Quest Journals Journal of Research in Applied Mathematics Volume 1 ~ Issue 1 (2013) pp: 01-09 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Bitopological separation axioms via SG -open set**

Dr. Rajpal Singh

Lecturer In Mathematics , R. R. Govt College , Alwar , Rajasthan , 301001

ABSTRACT

In this paper, we define a ii-open set in a bitopological space as follows: Let $(X, T1, T2)$ be a bitopological space, a subset A of X is called a (TT_2 -ii- open set) if there exists U, V0,X and UVET UT₂ such that: $A=int^2$ *(V) 1. A=int¹(U) 2. AC CL (ANU) or or A* \leq *CL² (ANV) We study some characteristics and properties of this class. We also explain the relation between ii-open sets and open sets, i-open sets and a-open sets in bitopological space. Next, we define ii-continuous mappings on bitopological spaces with some properties. Keywords: a- open set, i- open set, ii- open set, bitopological space. , Pairwise S**G - Separation axioms*

I. Introduction

Let A be a subset of the topological space (X, \cdot) , then the union of all s^{**}g open sets contained in the subset A of X is called the $s^{**}g$ interior of A and denoted by $s^{**}g$ int (A). The intersection of all $s^{**}g$ closed sets X containing a subset A of X is called the $s^{**}g$ closure of A and is denoted by $s^{**}g$ cl(A). In this chapter we will consider pairwise $s**g$ - Ri spaces [i = 0, 1], pairwise $s**g$ - Ti spaces [i = 0, 1, 2, 3, 4,

5], pairwise s** g - regular spaces, even s**g - Urysohn spaces, even s**g - normal spaces, even s**g completely normal spaces in bitopological spaces.

Pairwise S**G - Separation axioms

In this section, the concept of pairwise s^{*} g-separation axioms is introduced and its basic properties in bitopological spaces are discussed.

Definition Let $(X, 1, 2)$ be a bitopological space and let A X then the

intersection of all 1 $2 - s^{**}g$ - closed sets of X containing a subset A of X is

called 1 2 - s^{**}g closure of A and is denoted by 1 2 - s^{**}g cl(A).

Definition Let $(X, 1, 2)$ be a bitopological space and let A X then the

union of all $1 \t2 - s**g$ open sets contained in a subset A of X is called $1 \t2 - s**g$

 $s**g$ interior of A and is denoted by $1 \t 2 - s**g$ int(A).

Definition A bitopological space $(X, 1, 2)$ is pairwise $s^{**}g$ -R0 if for each

 $i - s**g$ - open set G, x G implies $j - s**g - cl({x})$ G, where i, $j = 1, 2$ and

 $i \neq j$.

Example Let $X = \{a, b, c\}, \tau1 = \{ \cdot, X, \{a, c\} \}$ and $\tau2 = \{ \cdot, X, \{b, c\} \}.$

Clearly the space $(X, 1, 2)$ is pairwise $s^{**}g - R0$.

Theorem In a bitopological space $(X,1,2)$ the following statements are

equivalent :-

 $(X, 1, 2)$ is pairwise s**g-R0.

For any i - s**g - closed set F and a point x F, there exists a U s**gO(X, j) such that x U and F U for i, j = 1, 2 and $i \neq j$.

For any $i - s^{**}g$ - closed set F and a point x F, $j - s^{**}g - cl({x})$

 $F =$, for i, j = 1, 2 and i \neq i.

Proof. i) ii) : Let F be a $i - s**g - closed set F$ and a point x F. Then by

i), $i - s**g-cl (\lbrace x \rbrace)$ $X - F$, where i, $j = 1, 2$ and $i \neq j$. Let $U = X - j - s**g - j$

 $cl({x})$ then U $s^{**}gO(X,$ i) and also F U and x U.

iii) : Let F be a i - s**g - closed set F and a point x F. Suppose the given conditions hold. Since U s**gO(X, j), U i - s**g -cl({x}) = . Then F j - s**g-cl({x}) = , where i, j = 1, 2 and $i \ne j$.

i) : Let G $s**gO(X, i)$ and x G. Now $X - G$ is $i - s**g$ closed and $x X - G$. By iii), $j - s**g - cl({x}) (X - G) =$ and hence $j - s**g - cl({x}) G$ for $i, j = 1, 2$ and $i \neq j$. Therefore, the space $(X, 1, 2)$ is pairwise $s**g - R0$.

Definition A space $(X, 1, 2)$ is said to be pairwise $s**g-R1$ if for each x,

y X, i - $s^{**}g - cl({x}) \neq i$ - $s^{**}g - cl({y})$, there exist disjoint sets U

 $s^{**}gO(X,$ j) and V $s^{**}gO(X,$ i) such that $s^{**}gCl({x})$ U and j -

 $s^{**}g - cl({y})$ V where i, j = 1, 2 and $i \neq j$.

Example Let $X = \{a, b, c\}$, $\tau1 = \{x, y, z\}$, $\{\alpha\}$ and $\tau2 = \{y, x, \{a\}\}$. Clearly the space $(X,1,2)$ is pairwise $s^{**}g - R1$.

Theorem If $(X,1,2)$ is pairwise $s^{**}g$ - R1, then it is pairwise $s^{**}g$ - R0.

Proof. Suppose that $(X, 1, 2)$ is pairwise $s^{**}g - R1$. Let U be a $i - s^{**}g$ - open set and xU. If y U, then y $X - U$ and $x = j - s^{**}g - cl({y})$. Therefore, for each point y $X - U$, $i - s^{**}g - cl({x}) \neq j - s^{**}g - cl({y})$. Since $(X, 1, 1)$ 2) is pairwise $s^{**}g - R1$, there exist a j - $s^{**}g$ - open set Uy and a i - $s^{**}g$ - open set Vy such that $i - s**g - cl({x})$ Uy, $j - s**g - cl({y})$ Vy and Uy Vy = , where i, j = 1, 2 and i \neq j. Let A = {Vy / y X – U}, then X – U A, x A and A is $j - s^{**}g$ - open set. Therefore, $j - s^{**}g - cl({x})$ $X - A$ U. Hence $(X, 1, 2)$ is pairwise $s**g-R0$. **Theorem** A space $(X,1,2)$ is pairwise $s^{**}g$ - R1 if and only if for every pair of points x and y of X such that $i - s^{**}g - cl({x})$ $j - s^{**}g - cl({y})$, there exists a $j - s**g$ -open set U and $i - s**g$ -open set V such that x V, y U

and U $V =$, where i, $j = 1, 2$ and i j.

Proof. Suppose that $(X, 1, 2)$ is pairwise $s**g-R1$. Let x, y be points of X such that $s^{**}g - cl({x})s^{**}g - cl({y})$, where i, j = 1, 2 and i j. Then there exist a i - s**g- open set U and j - s**g- open set V such that $x = i - s$ **g - cl({x}) V, yi - s^{**}g - cl({y})U and it follows that U $V =$, where i, j = 1,

On the other hand, suppose there exist a $j - s**g -$ open set U and $i - s**g$ -open set V such that x V, y U and U $V =$, where i, j = 1, 2 and i j. Since every pairwise s**g-R1 space is every pairwise s**g-R0, i -s**g -cl({x})

V and $i - s^{**}g - cl({v})$ U from which we infer that $i - s^{**}g - cl({x})i$

 $-s^{**}g - cl({y})$ for i, $j = 1, 2$ and i j.

Remark The converse of theorem need not be true in general. The space

 $(X, 1, 2)$ [in Example 2.2.1.] is pairwise s**g- R0 but not pairwise s**g- R1.

Theorem In a bitopological space $(X,1,2)$ the following statements are

equivalent :

 $(X, 1, 2)$ is pairwise $s**g-R1$

For any two distinct points x, y X, i - s**g-cl({x}) j - s**g-cl({y}) implies that there exists a i - s**g- closed set F1 and a $j - s$ **g- closed

set F2 such that $x F1, y$ F2, $x F2, y$ F1 and $X = F1$ F2, $i, j = 1, 2$ and i

j.

Proof. (i) (ii) : Suppose that $(X, 1, 2)$ is pairwise $s^*g - R1$. Let $x, y \times y$

such that $i - s**g-cl({x})$ $j - s**g-cl({y})$. By Theorem 2.2.1, then there exist

disjoint sets V $s^{**}gO(X,$ i), U $s^{**}gO(X,$ i) such that x U, y V and

U $V =$, where i, j = 1, 2 and i j. Then $F1 = X - V$ is a i - s^{**}g- closed set

and $F2 = X - U$ is a i - s^{**}g - closed set such that x F1, x F2, y F1, y

F2and $X = F1$ F2 where i, j = 1, 2 and i j.

(i) : Let x, y X such that $i - s**g - cl({x})j - s**g - cl({y})$ where $i, j = 1, 2$ and i, j . By (ii), there exists a i $s**g- closed set F1 and a j-s**g- closed set F2 such that X F1 F2, x F1, y F2, x F2, y F1. Therefore, x X - F2$ $= U s^{**} g O(X, i)$ and y $X - F1 = V s^{**} g O(X, i)$

) which implies that $i - s**g - cl({x})$ U and $j - s**g - cl({y})$ V and U V = where $i, j = 1, 2$ and i, j .

Definition A bitopological space X is called pairwise s**g- T0 if for any

pair of distinct points x, y of X, there exists a set which is either $i - s^*$ g - open

or $j - s^{**}g$ - open containing one of the points but not the other, where i, $j = 1$,

2 and $i \neq j$.

Theorem A bitopological space X is called pairwise $s^*g - T0$ if either $(X, 1)$ or $(X, 2)$ is $s^*g - T0$.

Proof. The proof is obvious.

Theorem The product of an arbitrary family of pairwise s**g- T0 space is pairwise s**g- T0. **Proof** Let $(X, 1, 2) = \prod_{\alpha \in \Delta} (X_{\alpha}, \tau_{1\alpha}, \tau_{2\alpha})$, where 1 and 2 are the product topologies on X generated by $\tau_{1\alpha}$ and $\tau_{2\alpha}$ respectively and $X = \prod_{\alpha \in \Delta} X_{\alpha}$. Let x

 (x_{α}) and $y = (y_{\alpha})$ be two distinct points of X. Hence $x_{\alpha} \neq y_{\alpha}$ for some . But $(X_{\lambda}, \tau_{1\lambda}, \tau_{2\lambda})$ is pairwise s**g - T0, there exist either a $\tau_{1\lambda}$ - s^{**}g- open set

U containing x_λ but not y_λ or a $\tau_{2\lambda}$ - s**g- open set V_α containing y_λ but not x_λ . Define $U = \prod_{\lambda \neq \alpha} (X_\lambda \times U_\alpha)$ and $V = \prod_{\lambda \neq \alpha} (Y_{\lambda} \times V_{\alpha})$. Then U is τ_1 - s^{**}g - open and V is τ_2 - s^{**}g - open. Also, U contains x but not y.

Definition A bitopological space X is called pairwise s**g - T1 if for every distinct points x, y of X, there is a τi $-s**g$ - open set U and a τj - $s**g$ - open set V such that x U, y U and y V, x V, where i, j = 1, 2 and $i \neq j$.

Example Let $X = \{a, b, c\}$, $\tau_1 = \{x, x, \{a, c\}\}$ and $\tau_2 = \{x, x, \{b, c\}\}$.

Clearly τ 1 - s**gO(X) = {, X, {a}, {c}, {a, c}}and τ 2 - s**gO(X) = {, {c}, {b,

c}, $\{b\}$, $X\}$. Then the bitopological space $(X, \tau1, \tau2)$ is called pairwise s**g- T1.

Remark Since a bitopological space $(X, 1, 2)$ is pairwise s^*g - T1 if and only if the singletons are τi - s^*g closed, it is clear that every pairwise s**g-T1 is pairwise s**g- R0. But the converse is not true in general as it can be seen from the following example:

Example Let $X = \{a, b, c\}$, $\tau_1 = \tau_2 = \{x, \{a\}, \{b, c\}\}\$. It is clear that τ_1

 $s^*gO(X) = \tau^2 - s^{**}gO(X) = \{ \text{, } \{a\}, \{b, c\}, X\}.$ Then the bitopological space $(X, 1, 2)$ is pairwise $s^{**}gS$ - R0 but not pairwise s**g- T1 .

Remark The following example shows that the notions pairwise s**g - T0 - ness and pairwise s**g- R0 - ness are independent.

Example Let $X = \{a, b, c, d\}, \tau_1 = \tau_2 = \{\tau_1, X, \{a\}, \{a, b\}\}.$ It is clear that

 τ 1 - s^{**}gO(X) = τ 2 - s^{**}gO(X) = {, {a}, {a, b, c}, {a, b}, X}. Then the

bitopological space $(X, 1, 2)$ is pairwise s^*g - T0 but not $(X, 1, 2)$ is pairwise

 s^* g - R0. Also the bitopological space $(X, 1, 2)$ as in example is pairwise

s**g- R0 but not pairwise s**g- T0 .

Corollary A bitopological space X is pairwise s**g- T1 iff if it is pairwise s**g- T0 and pairwise s**g - R0.

Lemma If every finite subset of a bitopological space $(X, 1, 2)$ is τ *j* -

s**g closed then it is pairwise s**g - T1.

Proof Let x, y X such that x y. Then by hypothesis, $\{x\}$ and $\{y\}$ are τ . s**g - closed sets in X. Hence $X \setminus \{x\}$ and $X \setminus \{y\}$ are τ i - s**g - open subsets of X such that x $X \setminus \{x\}$ and y $X \setminus \{y\}$. Therefore, $(X, 1, 2)$ pairwise s**g- T1.

Theorem The product of an arbitrary family of pairwise s**g - T1 space is pairwise s**g -T1.

Proof Let $(X, 1, 2) = \prod_{\alpha \in \Delta}(X_{\alpha}, \tau_{1\alpha}, \tau_{2\alpha})$, where 1 and 2 are the product topologies on X generated by $\tau_{1\alpha}$ and $\tau_{2\alpha}$ respectively and $X = \prod_{\alpha \in \Delta} X_{\alpha}$. Let $x = (x_{\alpha})$ and $y = (y_{\alpha})$ be two distinct points of X. Hence $x_{\alpha} \neq y_{\alpha}$ for some .

But $(X_{\lambda}, \tau_{1\lambda}, \tau_{2\lambda})$ is pairwise s**g – T1, there exist a $\tau_{1\lambda}$ - s**g- open set U containing x_{λ} but not y_{λ} and there exist a $\tau_{2\lambda}$ - s**g- open set V_α containing y_λ but not x_λ . Define $U = \prod_{\lambda \neq \alpha} (X_\lambda \times U_\alpha)$ and $V = \prod_{\lambda \neq \alpha} (Y_\lambda \times V_\alpha)$. Then U is τ_1 - s^{**}g - open set and V is τ_2 - s^{**}g – open set. Also, U contains x but not y and V contains y but not x.

Theorem A bitopological space X is called pairwise $s^{**}g$ - T1 if either

 $(X, 1)$ or $(X, 2)$ is $s^{**}g - T1$.

Proof. Let(X, 1, 2) be pairwise $s^*g - T1$ space. Let x, y be two distinct points

of X, then there exists a $1 - s^{**}g - \text{open set } U \text{ such that } x = U, y = U.$ Thus,

 $(X, 1)$ is s**g - T1. Similarly, $(X, 2)$ is s**g - T1. Converse is obvious.

Definition A bitopological space X is called pairwise s**g - T2 or

pairwise $s^{**}g$ - Hausdorff if given distinct points x, y of X, there is a i - $s^{**}g$

- open set U and a i - s**g - open set V such that x U, y V, U V =

where i, $j = 1$, 2 and $i \neq j$.

Corollary A bitopological space X is pairwise s**g - T2 iff if it is pairwise s**g - T1 and pairwise s**g - R1.

Theorem Every pairwise s**g - T2 space is pairwise s**g - T1 space. **Proof.** Let X is pairwise s**g - T2 space. Since X is pairwise $s**g$ - T2 space, there exists $a i - s**g - open set U$ and $a j - s**g - open set V$ such that x

U, y V, U V = , where i, j = 1, 2 and i \neq j. x U, but y U and y V

but x V. X is pairwise $s^{**}g$ - T1 space, there is a τi - $s^{**}g$ - open set U and

a τi - s^{**}g - open set V such that x U, y U and y V, x V, where i, j =

1, 2 and $i \neq j$.

In general the converse of the above theorem need not be true and it can be seen from the following example.

Example Let $X = \{a, b, c\}$, $\tau1 = \{x, x, \{a, c\}\}$, $\tau2 = \{x, x, \{b, c\}\}$. Clearly the bitopological space $(X, \tau1, \tau2)$ is pairwise s**g - T1 but not pairwise s**g - T2.

Remark Every pairwise s**g - T1 space is pairwise s**g - T0.

Theorem If a space $(X, 1, 2)$ is pairwise $s**g - T2$, then it is pairwise $s**g - R1$.

Proof. Let $(X, 1, 2)$ be pairwise $s**g - T2$. Then for any two distinct points x,

y of X, their exist a τi - s^{**}g - open set U and a τj - s^{**}g - open set V such that x

U, y V and U V = where i, j = 1, 2 and i \neq j. If $(X, 1, 2)$ is pairwise s**g - T1, then $\{x\} = \tau i$ - s**g - cl $(\{x\})$ and ${y} = \tau j s**g - cl({y})$ and thus τi

 $s^{**}g - cl({x}) \neq \tau i - s^{**}g - cl({y})$, where i, $j = 1, 2$ and $i \neq j$. Thus for any

distinct pair of points x, y of X such that $\tau i - s**g - cl({x}) \neq \tau i - s**g - cl({y})$ where i, $i = 1, 2$ and $i \neq j$, there exists a τ j - s^{**}g - open set U and τ i - s^{**}g - open set V such that x V, y U and U V = where i, j = 1, 2 and $i \neq j$. Hence $(X, 1, 2)$ is pairwise s**g - R1.

Remark The converse of the above theorem is not true in general that is pairwise s**g - R1 space is not pairwise s**g - T2 space.

Remark If a bitopological space X pairwise $s^*g - T$, then it is pairwise $s^*g - T$ i – 1, i = 1,2.

Definition Let X be a bitopological space. Then τ is $s^{**}g$ - regular w.r.to

τj if for each point x in X and each τi - s**g - closed set P such that x P there

is a τ i - s^{**}g - open set U and a τ j - s^{**}g - open set V disjoint from U such that

x U and P V. X is pairwise $s^{**}g$ - regular if τi is $s^{**}g$ - regular w.r.to τi and

τj is s**g - regular w.r.to τi.

Remark A pairwise s**g - regular space need not be a pairwise s**g - T1 space as seen by next example.

Example Let $X = \{a, b, c\}$, $\tau 1 = \{x, X, \{a\}\}$, $\tau 2 = \{x, X, \{b, c\}\}$. Clearly the bitopological space $(X, \tau 1, \tau 2)$ is pairwise s**g - regular but not a pairwise s**g - T1 space. Since {b} is not τ2 - s**g - closed.

Definition X is pairwise s**g - T3 if it is pairwise s**g - regular and pairwise s**g - T1.

Remark Pairwise s**g - T3 Pairwise s**g - T2.

Theorem Every pairwise s**g - T0, pairwise s**g - regular space is pairwise s**g - T1 and hence pairwise $s**g - T3$.

Example Let X be a pairwise s^* g - T3 space. Then X is also a pairwise

 $s^{**}g$ - T2 space. Let a, b X. Since X is a pairwise $s^{**}g$ - T1 space, $\{a\}$ is a τ j -

 $s^{**}g$ - closed set. Since a and b are distinct. By pairwise $s^{**}g$ - regularity,

 τ i- s^{**}g - open set U and a τ j - s^{**}g - open set V such that {a} U and b V.

Hence X is pairwise $s^{**}g$ - T3.

Definition A bitopological space X is called pairwise s^{**g} - Urysohn, if for any two points x and y of X such that $x \neq y$, there exists a τi - s^{**}g - open set U and a τ j - s**g - open set V such that x U, y V, τ j - s**g - cl(U) τ i - s**g - cl(V) = where i, j = 1, 2 and i \neq j.

Example Let $X = \{a, b, c\}$, $\tau1 = \{x, \{a\}\}$ and $\tau2 = \{x, \{a\}, \{b, c\}\}$.

It is clear that τ i - s^{**}g - open set , X, {a, c}, {c} and τ i - s^{**}g - open sets are

, X, $\{b, c\}$, $\{a\}$. Then the bitopological space X is called pairwise s**g -

Urysohn.

Remark Obviously, pairwise s^* g - T3 pairwise s^* g – Urysohn pairwise s**g - T2.

Definition X is said to be pairwise $s^{**}g$ - normal if for each τi - $s^{**}g$ -

closed set A and τ i- s^{**}g - closed set B with A B = , there exists a τ i-s^{**}g

open set V B and there exists a τ i- s^{**}g - open set U A such that U V = , where i, j = 1, 2 and $i \neq j$.

Example Let $X = \{a, b, c\}$, $\tau_1 = \tau_2 = \{\right.$, X , $\{a\}$, $\{b\}$, $\{a, b\}$. Clearly the bitopological space (X, τ_1, τ_2) is pairwise normal but not pairwise s**g - normal as well as pairwise s**g - regular.

Definition A pairwise $s**g$ - normal, pairwise $s**g$ - T1 space is called pairwise $s**g$ - T₄ space.

Example Let X be a pairwise s^* g - T4 space. Then X is also a pairwise

s**g - T3 space. Suppose that F is a τ j - s**g -closed subset of X and p X

does not belong to F. Since X is a pairwise $s^{**}g$ - T1 space, $\{p\}$ is a $\tau j - s^{**}g$ -

closed set. Since F and $\{p\}$ are disjoint. By pairwise $s^{**}g$ - normality, τi -

 $s^{**}g$ - open set G and a τ i - $s^{**}g$ - open set H such that F G and p {p} H.

Hence X is pairwise $s^{**}g$ - T4.

Definition A bitopological space X is said to be a pairwise s^* g - completely normal provided that whenever A and B are subsets of X such that

 τ i - s^{**}g - cl(A) B = and A τ j - s^{**}g - cl(B) = there exists a j - s^{**}g open set U and a i - s**g - open set V such that A U, B V, U V =

where i, $j = 1$, 2 and $i \neq j$.

Definition A pairwise s^{**}g - T1 space, pairwise s^{**}g -completely normal bitopological space is called pairwise $s**g - T_5$ space.

Theorem Every pairwise s**g - completely normal space is pairwise s**g -normal.

Proof. Let X be a pairwise $s^{**}g$ - completely normal bitopological space. Let

A be a i - s**g - closed set and B be a j - s**g - closed set such that $AB =$

. Then τi - $s**g$ - cl(A) $B = A$ $B =$ and A τi - $s**g$ - cl(B) = A $B =$

. By complete $s^{**}g$ - normality, there exists a j - $s^{**}g$ - open set u and a j -

 $s^{**}g$ - open set V such that A U, B V, U V = . Hence X is pairwise $s^{**}g$ - normal.

Theorem Every pairwise completely normal space is pairwise s**g - completely normal.

Proof. The proof is obvious.

^{*}Corresponding Author: Dr. Rajpal Singh 7 | Page 7 | Page

Theorem If a bitopological space $(X, 1, 2)$ is pairwise $s**g$ - completely

normal then every subspace is pairwise s**g - normal.

Proof. Let $(X, 1, 2)$ be pairwise $s**g$ - completely normal and $(Y, 1y, 2y)$ be

a subspace. Let F1 and F2 be disjoint s**g - closed in 1y and 2y respectively.

F1y is $1 - s^{**}g - closed$ F = 1y - s^{**}gcl (F1). Then F1 2 - s^{**}gcl (F2) = 1y

 s^{**} gcl (F1)2 - s^{**} gcl (F2) = (Y1 - s^{**} g - cl (F1))2 - s^{**} gcl (F2) = 2y

 s^{**} gcl (F2) 1y - s^{**} gcl (F1) = F1 F2 = . Similarly we can show that, $1 - s^{**}$ gcl (F1) F2 = . Thus F1, F2 is a pairwise s**g - separated pair of X. By pairwise s**g - complete normality, there exists disjoint sets G1 1 and G2 2 such that, F2 G1, F1 G2. Then F2 Y G1, F1 Y G2, $(Y \text{G1}) (Y \text{G2}) =$ and Y G1 1y,Y G2 2y. Hence (Y 1y, 2y) is pairwise s**g - normal.

Definition A subset A of a space $(X, 1, 2)$ is said to be bi - s**g - open if it is both i - s**g open and j - s**g open, where i, $j = 1, 2$ and $i \neq j$.

Theorem Every pairwise s**g - closed, pairwise s**g - continuous image of a pairwise s**g - normal space is pairwise s**g - normal. on to **Proof.** Let $(X, 1, 2)$ be a pairwise $s * g$ - normal space. Let $f:(X, 1, 2) \rightarrow$

(Y, τ_1^* , τ_2^*) be a pairwise s**g - closed, pairwise s**g - continuous mapping. Let A and B be two disjoint subsets of Y, where A is τ_1^* - s^{**}g - closed and B is

 τ^* ₂ - s^{**}g - closed. Then f⁻¹(A) is τ 1- s^{**}g - closed and f⁻¹(B) is τ 2 - s^{**}g - closed. Also A B = f⁻¹(A ∩ B) = f $^{-1}$ () = . Since X is pairwise s**g

- normal, there exists disjoint sets GA and GB such that $f^{-1}(A)GA$, $f^{-1}(B)$ GB, where GA is τ 2 - s^{**}g - open and GB is τ 1 - s^{**}g - open. Let $G_A^* = \{y : f^{-1}(y)$ GA} and $G_B^* = \{y : f^{-1}(y) \text{ GB}\}\$. Then G_A^* $G_B^* = , A$ G_A $*$, B G_B* and since $G_A^* = Y - f(X - GA), G_B^* = Y - f(X - GB)$. Here G_A^* is τ^*_{2} - $s^{**}g$ - open and G_B^* is τ_1^* - s**g - open. Hence (Y, τ_1^*, τ^*) is pairwise s**g - normal.

Theorem Every bi - s**g - closed subspace of a pairwise s**g -normal space is pairwise s**g - normal.

Proof. Let $(Y, 1y, 2y)$ be a bi - s**g closed subspace of a pairwise s**g - normal

space $(X, 1, 2)$. Let A be a iy - s^{**}g - closed set and B be a jy - s^{**}g - closed

set disjoint from A. Since the space Y is bi - $s**g$ -closed, A isi - $s**g$ closed

and j - s**g - closed, where i, j = 1, 2 and i \neq j. By pairwise s**g - normality

of $(X, 1, 2)$, there exists a j - s^{**}g - open set U and a i - s^{**}g - open set V

such that A U, B V, U V = Thus, $A = A$ Y Y U and $B = B$ Y

V Y.(U Y) (V Y) = . Also, U Y is jy-s^{**}g - open and V Y is iy-s^{**}g - open. Thus, there exists aiy $s**g$ - open set V Y and a jy- $s**g$ - open set U Y such that A (U Y), B (V Y), (U Y) (V

 $=$. Hence $(Y, 1y, 2y)$ is pairwise $s**g$ - normal.

REFERENCES :-

- [1]. Arya S. P.. Gupta R. (1974). On Strongly continuous function, Kyunkpooka Math. J.. 14: 131-143.
- R. Engelking, General topology of sigma series in Pure mathematics 1989 vol 6.
- [3]. C. Janaki and Renu Thomas, R*-closed maps and R*-open maps in topological spaces, Global Research Analysis Vol.2, issue 6, June 2013, 162-164.

*Corresponding Author: Dr. Rajpal Singh 8 | Page

- [4]. C. Janaki and Renu Thomas, On (1,2)* R* closed sets, Asian Journal of Current Engineering and Mathematics, Vol. 1, issue 6, 7 oct 2013.
- [5]. J.C Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89. N. Levine, Semi-open sets and semi-continuity in topological spaces.
- [6]. Amer Math. Monthly 70 (1963), 36-41.
- [7]. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2) (1970). 89-96. [8]. Palaniappan N. and Rao K. C. (1993) Regular Generalized Closed Sets, Kyunkpooka Math. J.,
- [8]. Palaniappan N. and Rao K. C. (1993) Regular Generalized Closed Sets, Kyunkpooka Math. J., 33: (2), 211-219.
- Sanjay Mishra, On Regular Generalized Weakly closed sets in topological spaces, International Journal of Math Analysis. Vol. 6, (2012), No.39, 1939- 1952.
-
- [10]. M.Stone, Application of the Boolean rings to general topology, Trans. Amer.Math.Soc.41(1937). Mahdi, Y.K., (2007), Semi-Open and Semi-Closed Sets in Bitopological Spaces, Accepted in The First Science Conference of Education College, Babylon Unive, February 18-19.
- [12]. Kelly.j.c, (1963), Bitopological Spaces, London Math. Soc., Vol. 13, 71-89.
[13]. Lellis Thivagav, M. and B.Meera.Devi, (2010), Bitopological B-Open Set.
- Lellis Thivagav, M. and B.Meera.Devi, (2010), Bitopological B-Open Sets, International Journal of Algorithms, Computing and Math, Vol. 3, No. 3
- [14]. Lellis Thivagav, M., (1991), Generalization of Pairwise a-Continuous Functions, Pure and Appl. Mathematica sci, Vol.28, 55-63.