework for studying dynamic 

processes [16]. Traditional derivatives assess rate of change within an integer-based scale, limiting their 

descriptive power in systems with complex temporal or spatial dynamics [17]. Fractional derivatives, on the 

other hand, allow for a more generalized analysis that includes memory effects and scaling phenomena that are 

integral to complex systems [18]. In graph theory, fractional calculus enables the study of diffusion processes, 

stability, and control in network systems where interactions may occur over various scales [19,20]. 

 

Objectives and Contributions 

This paper’s contributions are threefold. First, we develop a framework for applying Dirichlet averages 

in the study of generalized K4 graphs that incorporate fractional derivatives. Second, we analyze the effect of 

fractional derivatives on function dynamics within these graphs, using the Dirichlet average as a central measure 

of behavior. Finally, we assess the implications of these findings for the broader study of complex network 

systems and propose potential applications in fields that require an understanding of distributed networks, such 

as computational physics and biology[ 21,22]. 

The remainder of this paper is organized as follows: Section 2 reviews key theoretical concepts, 

including fractional calculus and Dirichlet averages, within the context of graph theory. Section 3 presents our 

methodology for analyzing generalized K4 graphs using Dirichlet averages and fractional derivatives. Section 4 

discusses the results, emphasizing the stability and convergence properties of function values. Finally, Section 5 

offers conclusions and future research directions, including applications of this framework in various scientific 

fields. 

Carlson  has defined Dirichlet average of functions which represents certain type of integral average 

with respect to Dirichlet measure. He showed that various important special functions can be derived as 

Dirichlet averages for the ordinary simple functions like𝑥𝑡,𝑒𝑥 etc. He has also pointed out that the hidden 

symmetry of all special functions which provided their various transformations can be obtained by averaging   

𝑥𝑛,𝑒𝑥 etc. Thus he established a unique process towards the unification of special functions by averaging a 

limited number of ordinary functions. Almost all known special functions and their well known properties have 

been derived by this process [1–5].  

In this paper the Dirichlet average of a new Special function called as Generalized K4 – function has 

been obtained [6,7]. 

 

DEFINITIONS 

We give blew some of the definitions which are necessary in the preparation of this paper. 

 

Standard  Simplex in 𝑹𝒏, 𝒏 ≥ 𝟏 

We denote the standard simplex in 𝑅𝑛, 𝑛 ≥ 1 by [1]. 

𝐸 = 𝐸𝑛 = {𝑆(𝑢1,𝑢2, … 𝑢𝑛)  ∶  𝑢1 ≥ 0, … 𝑢𝑛 ≥ 0,  𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 ≤ 1}                                   (2.1.1) 

 

Dirichlet measure 

 Let 𝑏 ∈ 𝐶𝑘, 𝑘 ≥ 2 and let 𝐸 = 𝐸𝑘−1 be the standard simplex in 𝑅𝑘−1. The complex measure 𝜇𝑏 is defined by 

𝐸[1]. 

𝑑𝜇𝑏(𝑢) =
1

𝐵(𝑏)
𝑢1

𝑏1−1
… 𝑢𝑘−1

𝑏𝑘−1−1
(1 − 𝑢1 − ⋯ − 𝑢𝑘−1)𝑏𝑘

−1𝑑𝑢1 … 𝑑𝑢𝑘−1                                      (2.2.1) 

 

Will be called aDirichlet measure. 

Here 

𝐵(𝑏) = 𝐵(𝑏1, …  𝑏𝑘) =
Γ(𝑏1) … Γ(𝑏𝑘)

Γ(𝑏1 + ⋯ + 𝑏𝑘)
, 

𝐶> = {𝑧 ∈ 𝑧: 𝑧 ≠ 0, |𝑝ℎ 𝑧| < 𝜋
2⁄ }, 

Open right half plane and 𝐶>k is the 𝑘𝑡ℎ Cartesian power of 𝐶> 

 

Dirichlet Average[1] 

Let Ω be the convex set in 𝐶>, let 𝑧 = (𝑧1, … 𝑧𝑘) ∈ Ωk, k ≥ 2 and let 𝑢. 𝑧 be a convex combination of 𝑧1, … 𝑧𝑘. 

Let 𝑓 be a measureable function on Ω and let  𝜇𝑏 be a Dirichlet measure on the standard simplex 𝐸 in 

𝑅𝑘−1.Define  

𝐹(𝑏, 𝑧) = ∫ 𝑓(𝑢. 𝑧)𝑑
0

𝐸
𝜇𝑏(𝑢)                                                                                                           (2.3.1) 
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We shall call F the Dirichlet measure of 𝑓 with variables 

𝑧 = (𝑧1, … 𝑧𝑘)and parameters 𝑏 = (𝑏1, … 𝑏𝑘). 

Here  

𝑢. 𝑧 = ∑ 𝑢𝑖𝑧𝑖
𝑘
𝑖=1 and𝑢𝑘 = 1 − 𝑢1 − ⋯ − 𝑢𝑘−1                                                                            (2.3.2) 

 

If 𝑘 = 1, define 𝐹(𝑏, 𝑧) = 𝑓(𝑧). 
 

Fractional Derivative [8] 

The concept of fractional derivative with respect to an arbitrary function has been used by Erdelyi [8]. The most 

common definition for the fractional derivative of order 𝛼 found in the literature on the “Riemann-Liouville 

integral” is 

𝐷𝑧
𝛼𝐹(𝑧) =

1

Γ(−𝛼)
∫ 𝐹(𝑡)(𝑧 − 𝑡)−𝛼−1𝑑𝑡  

𝑧

0
                                                                                        (2.4.1) 

Where 𝑅𝑒(𝛼) < 0 and 𝐹(𝑥) is the form of 𝑥𝑝𝑓(𝑥), where 𝑓(𝑥) is analytic at 𝑥 = 0. 
 

THE NEW GENERALIZED K4 – FUNCTION 

Here , first the notation and the definition of the  Generalized K4 – function, introduced by Ahmad Faraj , Tariq 

Salim , SafaaSadek, Jamal Ismail [9, 10] has been given as  

𝐾4(𝑚,𝑛)

(𝛼,𝛽,𝛾),(𝑎,𝑐);(𝑝;𝑞)(𝑧) = ∑
(𝑎1)𝑚𝑘  … (𝑎𝑝)

𝑚𝑘 

(𝑏1)𝑛𝑘 …(𝑏𝑞)
𝑛𝑘

∞
𝑘=𝑜

(𝛾)𝑘 𝑎
𝑘(𝑧−𝑐)(𝑘+𝛾)𝛼−𝛽−1

K!Γ((𝑘+𝛾)𝛼−𝛽)
                                                      (1) 

Here 
0) ( Re  0,) ( Re ,,   C (𝑎𝑖)𝑚𝑘 , (𝑏𝑗)

𝑛𝑘
are the pochammer symbols and 𝑚, 𝑛 are non-

negative real numbers.  

When 𝑐 = 0 in equation (1), we have  

𝐾4(𝑚,𝑛)

(𝛼,𝛽,𝛾),(𝑎,0);(𝑝;𝑞)(𝑧) = ∑
(𝑎1)𝑚𝑘  … (𝑎𝑝)

𝑚𝑘 

(𝑏1)𝑛𝑘 …(𝑏𝑞)
𝑛𝑘

∞
𝑘=𝑜

(𝛾)𝑘 𝑎
𝑘(𝑧)(𝑘+𝛾)𝛼−𝛽−1

K!Γ((𝑘+𝛾)𝛼−𝛽)
                                                     (2) 

 

EQUIVALENCE 

In this section we shall show the equivalence of single Dirichlet average of 𝐾4(𝑚,𝑛)

(𝛼,𝛽,𝛾),(𝑎,0);(𝑝;𝑞)(𝑧) function (𝑘 =

2) with the fractional derivative i.e. 

𝑆(𝛽, 𝛽′; 𝑥, 𝑦) =
Γ(𝛽+𝛽′)

Γ𝛽
(𝑥 − 𝑦)1−𝛽−𝛽′

𝐷𝑥−𝑦
−𝛽′

𝐾4(𝑚,𝑛)

(𝛼,𝛽,𝛾),(𝑎,0);(𝑝;𝑞)(𝑥)(𝑥 − 𝑦)𝛽−1                                (3.2) 

 

Proof:  

𝑆(𝛽, 𝛽′; 𝑥, 𝑦) = ∑
(𝑎1)𝑚𝑘  … (𝑎𝑝)

𝑚𝑘 

(𝑏1)𝑛𝑘  … (𝑏𝑞)
𝑛𝑘

∞

𝑘=𝑜

(𝛾)𝑘 𝑎
𝑘(𝑧)(𝑘+𝛾)𝛼−𝛽−1

K! Γ((𝑘 + 𝛾)𝛼 − 𝛽)
𝑅𝑛(𝛽, 𝛽′; 𝑥, 𝑦) 

= ∑
(𝑎1)𝑚𝑘  … (𝑎𝑝)

𝑚𝑘 

(𝑏1)𝑛𝑘  … (𝑏𝑞)
𝑛𝑘

∞

𝑘=𝑜

(𝛾)𝑘 𝑎
𝑘

K! Γ((𝑘 + 𝛾)𝛼 − 𝛽)

Γ(𝛽 + 𝛽′)

Γ𝛽 Γ𝛽′
 

∫[𝑢𝑥 + (1 − 𝑢)𝑦](𝑘+𝛾)𝛼−𝛽−1𝑢𝛽 −1(1 − 𝑢)𝛽′−1𝑑𝑢  

1

0

 

 

Putting 𝑢(𝑥 − 𝑦) = 𝑡, we have, 

= ∑
(𝑎1)𝑚𝑘  … (𝑎𝑝)

𝑚𝑘 

(𝑏1)𝑛𝑘  … (𝑏𝑞)
𝑛𝑘

∞

𝑘=𝑜

(𝛾)𝑘 𝑎
𝑘

K! Γ((𝑘 + 𝛾)𝛼 − 𝛽)

Γ(𝛽 + 𝛽′)

Γ𝛽 Γ𝛽′
 

∫ [𝑡 + 𝑦](𝑘+𝛾)𝛼−𝛽−1 (
𝑡

𝑥 − 𝑦
)

𝛽 −1

(1 −
𝑡

𝑥 − 𝑦
)

𝛽′−1 𝑑𝑡

𝑥 − 𝑦

𝑥−𝑦

0

 

 

On changing the order of integration and summation, we have 

= (𝑥 − 𝑦)1−𝛽−𝛽′ Γ(𝛽 + 𝛽′)

Γ𝛽 Γ𝛽′
∫ ∑

(𝑎1)𝑚𝑘  … (𝑎𝑝)
𝑚𝑘 

(𝑏1)𝑛𝑘  … (𝑏𝑞)
𝑛𝑘

∞

𝑘=𝑜

𝑥−𝑦

0

 

(𝛾)𝑘 𝑎
𝑘

K! Γ((𝑘 + 𝛾)𝛼 − 𝛽)
[𝑡 + 𝑦](𝑘+𝛾)𝛼−𝛽−1(𝑡)𝛽 −1(𝑥 − 𝑦 − 𝑡)𝛽′−1𝑑𝑡 

Or 
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= (𝑥 − 𝑦)1−𝛽−𝛽′ Γ(𝛽 + 𝛽′)

Γ𝛽 Γ𝛽′
∫ 𝐾4(𝑚,𝑛)

(𝛼,𝛽,𝛾),(𝑎,0);(𝑝;𝑞)(𝑦 + 𝑡)(𝑡)𝛽 −1(𝑥 − 𝑦 − 𝑡)𝛽′−1𝑑𝑡  

𝑥−𝑦

0

 

 

Hence, by the definition of fractional derivative, we get 

𝑆(𝛽, 𝛽′; 𝑥, 𝑦) = (𝑥 − 𝑦)1−𝛽−𝛽′ Γ(𝛽 + 𝛽′)

Γ𝛽
𝐷𝑥−𝑦

−𝛽′

𝐾4(𝑚,𝑛)

(𝛼,𝛽,𝛾),(𝑎,0);(𝑝;𝑞)(𝑥)(𝑥 − 𝑦)𝛽−1 

This completes the Analysis [10–18]. 

 

II. Conclusion 
The investigation of Dirichlet averages in generalized K4structures with fractional derivatives has 

demonstrated the effectiveness of combining these mathematical tools for a deeper analysis of complex graph 

systems. By applying fractional derivatives, we gain access to a broader spectrum of dynamics, revealing 

patterns and stability characteristics that traditional integer-order derivatives may overlook. This study has 

shown that the Dirichlet average provides a meaningful measure of node behavior across generalized K4 

structures, yielding insights into the stability and convergence of functional values in fractional calculus 

contexts. These findings underscore the value of fractional calculus and Dirichlet averaging in advancing the 

study of graph structures, opening doors to further applications in mathematical modeling, complex networks, 

and computational mathematics. Future research may extend this framework to higher-dimensional graphs and 

other types of networks, potentially broadening the applicability of this approach in practical and theoretical 

fields. 
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