Quest Journals Journal of Research in Applied Mathematics Volume 9 ~ Issue 9 (2023) pp: 11-18 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Review Paper

Quotient-4 Cordial Labeling Of Generalized Jahangir Graphs

¹S.Kavitha, ²P.Sumathi

¹Department of mathematics, St.Thomas College of Arts and Science, Koyambedu, Chennai-600107, India.

²Department of mathematics, C.Kandaswami Naidu College for Men, Annanagar, Chennai-600102, India. Corresponding Author: S. Kavitha

ABSTRACT: Let G (V, E) be a simple graph of order p and size q. Let $\varphi : V(G) \to Z_5 - \{0\}$ be a function. For each edge set E (G) define the labeling φ^* : E (G) $\to Z_4$ by $\varphi^*(uv) = \left[\frac{\varphi(u)}{\varphi(v)}\right] \pmod{4}$ where $\varphi(u) \ge \varphi(v)$. The function φ is called quotient-4 cordial labeling of G if $|v_{\varphi}(i) - v_{\varphi}(j)| \le l$, $1 \le i, j \le 4, i \ne j$ where $v_{\varphi}(x)$ denote the number of vertices labeled with x and $|e_{\varphi}(k) - e_{\varphi}(l)| \le l$, $0 \le k, l \le 3, k \ne l$, where $e_{\varphi}(y)$ denote the number of edges labeled with y. Here the Jahangir graph $J_{n,m}$ proved to be quotient-4 cordial graphs. **KEYWORDS:** Jahangir Graph, Quotient-4 Cordial Labeling, Quotient-4 Cordial Graph.

Received 04 Sep., 2023; Revised 14 Sep., 2023; Accepted 16 Sep., 2023 © *The author(s) 2023. Published with open access at www.questjournals.org*

I. INTRODUCTION

Here the graphs considered are finite, simple, undirected and non-trivial. Graph theory has a good development in the graph labeling and has a broad range of applications. Refer Gallian [6] for more information. The cordial labeling concept was first introduced by Cahit [3]. H- andH2–cordial labeling was introduced by Freeda S and Chellathurai R.S [4]. Mean Cordial Labeling was introduced by Albert William, Indira Rajasingh, and S Roy [1]. A graph G is said to be quotient-4 cordial graph if it receives quotient-4 cordial labeling.Let $v_{\phi}(i)$ denotes the number of vertices labeled with i and $e_{\phi}(k)$ denotes the number of edges labeled with k, $1 \le i \le 4, 0 \le k \le 3$.

II. DEFINITIONS

Definition: 2.1[7] Let G (V, E) be a simple graph of order p and size q. Let φ : V (G) $\rightarrow Z_5 - \{0\}$ be a function. For each edge set E (G) define the labeling φ^* : E (G) $\rightarrow Z_4$ by $\varphi^*(uv) = \left[\frac{\varphi(u)}{\varphi(v)}\right] \pmod{4}$ where $\varphi(u) \ge \varphi(v)$. The function φ is called quotient-4 cordial labeling of G if $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1$, $1 \le i, j \le 4$, $i \ne j$ where $v_{\varphi}(x)$ denote the number of vertices labeled with x and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1$, $0 \le k, l \le 3, k \ne l$, where $e_{\varphi}(y)$ denote the number of edges labeled with y.

Definition: 2.2[2] Jahangir graphs $J_{n,m}$ for $n \ge 1$, $m \ge 3$, is a graph on nm + 1 vertices and m(n + 1) edges consisting of a cycle C_{nm} with an additional central vertex say w which is adjacent to m vertices of C_{nm} at distance n to each other on C_{nm} .

III.MAIN RESULT

Theorem: 3.1 A graph $J_{n,m}$ is quotient-4 cordial if $n \ge 1$, $m \ge 3$. **Proof:** Let G be a $J_{n,m}$ graph. V (G) = {w, w₁, w₂... w_{nm}}. E (G) = {w_iw_{i+1}:1 \le i \le nm - 1} \cup {w_1w_{nm}} \cup {ww_{ni} : 1 \le i \le m}. Here |V(G)| = nm + 1, |E(G)| = m(n + 1).Define φ :V (G) \rightarrow {1, 2, 3, 4}.

*Corresponding Author: S. Kavitha

The value of wis labeled as follows. $\varphi(\mathbf{w}) = 1.$ The values of wiare labeled as follows. **Case 1:** When $n \equiv 0 \pmod{8}$. **Subcase 1.1:** When $m \equiv 0, 1, 2, 3, 6, 7 \pmod{8}$. For $nj + 1 \le i \le n$ $(j + 1), 0 \le j < m$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 0, 3 \pmod{8}$ and $j \equiv 0, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 2, 7 \pmod{8}$ and $j \equiv 1, 3, 4, 6 \pmod{8}$. if $i \equiv 2, 5 \pmod{8}$ and $j \equiv 2, 5 \pmod{8}$. $\varphi(\mathbf{w}_i) = 1$ $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 5, 6 \pmod{8}$ and $j \equiv 0, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 4, 5 \pmod{8}$ and $j \equiv 1, 3, 4, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 7, 8 \pmod{8}$ and $i \equiv 2, 5 \pmod{8}$. if $i \equiv 4, 7 \pmod{8}$ and $i \equiv 0, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ $\varphi(w_i) = 3$ if $i \equiv 3, 6 \pmod{8}$ and $j \equiv 1, 6 \pmod{8}$. $\varphi(w_i) = 3$ if $i \equiv 3, 4 \pmod{8}$ and $j \equiv 2 \pmod{8}$. if $i \equiv 0, 1 \pmod{8}$ and $j \equiv 3, 4 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ $\varphi(w_i) = 3$ if $i \equiv 1, 6 \pmod{8}$ and $j \equiv 5 \pmod{8}$. if $i \equiv 1, 2 \pmod{8}$ and $i \equiv 0, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 0, 1 \pmod{8}$ and $j \equiv 1, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ $\varphi(w_i) = 4$ if $i \equiv 1, 6 \pmod{8}$ and $j \equiv 2 \pmod{8}$. if $i \equiv 3$, 6 (modulo 8) and $j \equiv 3$, 4 (modulo 8). $\varphi(\mathbf{w}_i) = 4$ $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 3, 4 \pmod{8}$ and $j \equiv 5 \pmod{8}$. Subcase 1.2: When $m \equiv 4, 5 \pmod{8}$. For $5 \le i \le nm$, the labeling of w_ivalues are same as subcase 1.1. $\varphi(w_1) = 3, \varphi(w_2) = 1, \varphi(w_3) = \varphi(w_4) = 4.$ **Case 2:** When $n \equiv 1 \pmod{8}$. Subcase 2.1: When $m \equiv 0,1 \pmod{8}$. For $1 \leq i \leq nm$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 2, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 4, 5 \pmod{8}$. if $i \equiv 0, 1 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 3, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ Subcase 2.2: When $m \equiv 2 \pmod{8}$. For $1 \le i \le nm - 5$, the labeling of w_ivalues are same as subcase 2.1. $\varphi(w_{nm}) = \varphi(w_{nm-1}) = 4, \ \varphi(w_{nm-2}) = 1, \ \varphi(w_{nm-3}) = \varphi(w_{nm-4}) = 3.$ Subcase 2.3: When $m \equiv 3 \pmod{8}$, m > 3 if n = 1. For $2 \leq i \leq nm - 2$. if $i \equiv 3, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 1$ $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 0, 1 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 2, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 4, 5 \pmod{8}$. $\varphi(w_1) = 3, \varphi(w_{nm}) = 4, \varphi(w_{nm-1}) = 2.$ Subcase 2.4: When $m \equiv 4 \pmod{8}$, $m \neq 4$ if n = 1. For $2 \le i \le nm - 3$, the labeling of w_ivalues are same as subcase 2.3. $\varphi(w_1) = 1, \varphi(w_{nm}) = 4, \varphi(w_{nm-1}) = 3, \varphi(w_{nm-2}) = 2.$ Subcase 2.5: When $m \equiv 5 \pmod{8}$. For $1 \le i \le nm - 1$, the labeling of w_ivalues are same as subcase 2.1. φ (w_{nm}) = 3. Subcase 2.6: When $m \equiv 6 \pmod{8}$. For $2 \le i \le nm - 5$, the labeling of w_ivalues are same as subcase 2.3. $\varphi(w_1) = 2, \varphi(w_{nm}) = \varphi(w_{nm-1}) = 3, \varphi(w_{nm-2}) = 1, \varphi(w_{nm-3}) = \varphi(w_{nm-4}) = 4.$ Subcase 2.7: When $m \equiv 7 \pmod{8}$. For $1 \le i \le nm - 4$, the labeling of w_ivalues are same as subcase 2.1. $\varphi(w_{nm}) = 3, \varphi(w_{nm-1}) = \varphi(w_{nm-2}) = 2, \varphi(w_{nm-3}) = 4.$ **Case 3:** When $n \equiv 2 \pmod{8}$. Subcase 3.1: When $m \equiv 0,3,4,7 \pmod{8}$. For $1 \leq i \leq nm$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 0, 3 \pmod{8}$.

if $i \equiv 5, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 1, 2 \pmod{8}$. if $i \equiv 4, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ Subcase 3.2: When $m \equiv 1,5 \pmod{8}$. For $1 \le i \le nm - 2$, the labeling of w_ivalues are same as subcase 3.1. φ (w_{nm}) = 3, φ (w_{nm-1}) = 4. Subcase 3.3: When $m \equiv 2 \pmod{8}$. For $1 \le i \le nm - 4$. if $i \equiv 2, 5 \pmod{8}$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 0, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 3, 4 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 1, 6 \pmod{8}$. $\varphi(w_{nm}) = 4, \varphi(w_{nm-1}) = 2, \varphi(w_{nm-2}) = 1, \varphi(w_{nm-3}) = 3.$ Subcase 3.4: When $m \equiv 6 \pmod{8}$. For $1 \le i \le nm - 4$, the labeling of w_ivalues are same as subcase 3.1. $\varphi(w_{nm}) = 3, \varphi(w_{nm-1}) = 1, \varphi(w_{nm-2}) = 4, \varphi(w_{nm-3}) = 2.$ **Case 4:** When $n \equiv 3 \pmod{8}$. Subcase 4.1: When $m \equiv 0,2,3 \pmod{8}$. For $1 \leq i \leq nm$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 4, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 1, 2 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 0, 3 \pmod{8}$. if $i \equiv 5, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ Subcase 4.2: When $m \equiv 1 \pmod{8}$. For $2 \le i \le nm - 2$ and $i \ne nm - n, nm - (n + 1)$. if $i \equiv 0, 3 \pmod{8}$. $\varphi(\mathbf{w}_i) = 1$ $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 5$, 6(modulo 8). $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 4, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 1, 2 \pmod{8}$. $\varphi(w_1) = 1, \varphi(w_{nm}) = \varphi(w_{nm-1}) = 3, \varphi(w_{nm-n}) = 4, \varphi(w_{nm-(n+1)}) = 2.$ Subcase 4.3: When $m \equiv 4 \pmod{8}$. For $3 \le i \le nm - 3$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 2, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 4, 5 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 3, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 0, 1 \pmod{8}$. $\varphi(w_1) = 1, \varphi(w_2) = 3, \varphi(w_{nm}) = \varphi(w_{nm-2}) = 4, \varphi(w_{nm-1}) = 2.$ Subcase 4.4: When $m \equiv 5 \pmod{8}$. For $1 \le i \le nm - 6$ $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 2, 5 \pmod{8}$. if $i \equiv 0, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 3, 4 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 1, 6 \pmod{8}$. $\varphi(w_{nm}) = \varphi(w_{nm-1}) = 2, \ \varphi(w_{nm-2}) = \varphi(w_{nm-3}) = 3, \ \varphi(w_{nm-4}) = 1, \ \varphi(w_{nm-5}) = 4.$ Subcase 4.5: When $m \equiv 6 \pmod{8}$. For $5 \le i \le nm$, the labeling of w_ivalues are same as subcase 3.1. $\varphi(w_1) = \varphi(w_2) = 4, \varphi(w_3) = 1, \varphi(w_4) = 3.$ Subcase 4.6: When $m \equiv 7 \pmod{8}$. For $3 \le i \le nm - 3$, the labeling of w_ivalues are same as subcase 4.3. $\varphi(w_1) = 4, \varphi(w_2) = 1, \varphi(w_{nm}) = 4, \varphi(w_{nm-1}) = 2, \varphi(w_{nm-2}) = 3.$ **Case 5:** When $n \equiv 4 \pmod{8}$. Subcase 5.1: When $m \equiv 0,2,4,6 \pmod{8}$. For $1 \leq i \leq nm$. $\varphi(\mathbf{w}_i) = 1$ if i≡1, 6, 9, 12 (modulo 16). $\varphi(\mathbf{w}_i) = 2$ if i≡3, 4, 14, 15 (modulo 16). $\varphi(\mathbf{w}_i) = 3$ if i≡7, 8, 10, 11 (modulo 16). $\varphi(\mathbf{w}_i) = 4$ if i≡0, 2, 5, 13 (modulo 16). Subcase 5.2: When $m \equiv 1 \pmod{8}$.

*Corresponding Author: S. Kavitha

For $3 \le i \le nm - 3$, the labeling of w_ivalues are same as subcase 5.1. $\varphi(w_1) = \varphi(w_{nm}) = 4, \varphi(w_2) = 1, \varphi(w_{nm-1}) = 2, \varphi(w_{nm-2}) = 3.$ Subcase 5.3: When $m \equiv 3 \pmod{8}$ and $n \equiv 4 \pmod{16}$, $m \equiv 5 \pmod{8}$ and $n \equiv 12 \pmod{16}$, $m \equiv 7 \pmod{8}$ and $n \equiv 4 \pmod{16}$. For $3 \le i \le nm - 2$, the labeling of w_ivalues are same as subcase 5.1. $\varphi(w_1) = \varphi(w_{nm-1}) = 4, \varphi(w_2) = 2, \varphi(w_{nm}) = 1.$ **Subcase 5.4:** When $m \equiv 3 \pmod{8}$ and $n \equiv 12 \pmod{16}$. For $1 \le i \le nm - 5$, the labeling of w_ivalues are same as subcase 5.1. $\varphi(w_{nm}) = \varphi(w_{nm-1}) = 4, \varphi(w_{nm-2}) = 2, \varphi(w_{nm-3}) = 3, \varphi(w_{nm-4}) = 1.$ Subcase 5.5: When $m \equiv 5 \pmod{8}$ and $n \equiv 4 \pmod{16}$. For $3 \le i \le nm - 2$, the labeling of w_ivalues are same as subcase 5.1. $\varphi(w_1) = 4, \varphi(w_2) = 2, \varphi(w_{nm}) = 1 \varphi(w_{nm-1}) = 3.$ Subcase 5.6: When $m \equiv 7 \pmod{8}$ and $n \equiv 12 \pmod{16}$. For $1 \le i \le nm - 5$, the labeling of w_i values are same as subcase 5.1. $\varphi(w_{nm}) = \varphi(w_{nm-1}) = 4, \varphi(w_{nm-2}) = 2, \varphi(w_{nm-3}) = 1, \varphi(w_{nm-4}) = 3.$ **Case 6:** When $n \equiv 5 \pmod{8}$. Subcase 6.1: When $m \equiv 0 \pmod{8}$. For $1 \leq i \leq nm$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 1, 4 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 6, 7 \pmod{8}$. if $i \equiv 0, 5 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 2, 3 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ Subcase 6.2: When $m \equiv 1 \pmod{8}$. For $1 \le i \le nm - 4$, the labeling of w_i values are same as subcase 6.1. $\varphi(w_{nm}) = 4, \varphi(w_{nm-1}) = \varphi(w_{nm-2}) = 2, \varphi(w_{nm-3}) = 3.$ Subcase 6.3: When $m \equiv 2 \pmod{8}$. For $3 \le i \le nm - 3$, the labeling of w_i values are same as subcase 6.1. $\varphi(w_1) = 4, \varphi(w_2) = 1, \varphi(w_{nm}) = \varphi(w_{nm-1}) = 3, \varphi(w_{nm-2}) = 2.$ Subcase 6.4: When $m \equiv 3 \pmod{8}$. For $1 \le i \le nm - 4$, the labeling of w_i values are same as subcase 6.1. $\varphi(w_{nm}) = \varphi(w_{nm-3}) = 3, \varphi(w_{nm-1}) = \varphi(w_{nm-2}) = 2.$ Subcase 6.5: When $m \equiv 4 \pmod{8}$. For $1 \le i \le nm - 5$, the labeling of w_i values are same as subcase 6.1. $\varphi(w_{nm}) = \varphi(w_{nm-1}) = 3, \varphi(w_{nm-2}) = 4, \varphi(w_{nm-3}) = 1, \varphi(w_{nm-4}) = 2.$ Subcase 6.6: When $m \equiv 5 \pmod{8}$. For $1 \le i \le nm - 2$, the labeling of w_i values are same as subcase 6.1. $\varphi(w_{nm}) = 3, \varphi(w_{nm-1}) = 4.$ Subcase 6.7: When $m \equiv 6 \pmod{8}$. For $2 \leq i \leq nm$. if $i \equiv 0, 5 \pmod{8}$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 2, 3 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 1, 4 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 6, 7 \pmod{8}$. $\varphi(w_1) = 4.$ Subcase 6.8: When $m \equiv 7 \pmod{8}$. For $2 \le i \le nm - 3$, the labeling of w_i values are same as subcase 6.7. $\varphi(w_1) = \varphi(w_{nm}) = 3, \varphi(w_{nm-1}) = 2, \varphi(w_{nm-2}) = 4.$ **Case 7:** When $n \equiv 6 \pmod{8}$. Subcase 7.1: When $m \equiv 0,4 \pmod{8}$. For $1 \le i \le nm$, the labeling of w_i values are same as subcase 6.1. Subcase 7.2: When $m \equiv 1,5 \pmod{8}$. For $1 \le i \le nm - 3$, the labeling of w_i values are same as subcase 6.1. $\varphi(w_{nm}) = 3$, $\varphi(w_{nm-1}) = \varphi(w_{nm-2}) = \varphi(w_{n$ 2. Subcase 7.3: When $m \equiv 2 \pmod{8}$. For $1 \le i \le nm - 5$, the labeling of w_i values are same as subcase 6.1. $\varphi(w_{nm}) = \varphi(w_{nm-3}) = 3, \varphi(w_{nm-1}) = 4, \varphi(w_{nm-2}) = 1, \varphi(w_{nm-4}) = 2.$ Subcase 7.4: When $m \equiv 3, 7 \pmod{8}$.

*Corresponding Author: S. Kavitha

For $2 \le i \le nm - 2$, the labeling of w_i values are same as subcase 6.7. $\varphi(w_1) = 3, \varphi(w_{nm}) = 3, \varphi(w_{nm-1}) = 4.$ Subcase 7.5: When $m \equiv 6 \pmod{8}$. For $2 \le i \le nm - 4$, the labeling of w_i values are same as subcase 6.7. $\varphi(w_1) = 3, \varphi(w_{nm}) = 3, \varphi(w_{nm-1}) = 1, \varphi(w_{nm-2}) = 2, \varphi(w_{nm-3}) = 4.$ **Case 8:** When $n \equiv 7 \pmod{8}$. Subcase 8.1: When $m \equiv 0 \pmod{8}$. For $1 \leq i \leq nm$. if $i \equiv 1, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 3, 4 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 2, 5 \pmod{8}$. if $i \equiv 0, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ Subcase 8.2: When $m \equiv 1 \pmod{8}$. For $1 \le i \le nm - 4$ and $i \ne nm - n$. if $i \equiv 2, 5 \pmod{8}$. $\varphi(\mathbf{w}_i) = 1$ $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 0, 7 \pmod{8}$. if $i \equiv 1, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 3, 4 \pmod{8}$. $\varphi(w_{nm}) = 4, \varphi(w_{nm-1}) = \varphi(w_{nm-2}) = \varphi(w_{nm-3}) = 2, \varphi(w_{nm-n}) = 3.$ Subcase 8.3: When $m \equiv 2 \pmod{8}$. For $1 \le i \le nm - 5$, the labeling of w_i values are same as subcase 8.1. $\varphi(w_{nm}) = \varphi(w_{nm-1}) = 3, \varphi(w_{nm-2}) = \varphi(w_{nm-3}) = 2, \varphi(w_{nm-4}) = 4.$ Subcase 8.4: When $m \equiv 3 \pmod{8}$. For $1 \le i \le nm - 4$, the labeling of w_i values are same as subcase 8.1. $\varphi(w_{nm}) = 3, \varphi(w_{nm-1}) = \varphi(w_{nm-2}) = 2, \varphi(w_{nm-3}) = 4.$ Subcase 8.5: When $m \equiv 4 \pmod{8}$. For $1 \le i \le nm - 6$, the labeling of w_i values are same as subcase 8.1. $\varphi(w_{nm}) = \varphi(w_{nm-1}) = \varphi(w_{nm-2}) = 4, \ \varphi(w_{nm-3}) = 1, \ \varphi(w_{nm-4}) = 2, \ \varphi(w_{nm-5}) = 3.$ Subcase 8.6: When $m \equiv 5 \pmod{8}$. For $1 \le i \le nm - 4$, the labeling of w_i values are same as subcase 7.4. $\varphi(w_{nm}) = 3, \varphi(w_{nm-1}) = 1, \varphi(w_{nm-2}) = 4, \varphi(w_{nm-3}) = 2.$ Subcase 8.7: When $m \equiv 6 \pmod{8}$. For $1 \leq i \leq nm - 2$. $\varphi(\mathbf{w}_i) = 1$ if $i \equiv 2, 5 \pmod{8}$. $\varphi(\mathbf{w}_i) = 2$ if $i \equiv 0, 7 \pmod{8}$. $\varphi(\mathbf{w}_i) = 3$ if $i \equiv 1, 6 \pmod{8}$. $\varphi(\mathbf{w}_i) = 4$ if $i \equiv 3, 4 \pmod{8}$. $\varphi(w_{nm}) = 3, \varphi(w_{nm-1}) = 4.$ Subcase 8.8: When $m \equiv 7 \pmod{8}$. For $1 \le i \le nm - 1$, the labeling of w_i values are same as subcase 8.1. $\varphi(\mathbf{w}_{nm}) = 4.$ The following table concurrence is realized with modulo value 8

The following table concurrence is realized with modulo value 8.				
Nature of n and m	$v_{\phi}(1)$	v _{\u03c0} (2)	v _{\u03pb} (3)	$v_{\phi}(4)$
$n \equiv 0,4 m \\ \equiv 0,1,2, \\ 3,4,5,6,7$	$\frac{nm}{4} + 1$	$\frac{nm}{4}$	$\frac{nm}{4}$	$\frac{nm}{4}$
$n \equiv 1,5,7$ $m \equiv 0,4$	$\frac{nm}{4} + 1$	$\frac{nm}{4}$	$\frac{nm}{4}$	$\frac{nm}{4}$
$n \equiv 1m \equiv 1,5$	$\frac{nm-1}{4} + 1$	$\frac{nm-1}{4}$	$\frac{nm-1}{4} + 1$	$\frac{nm-1}{4}$
$n \equiv 1 m \equiv 2,6$	$\frac{nm+2}{4}$	$\frac{nm+2}{4}-1$	$\frac{nm+2}{4}$	$\frac{nm+2}{4}$
$n \equiv 1,5 \qquad m \\ \equiv 3,7 \qquad$	$\frac{nm+1}{4}$	$\frac{nm+1}{4}$	$\frac{nm+1}{4}$	$\frac{nm+1}{4}$

Quotient-4 Cordial Labeling Of Generalized Jahangi	ir Graphs

$n \equiv 2,6$	$\frac{nm}{4} + 1$	nm	nm	nm
$m \equiv 0,2,4,6$		4	4	4
$n \equiv 2 m \equiv$	nm + 2	$\frac{nm+2}{4} - 1$	nm + 2	<i>nm</i> + 2
1,5	4		4	4
$n \equiv 2 m \equiv$	nm + 2	nm + 2	nm + 2	nm+2
3,7	4	4	4	$\frac{nm+2}{4} - 1$
$n \equiv 3 m \equiv 0$	$\frac{nm}{m} \pm 1$	nm	nm	nm
$\Pi = 5 \Pi = 0$	$\frac{nm}{4} + 1$	4	4	4
$n \equiv 3,7$	nm + 1	nm + 1	nm + 1	nm + 1
m ≡ 1,5	4	4	4	4
	nm + 2	nm + 2	nm+2	<i>nm</i> + 2
$n \equiv 3 m \equiv 2$	4	4	$\frac{nm+2}{4}-1$	4
n ≡ 3,7	nm-1	$\frac{nm-1}{4} + 1$	nm-1	<i>nm</i> – 1
$m \equiv 3$	$\frac{nm-1}{4} + 1$		4	$\frac{\pi\pi^2}{4}$
$n \equiv 3 m \equiv 4$	nm	nm	nm	nm
	4	4	4	$\frac{nm}{4} + 1$
n ≡ 3,7	nm + 2	$\frac{nm+2}{4}-1$	nm + 2	<i>nm</i> + 2
$m \equiv 6$	4		4	4
n ≡ 3,7	$\frac{nm-1}{4} + 1$	nm-1	nm-1	$\frac{nm-1}{4} + 1$
$m \equiv 7$	$\frac{-1}{4}$ + 1	4	4	
I	$\frac{nm-1}{4} + 1$	$\frac{nm-1}{4} + 1$	nm-1	<i>nm</i> – 1
$n \equiv 5 m \equiv 1$			4	4
n ≡ 5,7	nm + 2	nm + 2	nm + 2	$\frac{nm+2}{4} - 1$
$m \equiv 2$	4	4	4	$-\frac{1}{4}$
$n \equiv 5 m \equiv$	$\frac{nm-1}{4} + 1$	nm-1	nm-1	$\frac{nm-1}{4} + 1$
5		4	4	
$n \equiv 5 m \equiv 6$	nm + 2	nm + 2	$\frac{nm+2}{4}-1$	nm + 2
	4	4		4
$n \equiv 6 m \equiv$	nm + 2	nm + 2	$\frac{nm+2}{-1}$	nm + 2
1,5	4	4	$\frac{mm+2}{4} - 1$	4
$n \equiv 6 m \equiv$	<i>nm</i> + 2	$\frac{nm+2}{4}-1$	nm + 2	nm + 2
3,7	4	$\frac{-1}{4}$ - 1	4	4
1				1

Table 1: Vertex labeling of $J_{n,m}$ graph

The following table concurrence is realized with modulo value 8.

Nature of n and m	e _{\u03c0} (0)	e _φ (1)	e _φ (2)	e _{\u03c0} (3)
$n \equiv 0,2,4,6$	m(n+1)	$\frac{m(n+1)}{2}$	m(n+1)	$\underline{m(n+1)}$
$m \equiv 0,4$	4	4	4	4
$n \equiv 0 m \equiv$	m(n+1) - 1	$\frac{m(n+1)-1}{4} + 1$	$\frac{m(n+1)-1}{n}$	$\frac{m(n+1)-1}{n}$
1	4	-1	4	4
$n \equiv 0 m \equiv$	m(n+1) + 2	m(n+1) + 2	$\frac{m(n+1)+2}{2}$ -1	$\frac{m(n+1)+2}{-1}$
2	4	4	4	4
$n \equiv 0 m \equiv 3$	m(n+1) + 1	m(n+1) + 1	m(n+1) + 1	$\frac{m(n+1)+1}{4} - 1$
	4	4	4	4
$n \equiv 0 m \equiv 5$	m(n+1) - 1	m(n+1) - 1	m(n+1) - 1	$\frac{m(n+1)-1}{4} + 1$
	4	4	4	7
$n \equiv 0 m \equiv 6$	$\frac{m(n+1)+2}{4} - 1$	$\frac{m(n+1)+2}{4}-1$	$\frac{m(n+1)+2}{4}$	$\frac{m(n+1)+2}{4}$
			4	4

$n \equiv 0 m \equiv 7$	m(n+1) + 1	$\frac{m(n+1)+1}{4} - 1$	m(n+1) + 1	m(n+1) + 1
	4	-	4	4
$n \equiv 1,5$	$\frac{m(n+1)}{m(n+1)}$	$\underline{m(n+1)}$	m(n+1)	m(n+1)
$m \equiv 0, 2, 4, 6$	$\frac{4}{m(n+1)+2}$	$\frac{4}{1}$	4	$\frac{4}{1}$
$n \equiv 1 m \equiv$	$\frac{\frac{4}{m(n+1)+2}}{4} - 1$	m(n+1) + 2	$\frac{m(n+1)+2}{2} - 1$	m(n+1) + 2
1 $n \equiv 1 m \equiv$		$\frac{4}{m(n+1)+2}$	m(n+1) + 2	4
n = 1 $m = 3,7$	$\frac{m(n+1)+2}{4} - 1$			$\frac{m(n+1)+2}{4} - 1$
$n \equiv 1 m \equiv$	$\frac{m(n+1)+2}{4}-1$	$\frac{4}{\frac{m(n+1)+2}{4}-1}$	$\frac{4}{m(n+1)+2}$	m(n+1) + 2
5	4 -1	4 -1		
$n \equiv 2 m \equiv$	m(n+1) + 1	m(n+1) + 1	$\frac{4}{m(n+1)+1}$	$\frac{m(n+1)+1}{4} - 1$
1,5				
$n \equiv 2 m \equiv$	$\frac{4}{\frac{m(n+1)+2}{4}-1}$	$\frac{4}{m(n+1)+2}$	$\frac{4}{m(n+1)+2}$	m(n+1)+2 1
2,6				$\frac{m(n+1)+2}{4}-1$
$n \equiv 2 m \equiv 3$	m(n+1) - 1	$\frac{4}{m(n+1)-1}$	$\frac{4}{m(n+1)-1}$	$\frac{m(n+1)-1}{4} + 1$
	$\frac{4}{m(n+1)-1}$	$\frac{4}{m(n+1)-1}$	$\frac{4}{\frac{m(n+1)-1}{4}+1}$	-
$n \equiv 2 m \equiv 7$	m(n+1) - 1	m(n+1) - 1	$\frac{m(n+1)-1}{4} + 1$	m(n+1) - 1
	4	4	4	4
$n \equiv 3,7$	m(n + 1)	m(n+1)	m(n+1)	m(n+1)
$m \equiv 0, 1, 2, 3,$	$\frac{m(n+1)}{4}$	$\frac{m(n+1)}{4}$	$\frac{m(n+1)}{4}$	$\frac{m(n+1)}{4}$
$4,5,6,7$ $n \equiv 4 m \equiv$	m(n+1) - 1	m(n+1) = 1	m(n+1)-1	m(n+1) = 1
$\Pi = 4 \Pi = 1$	$\frac{m(n+1)-1}{4}$	$\frac{m(n+1)-1}{4}$	$\frac{m(n+1)-1}{4} + 1$	$\frac{m(n+1)-1}{4}$
$\frac{n}{2} \equiv 2$	4	4	m(n+1)+2	$\frac{4}{(n+1)+2}$
	$\frac{m(n+1)+2}{4} - 1$	$\frac{m(n+1)+2}{4} - 1$	$\frac{m(n+1)+2}{4}$	$\frac{m(n+1)+2}{4}$
$m \equiv 2,6$	-	-	4	4
$\frac{n}{2} \equiv 6$	$\frac{m(n+1)+2}{4} - 1$	m(n+1) + 2	$\frac{m(n+1)+2}{4} - 1$	m(n+1) + 2
m ≡ 2,6	4	4		4
$n \equiv 4 m \equiv$	$\frac{m(n+1)+1}{4} - 1$	m(n+1) + 1	m(n+1) + 1	m(n+1) + 1
3,7		4	$\frac{4}{m(n+1)-1}$	$\frac{4}{m(n+1)-1}$
$n \equiv 4 \ m \equiv 5$	m(n+1) - 1	$\frac{m(n+1)-1}{4} + 1$	m(n+1) - 1	
$n \equiv 5 m \equiv$	$\frac{4}{m(n+1)+2}$		$\frac{4}{m(n+1)+2}$	4
n = 5 m = 1,7		$\frac{m(n+1)+2}{4} - 1$	$\frac{m(n+1)+2}{2}$	$\frac{m(n+1)+2}{4} - 1$
$n \equiv 5 m \equiv$	$\frac{4}{m(n+1)+2}$	$\frac{4}{m(n+1)+2}$	$\frac{4}{m(n+1)+2}$	m(n+1) + 2
$\begin{array}{c} n \equiv 5 n \equiv \\ 3,5 \end{array}$	$\frac{m(n+1)+2}{4} - 1$	$\frac{m(n+1)+2}{4} - 1$		$\frac{n(n+1)+2}{4}$
$n \equiv 6 m \equiv$	$\frac{m(n+1)+1}{2} - 1$	m(n+1) + 1	$\frac{4}{m(n+1)+1}$	$\frac{4}{m(n+1)+1}$
1,5		4	4	$\frac{m(n+1)+1}{4}$
$n \equiv 6 m \equiv 2$	$\frac{m(n+1)+2}{2} - 1$	$\frac{m(n+1)+2}{2} - 1$	m(n+1) + 2	m(n+1) + 2
	4	4	4	4
$n \equiv 6 m \equiv$	$\frac{m(n+1)-1}{4} + 1$	m(n+1) - 1	m(n+1) - 1	m(n+1) - 1
3,7		4	4	4
$n \equiv 6 m \equiv 6$	m(n+1) + 2	$\frac{m(n+1)+2}{1} - 1$	m(n+1) + 2	$\frac{m(n+1)+2}{4} - 1$
	4	4	4	4

Quotient-4 Cordial Labeling Of Generalized Jahangir Graphs

Table 2: Edge labeling of $J_{n,m}$ graph.

The above tables 1 and 2 we find that $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1$ and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1$. Hence the graph $J_{n,m}$ is quotient-4 cordial labeling.

IV.CONCLUSION

In this paper, it is proved that the Jahangir graph $J_{n,m}$ which admits quotient-4 cordial. The existence of quotient-4 cordial labeling of different families of graphs will be the future work.

ACKNOWLEDGMENT

Sincerely register our thanks for the valuable suggestions and feedback offered by the referees.

REFERENCES

- Albert William, IndraRajasingh and S Roy, Mean Cordial Labeling of Certain graphs, J.Comp.& Math. Sci. Vol.4 (4),274-281 (2013).
- [2]. Ashaq Ali, Imran Hashim, WaquasNazeer and Shin Min Kang, ON MORE TOPOLOGICAL INDICES OF JAHANGIR GRAPHS, International Journal of Pure and Applied Mathematics, Volume 119 No. 1 2018, 1-8.
- [3]. I. Cahit and R. Yilmaz, E3-cordial graphs, ArsCombin., 54 (2000) 119-127.
- [4]. S. Freeda and R. S. Chellathurai, H- and H2-cordial labeling of some graphs Open J. Discrete Math., 2 (2012) 149-155.
- [5]. F. Harary, Graph Theory. Narosa Publishing House Reading, New Delhi, (1988).
- [6]. Joseph A. Gallian, A Dynamic survey of Graph Labeling, Twenty-first edition, December 21, 2018.
- S.Kavitha,P.Sumathi Quotient-4 Cordial Labeling of Some Unicyclic Graphs and Some Corona of Ladder Graphs, Journal of Survey in Fisheries Sciences, Volume 10(2S), 2023, p.1815-1831.
- [8]. P. Sumathi, S.Kavitha, Quotient-4 cordial labeling for path related graphs, The International Journal of Analytical and Experimental Modal analysis, Volume XII, Issue I, January 2020, pp. 2983-2991.
- [9]. P.Sumathi, S.Kavitha, Quotient-4 Cordial Labeling of Some Ladder Graphs, Journal of Algebraic Statistics, Volume 13, No.2, 2022, p.3243-3264.
- [10]. P. Sumathi, and A. Rathi, Some results on quotient labeling of special graphs, Global Journal of Pure and Applied Mathematics, vol. 13, no. 1 (2017) 176-178.
- [11]. P.Sumathi, S.Kavitha, Quotient-4 cordial labeling of some unicyclic graphs-paper-I, AIP Conference Proceedings, 2718, 020003 (2023).