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ABSTRACT:  The Lotka-Volterra competition model is a landmark population biology model widely ap-plied 

in various fields such as commercial competition, stock index futures market, port container forecast, etc. In this 

paper, we present some conditions for the existence and uniqueness of positive solutions for the most common 

Lotka-Volterra model and establish iterative algorithms and error estimations. The results of this paper can be 

generalized to the model consisting of more than two equations.I 
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I. INTRODUCTION  
The Lotka-Volterra model, independently published by Alfred Lotka and Vito Volterra in 1925 and 

1926, is a classic model for describing the dynamics of preda-tor-prey interactions in biological systems. In 

recent decades, it has evolved into a landmark model in population biology and has made significant 

contributions to the study of population dynamics in ecosystems and other fields.  

In recent years, many scholars at home and abroad have studied this model using various methods. It is 

not only applied to biological systems, but also to various other fields such as market competition, financial 

derivatives, energy consumption, medical science, environmental pollution, and so on. Let’s just review a few 

recent results. Wang et al. [1], Higazy et al. [2] did fractal dimension analysis and control of Julia set and 

dynamical and structural study generated by fractional Lotka–Volterra models respectively. Zhang et al. [3] 

studied the model with Robin boundary condition. Yang et al. [4] and Wang et al. [5] considered almost periodic 

models respectively. Khan and Li [6] obtained the existence results of the fractional-order. Hu et al. [7] studied 

the traveling wave. Wang et al. [8] used a panel Lotka-Voterra method to China’s manufacturing industry. 

Wang [9] applied gray forecast theory with the Lot-ka–Volterra competition model to explore the dynamic 

competition between smart TVs and flat panel TVs. Hung, Tsai, and Wu [10] attempted to develop an improved 

forecasting methodology for retail industry competition subject to seasonal patterns and cycles. Xiong et al. [11] 

used the Lotka–Volterra model to analyze the stock in-dex futures market. Marasco and Romano [12] rented a 

nonautonomous Lotka–Volterra model to give a scenario analysis for inter-port interactions in the Le Ha-vre–

Hamburg range. Zhang et al. [13] proposed a novel gray Lotka-Volterra model for energy consumption 

forecasting to evaluate the impact of long-term competition and cooperation on the national energy consumption 

system and its development trend. W. W. Mohammed et al. [14] investigated dynamics in Lotka-Volterra based 

models of COVID-19. N. Brunner, S. Das and M. Starkl [15] fitted systems of generalized Lot-ka-Volterra 

differential equations to pollution shares and studied their dynamics. 

The most common Lotka-Volterra competition model can be written as 
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For relevant literature, see [8]-[10], where 
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(i) ( )u t  and ( )v t  are the numbers of populations of the prey and predator species at time t . 

(ii) 
( )du t

dt
 and 

( )dv t

dt
 represent the instantaneous growth rates of each population. 

(iii) 
1( )t  and 

2 ( )t  are the parameters related to the number of each population. 

(iv) 
1( )b t  and 

2 ( )b t  are the intrinsic growth parameters of each population. 

(v) 
1( )c t  and 

2 ( )c t  are the interaction coefficients between the two populations.  

The goal of this paper is to establish the existence of positive solutions and iterative algorithms for (1). 

It is well known that the solutions of (1) should be positive (called to be positive solutions) and determining the 

existence of positive solutions requires special methods, the usual method of positive solutions for self mapping 

defined on a cone [16], [17] cannot used to treat (1) due to the nonlinear terms with sign-changing in (1). At the 

same time, some questions raise naturally: what are the conditions for the existence of positive solutions of the 

model? Is the solution unique? If there is such solution, how can we present iterative algorithms and error 

estimations? 

These questions are very interesting and important for nonlinear problems. However, as far as we 

know, there is little study on them for the model (1). In this paper, we provide some conditions for the existence 

and uniqueness of positive solutions and develop iterative algorithms and error estimates for the model (1). 

Finally, we point out that the methods in this paper are suitable for the Lotka-Volterra models consisting of 

more than two equations. 

II. ITERATIVE ALGORITHMS AND ERROR ESTIMATIONS FOR POSITIVE 

SOLUTION OF (1)SYSTEM COORDINATES  
Let (0, )T    is a constant. We define  

[0, ] : ( )C T u u t  is a continuous function defined on [0, ]T } , [0, ] { : ( ) [0, ], ( ) 0, [0, ]}C T u u t C T u t t T     .  

If , [0, ]u v C T  with the first-order continuous derivative and satisfy (1), then they are called to be 

positive solutions of (1) when ( ) 0, ( ) 0u t v t  ( [0, ])t T .  

Integrating (1) from 0 to t , we obtain the following integral system: 

0
0

0
0

( ) ( , ( ), ( )) ,
(2)

( ) ( , ( ), ( )) , 0.

t

t

u t f s u s v s ds u

v t g s u s v s ds v t

  



   





 

This means the solution of (1) is the solution of (2). Conversely, if , [0, ],u v C T ( ) 0,u t  ( ) 0( [0, ])v t t T   is 

the solution of (2), then by differentiating (2), we know that it satisfies (1) and also satisfies the initial condition. 

Therefore, (1) is equivalent to the integral system (2). Hence, we only need to study the existence, uniqueness, 

iterative algorithms, and error estimations of positive solutions for the integral system (2).  

For (1), we make the following assumptions ( 1,2)i  : 

1( )P ( ), ( ), ( )i i ib t t c t  are all continuous on [0, ) , bounded functions and ( ),ib t ( ), ( ) :i it c t [0, ) (0, )   . 

2( )P  inf ( ) : [0, ) 0i i t t     . 

Remark 1. If ( ), ( ), ( )i i ib t t c t  are positive constant functions on [0, ) , then the conditions 
1( )P -

2( )P  are 

satisfied automatically. 

Let      1 2sup ( ) : [0, ) , sup ( ) : [0, ) , max ,i i i ic c t t b b t t          , then 0 ,ic ib   ( 1,2)i  . 

We assume that 
0 0,u v  satisfy 

3( )P 1 0 1 0 1b u c v   . 

4( )P 2 0 2 0 2b v c u   . 

Then there exists a constant 0   such that 

1 0 1 0 1(1 ), (3)b u c v       

2 0 2 0 2 (1 ). (4)b v c u       

Let sup{ :T    satisfies (3) and (4)} . Then 

1 0 1 0 1(1 ), (5)b u c v T      

2 0 2 0 2 (1 ). (6)b v c u T      

Clearly, 0 T   . 

Notation 1. 1 1 1 2 2 2{( , ) : , , , [0, ]}u v b u c v b v c u u v C T        . 
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Obviously,   is nonempty since 
0 0( , )u v  . 

Let ( , )u v  . We define 

0
0

0
0

( , )( ) ( , ( ), ( ))

( , )( ) ( , ( ), ( )) , (7)

,

0 .

t

t

A u v t f s u s v s ds u

B u v t g s u s v s ds v

t T

  


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

 




  

The results of this paper are presented by the following three theorems. For the series and uniform 

convergence, see [18]. 

Theorem 1. For ( , )u v  , ( ( , ), ( , ))A u v B u v   holds. 

Proof: Let ( , )u v  . Then 
1 1 1( ) ( ) ( ) ( )b t u t c t v t    and 

2 2 2( ) ( ) ( ) ( )b t v t c t u t   , which imply that 

( , )( ) 0A u v t  , ( , )( ) 0B u v t  , 0 t T  . By (5), (6) and (7), we have 

   

   

   
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t

t
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Therefore ( ( , ), ( , ))A u v B u v   and the proof is completed. 

If ( , )u v  , it is easy to know 1

1

0 ( )u t
b


   and 1

1

0 ( )v t
c


  . 

Notation 2. 

1 1

1 1

max ,K
b c

  
  

 
, 

 1 1 1 1 22m b K c c K    , 

 2 2 2 1 22m b K c c K    , 

 1 2max ,m m m , 

0

( )

!

nn

n

k

mT
e

n

 . 

Define the iteration sequence as follows 

 1 1( ) , ( ), 1,2,... (8)n n nu t A u v t n     

 1 1( ) , ( ), 1,2,... (9)n n nv t B u v t n     

0 0 0 0( ) , ( ) , [0, ]u t u v t v t T   . 

Theorem 2.  
1

1

( )
( ) ( ) 2 ,

( 1)!

n

n n

mT
u t u t K

n



 


1

1

( )
( ) ( ) 2 ,

( 1)!

n

n n

mT
v t v t K

n



 


0 ,t T  1n  . 

Proof: From Theorem 1, ( , )n nu v  , therefore 1 10 ( ), ( ), ( ), ( ) ,n n n nu t v t u t v t K    

and consequently 
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   

   

 

 

1

1 1
0

1 1 1 1 1
0

1 1 1

1 1 1 1 1 1
0

( ) ( )

, ( ), ( ) , ( ), ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( )
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t

n n n n

t

n n n n n

n n n

t

n n n n

u t u t

f s u s v s f s u s v s ds

s c s v s b s u s u s u s u s

c s u s v s v s ds

s b s K c s K u s u s c s K v s v s ds







 

 

 

 



 

      

 

        







 1 1 1 1 1 1
0

2 ( ) ( ) ( ) ( ) ,
t

n n n nb K c K u s u s c K v s v s ds          

   

   

 
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2 1 1
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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t
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t

n n n n n

n n n

t

n n n n
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g s u s v s g s u s v s ds

s c s u s b s v s v s v s v s

c s v s u s u s ds

s b s K c s K v s v s c s K u s u s d







 

 

 

 



 

      

 

        







 2 2 2 1 2 1
0

2 ( ) ( ) ( ) ( ) .
t

n n n n

s

b K c K v s v s c K u s u s ds          

 

From this we have 

 

1 1

1 1 2 1
0

1 1
0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) (10)

( ) ( ) ( ) ( ) .

n n n n

t

n n n n

t

n n n n

u t u t v t v t

m u s u s m v s v s ds

m u s u s v s v s ds

 

 

 

  

       

   





 

Noting that 1 1( ) ( ) , ( ) ( ) ,n n n nu t u t K v t v t K      we obtain 

1 1
0

( ) ( ) ( ) ( ) 2 2 . (11)
t

n n n nu t u t v t v t m Kds Kmt        

Let 1 1( ) ( ) ( ) ( ) ( )n n n n ne t u t u t v t v t     . By combining (10) and (11), we get 

1( ) 2ne t Kmt  , 1
0

( ) ( )
t

n ne t m e s ds   , 1n  . 

By induction, we have 
1 1( ) ( )

( ) 2 2 ,0 , 1 (12)
( 1)! ( 1)!

n n

n

mt mT
e t K K t T n

n n

 

     
 

 

(12) implies that Theorem 2 holds. 

 

Theorem 3. Suppose that 
3( )P -

4( )P  are satisfied, then (2) has a unique positive solution 
* *( , )u v  in [0, ]T , and 

* *( , ) ,u v   

 * 1( ) ( ) 2 ,mT

n nu t u t K e e     

 * 1( ) ( ) 2 ,mT

n nv t v t K e e     

where ,n nu v  is defined by (8) and (9). 

Proof: The proof is divided into two steps. 

Step 1. The existence, iterative algorithms and error estimations for positive solutions. 

By Theorem 2, we have 

1

1

1 1

1

( ) ( ) ( ) ( )

( ) ( )
( ) 2 2

( 1)! !

n p

n p n k k

k n

k kn p n p n p

k

k n k n k n

u t u t u t u t

mT mT
e t K K

k k



 

 

   

   

  

  




   ,

→(13) 
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1

1

1 1

1

( ) ( ) ( ) ( )

( ) ( )
( ) 2 2

( 1)! !

n p

n p n k k

k n

k kn p n p n p

k

k n k n k n

v t v t v t v t

mT mT
e t K K

k k



 

 

   

   

  

   




   , ( 14)

 

The inequalities (13)-(14) imply that    ( ) , ( )n nu t v t  converge uniformly on [0, ]T , the limits are denoted by 

*( ) lim ( ),n
n

u t u t


  *( ) lim ( )n
n

v t v t


 . 

By  ,n nu v  , we have 
1 1 1 2 2 20 ,0n n n nb u c v b v c u       . Letting n , then we obtain 

1 * 1 * 10 b u c v    ,
2 * 2 * 20 b v c u    , which mean  * *,u v  ,

* 0( )u t u ,
* 0( )v t v , [0, ]t T . Letting 

n in (13) and (14), we have 

 * * *,u A u v ,  * * *,v B u v , 

and (Letting p   in (13),(14)) 

 * 1

( )
( ) ( ) 2 2

!

k
mT

n n

k n

mT
u t u t K K e e

k







    , 

 * 1

( )
( ) ( ) 2 2

!

k
mT

n n

k n

mT
v t v t K K e e

k







    . 

Step 2. Uniqueness of positive solution. 

Suppose that (2) has another positive solution 
* *( , )z w  in [0, ]C T . We divide [0, ]T  into N  equal 

parts such that 1
T

N
  . Let , , 1,2, ,i

T
t i t i N

N
      and 

 1 1 1 * 1 * * 1 *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h s s c s v s b s u s z s c s z s     , 

 2 2 2 * 2 * * 2 *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h s s c s u s b s v s w s c s w s     , 

 1 2max ( ) ( ) : [0, ]h s h s s T    , 

 * * * * 1max ( ) ( ) ( ) ( ) : [ , ] , 0,1,2,..., 1i i ie u t z t v t w t t t t i N       . 

By 

 

   

     

  

* * * * * *
0

1 1 * 1 * * * * 1 * * *
0

1 1 * 1 * * * * 1 * * *
0

( ) ( ) , ( ), ( ) , ( ), ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t

t

t

u t z t f s u s v s f s z s w s ds

s c s v s b s u s z s u s z s c s z s v s w s ds

s c s v s b s u s z s u s z s c s z s v s w s ds

h





  

        

       









 1 * * * *
0

( ) ( ) ( ) ( ) ( ) ,
t

s u s z s v s w s ds  

   

     

  

* * * * * *
0

2 2 * 2 * * * * 2 * * *
0

2 2 * 2 * * * * 2 * * *
0

( ) ( ) , ( ), ( ) , ( ), ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t

t

t

v t w t g s u s v s g s z s w s ds

s c s u s b s v s w s v s w s c s w s u s z s ds

s c s u s b s v s w s v s w s c s w s u s z s ds

h





  

        

       









 2 * * * *
0

( ) ( ) ( ) ( ) ( ) ,
t

s u s z s v s w s ds  

 

We have 

  

 

* * * *

1 2 * * * *
0

0 0 1
0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, 0, .

t

t

u t z t v t w t

h s h s u s z s v s w s ds

e ds e t t t 

  

    

   





 

This means that 0 0 0 0
0

,
t T

e e ds e t e
N

       but 1
T

N
   implies 0 0e  , hence  

* *( ) ( ),u t z t * *( ) ( ),v t w t  10,t t . 
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Repeating this process on  1, ( 1,2,3, , 1)i it t i N    , we obtain 

  

 

* * * *

1 2 * * * *

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, , ,

i

i

t

t

t

t
i i i i

u t z t v t w t

h s h s u s z s v s w s ds

T
e ds e t t t

N
  

  

    

  





 

thus 0ie  ,  1,i it t t  ( 1,2,3, , 1)i N   . Therefore, 
* *( ) ( )u t z t ,

* *( ) ( )v t w t , [0, ]t T . 

The proof is completed. 

Corollary 1. If ( )ib t , ( )i t , ( )ic t are constants and
3( )P -

4( )P hold, then the conclusions of Theorem 3 hold. 

Remark 2. For the following system of form 

 

*

1 1 1 1

*

2 2 2 2

0 0

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ),

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ),

(0) 0, (0) 0, 0.

du t
u t t b u t c t v t d t u t

dt

dv t
v t t b v t c t u t d t v t

dt

u u v v t






      




      


    



 

Let
*( ) ( ) ( )i i it t d t   , Then we can rewrite the above model as (1). As long as ( )i t  satisfies the condition 

2( )P , we can use Theorem 3 to construct its iterative solution and perform error estimations. 

Remark 3. The iterative sequences{ ( )},nu t  and{ ( )},nv t  defined by (8) and (9), 
*( )u t  and

*{ ( )}v t  in Theorem 3 

have the following properties 

(1) ( )nu t  and ( )nv t  are increasing on [0, ]T . So are 
*( )u t and 

*( )v t . 

(2) 
1

0
( )

0 * 0( )

t

s ds

u u t u e
  and 

2
0

( )

0 * 0( )

t

s ds

v v t v e
  on [0, ]T . 

In fact, since 1 1,n nu v   , we see 

1 1 1 1 1( ) ( ) ( ) ( ) ( ) 0,n nt b t u t c t v t      

2 2 1 2 1( ) ( ) ( ) ( ) ( ) 0,n nt b t v t c t u t      

for [0, ]t T . From 

 

 

1 1 1 1 1 1

1 2 2 1 2 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ,

( )
( ) ( ) ( ) ( ) ( ) ( ) .

n

n n n

n

n n n

du t
u t t b t u t c t v t

dt

dv t
v t t b t v t c t u t

dt





  

  


  


   


 

we know
( )

0ndu t

dt
 and

( )
0ndv t

dt
 on [0, ]T  and ( )nu t  and ( )nv t  are increasing on [0, ]T , which imply that 

*( )u t  and 
*( )v t  have same property. 

The increasing of 
*( )u t  and 

*( )v t  show 
0 *( )u u t  and 

0 *( )v v t  on [0, ]T . On the other hand, we 

have 

 

 

*

* 1 1 * 1 *

*

* 2 2 * 2 *

0 0

(

= >0, (0)= >0

)
( ) ( ) ( ) ( ) ( ) ( ) ,

( )
( ) ( ) ( ) ( ) ( ) ( ) ,

(0) ,

du t
u t t b t u t c t v t

dt

dv t
v t t b t v t c t u t

dt

u u v v






  




  





 

we know *

1 *

( )
( ) ( )

du t
t u t

dt
  and *

2 *

( )
( ) ( )

dv t
t v t

dt
  on [0, ]T  and 

1
0

( )

* 0( )

t

s ds

u t u e
 and 

2
0

( )

* 0( )

t

s ds

v t v e
 on 

[0, ]T  by the Gronwall inequality [19]. 

Remark 4.  If ( ), ( ), ( )i i ib t t c t are all normal numbers, then { ( )}nu t  and { ( )}nv t  can be expressed in polynomial 

form 
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2 1
( )

0

( )

n

n i

n i

i

u t t




 and
2 1

( )

0

( )

n

n i

n i

i

v t t




 , [0, ]t T , 1n  . 

In fact, through (7)-(9), it is easy to know that since ( ), ( ), ( )i i ib t t c t  are normal numbers, 
1u and 

1v  

are linear polynomials, 
2u  and 

2v  are cubic polynomials. By induction, it can be concluded that 

2 1 ( )

0( )
n n i

n i iu t t   and 2 1 ( )

0( )
n n i

n i iv t t

  , [0, ], 1t T n  . 

III.  CONCLUSION AND EXTENSION 
For the Lotka-Volterra model (1), this paper provides some conditions for the existence and 

uniqueness of positive solutions, the iterative algorithms and error estimations. To the best of our knowledge, 

there is little study on this aspect, and this study fills this gap.  

Finally, we consider the Lotka-Volterra model consisting of more than two equations ( )nL V : 

   

   

1

1 1 11 1 12 2 1 1 1 2

2

2 2 21 1 22 2 2 2 1 2

1 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) : , ( ), ( ), , ( ) ,

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) : , ( ), ( ), , ( ) ,

( )
( ) ( ) ( ) ( )

n n n

n n n

n

n n n

du t
u t t a t u t a t u t a t u t f t u t u t u t

dt

du t
u t t a t u t a t u t a t u t f t u t u t u t

dt

du t
u t t a t u t

dt







     

     



     2 2 1 2

(0)

( ) ( ) ( ) ( ) : , ( ), ( ), , ( ) ,

(0) 0, 1,2, , , 0.

n nn n n n

i i

a t u t a t u t f t u t u t u t

u u i n t










  


   

 

If ( )i t , ( )( , 1,2, )ija t i j n   satisfy 
1( )P  and 

2( )P , then the same results as Theorem 3 hold. We provide a 

framework of main results. 

Let 

inf{ ( ) : [0, )}( 1,2, , )i i t t i n      , 

 sup ( ) : [0, )}, , 1,2, ,ij ija a t t i j n     , 

 max , 1,2, ,i i n    , 

Then 0 ,0 ( , 1,2, , )ija i j n        . 

We assume that (0)

iu satisfies 

(0)

1

, 1,2, ,
n

ij j i

j

a u i n


   . 

Then there must be 0   such that 

(0)

1

(1 )
n

ij j i

j

a u  


  , 1,2, ,i n  . 

Let  

(0)

1

sup : (1 ), 1,2, ,
n

ij j i

j

T a u i n  


 
     

 
 . 

Then 0 T   . 

Notation 3.   1 2

1

, , , : ( ) , [0, ] ,{ }
n

n ij j i i

j

u u u a u t u C T 



      

 

   

1 2

(0)

1 2 1 2
0

, , , ( )

, ( ), ( ), , ( ) , , , , , 1,2, , ,

i n

t

i n i n

A u u u t

f s u s u s u s ds u u u u i n



      
 

 ( ) ( 1) ( 1) ( 1)

1 2( ) , , , ( ), 1,2, (15)k k k k

i i nu t A u u u t k       

 (0) (0) (0) (0) (0) (0)

1 2 1 2( ( ), ( ), ( )) , , ,n nu t u t u t u u u   . 

We can prove 

Theorem 4.  For 
1 2( , , , )nu u u  , we have 

1 1 2 1 2( ( , , , ), , ( , , , ))n n nA u u u A u u u    . 

Theorem 5.  ( ) ( ) ( )

1 2{( ( ), ( ), , ( ))}k k k

nu t u t u t  converge uniformly on [0, ]T . 
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We denote the limit of ( ){ ( )}k

iu t by 
( ) ( )

* ( ) lim ( ), 1,2, ,i k

i
k

u t u t i n


   . Letting k  in (15), we know 

Theorem 6.  (1) (2) ( )

* * *( , ,..., )nu u u  is a unique positive solution of ( )nL V . 

We may establish error estimations similar to Theorem 3 in section II, all details including the proof 

of Theorem 4 to Theorem 6 are omitted due to the duplication of most work. 
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