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ABSTRACT: This paper  is necessarily restricted to application of  Generalised Linear Models(GLM) and 

Generalised Additive Models(GAM), and is intended to provide readers with some measure of the power of 

these mathematical  tools for modeling Health/Illness  data systems. We are all aware that illness, in general 

and children illness, in particular is amongst the most serious socio-economic and demographic problems in 

developing countries, and they have great impact on future development. In this paper  we focus on some 

frequently occurring diseases among children under fourteen  years of age, using data collected from various 

hospitals of Jammu district from 2011 to 2016.The success of any policy or health care intervention depends on 

a correct understanding of the socio economic environmental and cultural factors that determine the occurrence 

of diseases and deaths. Until recently, any morbidity information available was derived from clinics and 

hospitals. Information on the incidence of diseases, obtained from hospitals represents only a small proportion 

of the illness, because many cases do not seek medical attention .Thus, the hospital records may not  be 

appropriate from estimating the incidence of diseases from programme  developments. The use of DHS data in 

the understanding of the childhood morbidity has expanded rapidly in recent years. However, few attempts have 

been made to address explicitly  the problems  of non linear effects on metric covariates in the  interpretation of 

results .This study shows how the GAM model can be adapted to extent the analysis of GLM  to provide an 

explanation of non linear relationship of the covariate. Incorporation of non linear terms in the model improves 

the estimates in the terms of goodness of fit. The GLM model is explicitly specified by giving symbolic 

description of the linear predictor and a description of the error distribution and the GAM model is fit using the 

local scoring algorithm, which iteratively fits weighted additive models by back fitting. The back fitting 

algorithm is a Gauss-Seidel method of fitting additive models by the iteratively smoothing partial residuals. The 

algorithm separates the parametric from the non parametric parts of the fit, and fits the parametric part using 

weighted linear least squares within the back fitting algorithm. 

Keywords: Generlised additive model, Generalised linear model, weighted linear least squares 

  

 I.   INTRODUCTION 
Generalized additive model (GAM) is a generalized linear model in which the linear predictor depends 

linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these 

smooth functions. GAMs were originally developed by Trevor Hastie and Robert Tibshirani to blend properties 

of generalized linear models with additive models. Generalized linear model (GLM) is a flexible generalization 

of ordinary linear regression that allows for response variables that have error distribution models other than 

a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the 

response variable via a link function and by allowing the magnitude of the variance of each measurement to be a 

function of its predicted value.Generalized linear models were formulated by John Nelder and Robert 

Wedderburn as a way of unifying various other statistical models, including  linear regression , logistic 

regression and Poisson regression . They proposed an iteratively reweighted least squares method for maximum 

likelihood estimation of the model parameters. Maximum-likelihood estimation remains popular and is the 

default method on many statistical computing packages. Other approaches, including Bayesian approaches 

and least squares fits to variance stabilized responses, have been developed. Significant  statistical development 

in  the last three decades  has been the advances in regression analysis provided by generalized additive models 

(GAM) and generalized  linear models (GLM).These three alphabet acronyms translate into a great scope  for 

application in many areas of applied scientific  research. Based on developments by Cox and Snell[1] in the late 

sixties, the first seminal publications, also providing the link with practice (through software availability), were 

http://www.questjournals.org/
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those of Nelder and Wedderburn[2] and Hastie and Tibshirani[3]. Since their development, both approaches 

have been extensively applied in medical and health related  research, as evidenced by the growing number of 

published papers incorporating these modern regression tools. 

mathematical extensions of linear models that do not force data into unnatural scales, and thereby allow 

for non-linearity and non-constant variance structures in the data (Hastie and Tibshirani, [3]). They are based on 

an assumed relationship  between the mean of the response variable and the linear combination of the 

explanatory variables. Data may be assumed to be from several families of probability distributions, including 

the normal, binomial, Poisson, negative binomial, or gamma distribution, many of which better fit the non-

normal error structures of most ecological data. Thus, GLMs are more flexible and better suited for analyzing  

relationships, which can be poorly represented by classical Gaussian distributions (see Austin[4]). GAMs 

(Hastie and Tibshirani[3]) are semi-parametric extensions of GLMs; the only underlying assumption made is 

that the functions are additive and that the components are smooth. A GAM, like a GLM, uses a link function to 

establish a relationship between the mean of the response variable and a „smoothed‟ function of the explanatory 

variable(s). The strength of GAMs is their ability to deal with highly non-linear and non-monotonic 

relationships between the response and the set of explanatory variables. GAMs are sometimes referred to as 

data- rather than model driven. This is because the data determine the nature of the relationship between the 

response and the set of explanatory variables rather than assuming some form of parametric relationship (Yee 

and Mitchell [5]. Like GLMs, the ability of this tool to handle non-linear data structures can aid in the 

development of  models that better represent the underlying data, and hence increase our understanding of real 

life  systems. Few syntheses of GLMs and GAMs have been made since the first papers encouraged their use in 

environmental  studies (Austin and Cunningham[6] and  Nicholls[7]). 

This work  is necessarily restricted to application of  GLMs and GAMs, and is intended to provide 

readers with some measure of the power of these statistical tools for modeling Health/Illness  data systems. We 

are all aware that illness, in general and children illness, in particular is amongst the most serious socio-

economic and demographic problems in developing countries, and they have great impact on future 

development. Demographic and health surveys are designed to collect data on health and nutrition of children 

and mother as well as on fertility and family planning.  The discovery of some vaccination, during the last 

decade, has reduced morbidity and mortality in most cases. Despite this, some diseases are still the major cause 

of death in childhood .In this paper we focus on some frequently occurring diseases among children under 

fourteen  years of age, using data collected from various hospitals of Jammu district( J and K State, India)  from 

2011 to 2016.The success of any policy or health care intervention depends on a correct understanding of the 

socio economic environmental and cultural factors that determine the occurrence of diseases and deaths. Until 

recently, any morbidity information available was derived from clinics and hospitals. Information on the 

incidence of diseases, obtained from hospitals represents only a small proportion of the illness, because many 

cases do not seek medical attention .Thus, the hospital records may not  be appropriate from estimating the 

incidence of diseases from program developments. The use of DHS data in the understanding of the childhood 

morbidity has expanded rapidly in recent years.However, few attempts have been made to address explicitly  the 

problems  of non linear effects on metric covariates in the  interpretation of results .This study shows how the 

GAM model  can be adapted to extent the analysis of GLM  to provide an explanation of non linear relationship 

of the covariate. Incorporation of non linear terms in the model improves the estimates in the terms of goodness 

of fit. The GLM model is explicitly specified by giving symbolic description of the linear predictor and a 

description of the error distribution and the GAM model is fit using the local scoring algorithm, which 

iteratively fits weighted additive models by back fitting. The back fitting algorithm is a Gauss-Seidel method of 

fitting additive models by the iteratively smoothing partial residuals. The algorithm separates the parametric 

from the non parametric parts of the fit, and fits the parametric part using weighted linear least squares within 

the back fitting algorithm.The rest of the paper is organized as follows. Section II  proposes  model descriptions 

and estimation procedure applied based on Generalized Additive Models (GAM). Section III presents the 

outcomes obtained and compares the result based on GLM and GAM. Finally, Section IV  summarizes and 

concludes. 

 

II.   DESCRIPTION OF MODEL AND SIGNIFICANCE 
To extend the additive model to a wide range of distribution families, Hastie and Tibshirani [3] 

proposed generalized additive models. These models assume that the mean of the dependant variable depends in 

additive predictor through a non linear link function. Generalized additive models permit the response 

probability distribution to be any member of the exponential family of distribution. Many widely used statistical 

models belong to this general class , including additive models from Gaussian data , non parametric logistic 

models for binary data and non parametric log-linear models for Poisson data.In GLM, the dependent variable 

values are predicted from a linear combination of predictor variables, which are “connected” to the dependent 

variable via a link function .Let Y be a response random variable and 𝑋1, … . . , 𝑋𝑝  be a set of predictor variables. 
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In generalized linear model a response variable Y can be viewed as a method for estimating for the value of Y 

depends on the value of 𝑋1 , … . . , 𝑋𝑝 . 
The generalized linear model is assumed to be  

𝐸 𝑌 = 𝑓 𝑋1, … . . , 𝑋𝑝 = 𝑔(𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑃𝑋𝑃), where g(.) is known as link function .  

Given a sample of values for Y and X, estimates of 𝛽0 , 𝛽1, … . . , 𝛽𝑃  are often obtained by the least squares 

method or maximum likelihood method.The additive model generalizes the linear model by modeling expected 

value of Y as  

𝐸 𝑌 = 𝑓 𝑋1 , … . . , 𝑋𝑝 = 𝑆0 + 𝑆1(𝑋1) + ⋯ + 𝑆𝑃(𝑋𝑃) 

where 𝑆𝑖(𝑋𝑖), i=1,----,p are smooth functions . 

 

The usual linear function covariate 𝛽𝑗𝑋𝑗  is replaced with 𝑆𝑖(𝑋), an unspecified smooth function. These 

functions are not given a parametric form but instead are estimated in a non parametric fashion. In addition, the 

additive models require specification of the smooth functioning using as a scatter plot smoother such as Loess (a 

locally weighted regression smoother), running mean or a smooth spline.  The scatter plot smoother used in this 

application of the additive model is the cubic 𝛽-spline. The degree of smoothing in a scatter plot smoother, for 

example in a Loess, is controlled by the span, which is the proportion of points contained in each neighborhood 

(the set of X values within a defined distance to 𝑋𝑗 ). The resulting „smooths„characterizes the trend of the 

response variable as a function of the predictor variables. 

The algorithm for generalized additive models is a little more complicated. Generalized additive 

models (GAM) extend generalized linear models in the same manner as additive models extend linear regression 

models, that is ,by replacing the linear form 𝛼 +  𝑋𝑗 (𝛽𝑗 )𝑗  with the additive form 𝛼 +  𝑆𝑗 (𝛽𝑗 )𝑗 . 

The fitting of the GAM is an iterative looping process involving the scatter plot smooth,the back fitting 

algorithm, and the local scoring algorithm, a generalization of the Fisher scoring procedure in a GLM. Each 

iterations of the local scoring algorithm produces a new working response and weights that are directed back to 

the backfitting algorithm which produces a new additive predictor using the scatterplot smoother . The back 

fitting and local scoring algorithms consider the estimation of the smoothing term 𝑆𝑘  the additive model. Many 

ways are available to approach the formulation and estimation of additive models. The back fitted algorithm is a 

general algorithm that can fit an additive model using any regression-type smoothers. 

Define the jth set of partial residuals as 

𝑅𝑗 = 𝑌 − 𝑆0 −  𝑆𝑘𝑋𝑘

𝑘≠𝑗

 

 

The partial residuals removes the effects of all the other variables from j ; therefore they can be used to 

model of effects against 𝑋𝑗 . This is the foundation for the back fitting algorithm , providing a way for estimating 

each smoothing function 𝑆𝑗 (. ) given estimates { 𝑆𝑖 (.), i ≠ j}; for all the others . The back fitting algorithm 

iterative ,starting with initial functions 𝑆0,…., 𝑆𝑃 and iteration cycling through the partial residuals , fitting the 

individual smoothing components to its partial residuals .iteration proceeds until the individual components do 

not change . The algorithm so far described fits just additive models. 

In the same way, estimation of the additive terms for generalized additive models is accomplished by 

replacing the weighted linear regression for the adjusted dependent variable by the weighted back fitting 

algorithm, essentially fitting a weighted additive model. The algorithm used in the case is called the local 

scoring algorithm .it is also an iterative algorithm and starts with initial estimates of 𝑆0,…., 𝑆𝑃. During iteration, 

an adjusted dependent variable and a set weight are computed, and then the smoothing components are 

estimated using a weighted back fitting algorithm. The scoring algorithm stops when the deviance of the 

estimates ceases to decrease. 

Overall, then the estimating procedure for generalized models consists of two loops. Inside each step of 

the local scoring algorithm (outer loop), a weighted back fitting algorithm (inner loop) is used until 

convergence. Then, based on the estimates from this weighted back fitting algorithm, a new set of weights is  

calculated and the next iteration of the scprong algorithm starts. Any non- parametric smoothing method can be 

used to obtain 𝑠𝑗 (𝑥). The GAM procedure implements the 𝛽- spline and local regression methods for univariate 

smoothing components and the thin-plate smoothing spline for bivariate smoothing components. 

A unique aspect of generalized additive models is the non- parametric functions of the predictor variables. 

Hastie and Tibshirani[3] discuss various general scatter plot smoothers that can be applied to the x variable 

values, with the target criterion to maximize the quality of prediction of the(transformed) y variable values. 

Onse such scatter plot smoother is the cubic smoothing splines smoother, which generally produces a smooth  

generalization of the relationship between the two variables in the scatter plot. Computational details regarding 

this smoother can be found in Hastie and Tibshirani[3]. 
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A step –wise GAM is performed to determine the best fitting model based on the criteria of the lowest (Akaike 

Information Criterion) test statistic which is a function and the effective member of parameters being estimated. 

The AIC in the step –wise GAM (Hastie[8] is calculated as 

    AIC=D+2df𝜑 
 

where D= Deviance (residual sum of squares),  df= effective degrees of freedom, and  𝜑  = dipersion 

parameter(variance). 

 

The model with the lowest AIC  is considered to have the best number of parameters to include in the 

final model. The deviance estimated in the model, analogous to the residual sum of squares, is a measure of the 

fit of the model.a pseudo coefficient of determination 𝑅2, is estimated as 1.0 minus the ratio of the deviance of 

the model to the deviance of the null model.  

Bayesian information criterion (BIC) or Schwarz criterion (also SBC, SBIC) is an alternative  criterion 

for model selection  among a finite set of models; the model with the lowest BIC is preferred. It is based, in part, 

on the likelihood function and it is closely related to the Akaike information criterion (AIC). When fitting 

models, it is possible to increase the likelihood by adding parameters, but doing so may result in overfitting. 

Both BIC and AIC resolve this problem by introducing a penalty term for the number of parameters in the 

model; the penalty term is larger in BIC than in AIC. The BIC was developed by Gideon E. Schwarz and 

published in a 1978 paper, where he gave a Bayesian argument for adopting it. 

The BIC is  defined as 

                                  BIC = -2 ln𝐿  +K ln(n),  where  x = the observed data;  Ѳ = the parameters of the model;  

n = the number of data points in  x, the number of observations, or equivalently, the sample size;  k = the 

number of free parameters to be estimated.  If the model under consideration is a linear regression,  k is the 

number of regressors, including the   intercept;  𝐿  = the maximized value of the likelihood function of the 

model  M , i.e. 𝐿 = 𝑝(
𝑥

𝜃 
 , 𝑀) ,  where 𝜃   are the parameter values that maximize the likelihood function. 

 

III. MODELLING AND DATA ANALYSIS FOR JAMMU DISTRICT 
It is believed that the children disease cause degradation in the nutritional state and that successive 

episode may compromise physical development of infants, leading to malnutrition. However, the risk that under 

nourished children are more likely to develop diseases is as yet inconclusive. Some diseases affects mainly 

children in their first year of life but especially at weaning age. During this period a higher mortality rate is 

observed and the nutritional consequences are more serious. In this study  data related to  Children affected by 

diseases like Acute Gastroenteritis(AGE),   Thallesemia, Bronchitis , Seizure and Anemia was collected and 

analysed for providing the best model in  Jammu District, constituting its eight blocks namely Akhnoor, Khour, 

Bhalwal, R S Pura, Satwari, Jammu ,Kot Bhalwal and Marh.Diseases situation in each block is not same. 

Division is one of the most independent variable for this study.The following tables shows an overall scenario of 

these diseases in Jammu District children  by blocks. 

 
Table 1: Total Number And Percentage Of Acute Gastroenteritis(Age) In Jammu District By Blocks. 

 

JAMMU 

DISTRICT 

 HAD AGE NO AGE TOTAL 

AKHNOOR COUNT(%) 412(31.69%) 888(68.30%) 1300(100%) 

KHOUR COUNT(%) 104(20.55%) 402(79.44) 506(100%) 

BHALWAL COUNT(%) 87(25.51%) 254(74.48%) 341(100%) 

SATWARI COUNT(%) 206(18.10%) 932(81.89%) 1138(100%) 

R S PURA COUNT(%) 446(32.08%) 944(67.91%) 1390(100%) 

JAMMU COUNT(%) 151(20.13%) 599(79.86%) 750(100%) 

DANSAL COUNT(%) 258(29.35%) 621(70.64%) 879(100%) 

MARH COUNT(%) 336(31.81%) 720(68.72%) 1056(100%) 

TOTAL   2213(29.275) 5347(70.72%) 7560(100%) 

From Table 1, we see that Akhnoor and Marh blocks are more affected area than other six blocks in 

Jammu District. Satwari and Jammu blocks are less affected area with AGE as compared to other divisions. 

Again, percentage of occurring AGE in rural area is higher than in urban area. 
 

Table 2: Total Number And Percentage Of Thallesemia In Jammu District By Blocks. 
 

JAMMU 

DISTRICT 

 HAD 

Thallesemia 

NO Thallesemia Total 

AKHNOOR COUNT(%) 127(14.03%) 1173(85.96%) 1300(100%) 

KHOUR COUNT(%) 71(17%) 435(82.99%) 506(100%) 

BHALWAL COUNT(%) 58(17.75%) 283(82.24%) 341(100%) 

SATWARI COUNT(%) 202(7.84%) 936(92.15%) 1138(100%) 

R S PURA COUNT(%) 109(8.53%) 1281(91.46%) 1390(100%) 

JAMMU COUNT(%) 64(10.12%) 686(89.81%) 750(100%) 

DANSAL COUNT(%) 89(11.45%) 790(88.54%) 879(100%) 

MARH COUNT(%) 121(9.76%) 935(90.23%) 1056(100%) 

TOTAL   1003(13%)) 6557(86.73%) 7560(100%) 

https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Regressor
https://en.wikipedia.org/wiki/Likelihood_function
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From Table 2, we can see that Bhalwal  and Akhnoor are highly affeted areas of Thallesemia than other 

blocks. Satwari is least affected amongst the other blocks. The probability of occurring Thallesemia for rural 

and urban area has no significant difference. 

 

Table 3 Total Number And Percentage Of Bronchitis In Jammu District By Blocks. 
 

JAMMU 

DISTRICT 

 HAD 

Bronchitis 

NO Bronchitis TOTAL 

AKHNOOR COUNT(%) 80(6.15%) 1220(93.84%) 1300(100%) 

KHOUR COUNT(%) 31(6.12%) 475(93.87) 506(100%) 

BHALWAL COUNT(%) 35(10.26%) 306 (89.73%) 341(100%) 

SATWARI COUNT(%) 71(6.27%) 1067(93.76%) 1138(100%) 

R S PURA COUNT(%) 62(4.46%) 1328(95.53%) 1390(100%) 

JAMMU COUNT(%) 26(3.46%) 724(96.53%) 750(100%) 

DANSAL COUNT(%) 46(5.23%) 833(94.76%) 879(100%) 

MARH COUNT(%) 44(4.16%) 1012(95.83%) 1056(100%) 

TOTAL   433(5.72%) 7127(94.72%) 7560(100%) 

 

From Table 3, we see that the maximum number of cases of Bronchitis came from Bhalwal while 

Jammu block is the least affected area of Bronchitis. It is more common in rural area than in urban areas. 

 

Table 4 Total Number And Percentage Of Seizure In Jammu District By Blocks. 

 

 

From Table 4, Khour and Bhalwal are highly affected from Seizure than other blocks. Marh and R S 

Pura had least impact of Seizure amongst the rest of the blocks. 
 

Table 5 Total Number And Percentage Of Anaemia In Jammu District By Blocks. 
 

JAMMU 

DISTRICT 

 HAD 

Anaemia 

NO Anaemia TOTAL 

AKHNOOR COUNT(%)     74(5.69%) 1226(94.30%) 1300(100%) 

KHOUR COUNT(%) 41(8.10%) 465(91.81%) 506(100%) 

BHALWAL COUNT(%) 23(6.74%) 318 (93.25%) 341(100%) 

SATWARI COUNT(%) 63(5.53%) 1075(94.46%) 1138(100%) 

R S PURA COUNT(%) 79(5.68%) 1311(94.31%) 1390(100%) 

JAMMU COUNT(%) 44(5.86%) 706(94.13%) 750(100%) 

DANSAL COUNT(%) 55(2.51%) 824(93.74%) 879(100%) 

MARH COUNT(%) 56(5.30%) 1000(94.69%) 1056(100%) 

TOTAL   465(6.15%) 7095(93.54%) 7560(100%) 

From Table 5, Anaemia is highest in Khour block and least in Dansal block. 

 

Analyzing the above tables we see that the children in rural areas of Jammu District are more prone to 

diseases than that of urban areas. This may be due to poor hygiene, malnutrition, lack of awareness in mother 

etc. To get an overall scenario of these diseases with different covariates we  explore these by modeling.In this 

study, there different models are used for analyzing occurrence of these diseases in Jammu district of Jammu 

and Kashmir. Model 1 is a generalized linear model where we consider sex, residence, division and season with 

the diseases. In model 2, we added one more independent variable child age with model 1. Model 1 and Model 2 

are computed using Poisson distribution . In model 3 we use ordinal logistic distribution. 

 

Table 6A comparison of Different Models Of The Bronchitis Disease In Children Less Than 14 Years 

Old In Jammu District 
 MODEL 1 MODEL 2 MODEL 3 

INTERCEPT -3.139 -3.299 3.483 

SEX      

            MALE 

           FEMALE 

 

 

-0.128 

- 

 

 

-0.130 

- 

 

 

0.238 

- 

 

RESIDENCE 

           URBAN 

            RURAL 

 

-0.749 

- 

 

-0.734 

- 

 

-1.139 

- 

SEASON  

          SUMMER 

 

1.116 

 

1.115 

 

1.169 

 

JAMMU 

DISTRICT 

 HAD Seizure NO Seizure TOTAL 

AKHNOOR COUNT(%) 107(8.23%) 1193(91.76%) 1300(100%) 

KHOUR COUNT(%) 59(11.66%) 447(88.33%) 506(100%) 

BHALWAL COUNT(%) 38(11.14%) 293 (88.59%) 341(100%) 

SATWARI COUNT(%) 96(8.43%) 1042(91.56%) 1138(100%) 

R S PURA COUNT(%) 94(6.76%) 1286(93.23%) 1390(100%) 

JAMMU COUNT(%) 58(7.73%) 692(92.26%) 750(100%) 

DANSAL COUNT(%) 66(7.50%) 813(92.44%) 879(100%) 

MARH COUNT(%) 69(6.53%) 987(93.46%) 1056(100%) 

TOTAL   669(8.54%) 6891(91.15%) 7560(100%) 
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          WINTER - - - 

ZONE 

          NORTH 

          EAST 

         SOUTH 

         CENTRAL 

          WEST 

 

-0.300 

-1.622 

0.834 

0.283 

- 

 

-0.287 

-1.614 

-0.820 

0.283 

- 

 

0.446 

-1.467 

-0.536 

0.728 

- 

CHILD AGE 

     0-5 AGE GRP 

     6-10 AGE GRP 

   11-14 AGE GRP 

 

- 

 

0.344 

0.092 

- 

 

0.367 

0.097 

- 

      AIC 5.241E3 5.259E3 5.175E3 

      BIC 5.301E3 5.417E3 5.334E3 

 

In this analysis, we see that probability of occurring Bronchitis in summer season is more than in 

winter season. The probability of occurring Bronchitis in rural and urban areas has no significant difference. We 

also see that occurring Bronchitis in south and central zone of Jammu district is higher than rest of the zones.  

we see that AIC for model 1 is greater than AIC for model 3 which means Model 3 interprets the data quite well 

and generalized additive model fits well and explain more information than generalized linear models. 

 

Table 7: A Comparison Of Different Models Of The Seizure  Disease In Children Less Than 14 Years Old In 

Jammu District 
 MODEL 1 MODEL 2 MODEL 3 

INTERCEPT -2.115 -2.133 2.006 

SEX      

            MALE 

           FEMALE 

 

-0.026 

- 

 

-0.028 

- 

 

-0.031 

- 

 

RESIDENCE 

           URBAN 

            RURAL 

 

 

-0.381 

- 

 

 

-0.366 

- 

 

 

-0.400 

- 

SEASON  

          SUMMER 

          WINTER 

 

-0.366 

- 

 

-0.370 

- 

 

-0.412 

- 

ZONE 

          NORTH 

          EAST 

         SOUTH 

         CENTRAL 

          WEST 

 

0.252 

-1.430 

0.244 

0.209 

- 

 

0.272 

-1.412 

0.263 

0.213 

- 

 

0.306 

-1.499 

0.296 

0.230 

- 

CHILD AGE 

     0-5 AGE GRP 

     6-10 AGE GRP 

   11-14 AGE GRP 

 

- 

 

-0.005 

0.100 

- 

 

-0.005 

0.112 

- 

      AIC 8.332E3 8.345E3 8.213E3 

      BIC 8.392E3 8.503E3 8.372E3 

 

In this analysis, we see that probability of occurring Seizure in summer season and winter season has 

no significance difference. The probability of occurring Seizure in rural and urban areas has no significant 

difference. We also see that occurring Seizure in south and north zone of Jammu district is higher than rest of 

the zones.  we see that AIC for model 1 is greater than AIC for model 3 which means Model 3 interprets the 

data quite well and generalized additive model fits well and explain more information than generalized linear 

models. 

 
Table 8 A Comparison Of Different Models Of The Age  Disease In Children Less Than 14 Years Old In 

Jammu District 
 MODEL 1 MODEL 2 MODEL 3 

INTERCEPT -1.051 -1.047 0.574 

SEX      

            MALE 

           FEMALE 

 

-0.258 

- 

 

-0.257 

- 

 

-0.383 

- 

RESIDENCE 

           URBAN 

            RURAL 

 

 

-0.022 

- 

 

 

-0.028 

- 

 

 

-0.050 

- 

SEASON  

          SUMMER 

          WINTER 

 

-0.296 

- 

 

-0.293 

- 

 

-0.435 

- 

ZONE 

          NORTH 

          EAST 

         SOUTH 

         CENTRAL 

          WEST 

 

0.032 

-1.076 

0.489 

0.219 

- 

 

0.034 

-1.084 

0.482 

0.217 

- 

 

0.039 

-1.314 

0.721 

0.307 

- 
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CHILD AGE 

     0-5 AGE GRP 

     6-10 AGE GRP 

   11-14 AGE GRP 

 

- 

 

-0.019 

-0.029 

- 

 

-0.030 

-0.045 

- 

      AIC 1.774E4 1.775E4 1.622E4 

      BIC 1.780E4 1.791E4 1.638E4 

 

In this analysis, we see the occurrence of AGE is higher in east and south zone as compared to other 

zones. The probability of occurring AGE for rural and urban areas has no significance differences.We see that 

Residual Degrees of Freedom and Residual Deviance for smooth analysis is less that without smooth analysis 

and  AIC for model 1 is greater that AIC of model 3 which means model 3 interprets the data quite well and 

generalized additive model fits well and explain more information than generalized linear models. 
 

Table 9: A Comparison Of Different Models Of The Thallesemia  Disease In Children Less Than 14 Years Old 

In Jammu District 
 MODEL 1 MODEL 2 MODEL 3 

INTERCEPT -3.022 -3.030 3.032 

SEX      

            MALE 

           FEMALE 

 

RESIDENCE 

           URBAN 

            RURAL 

 

0.186 

- 

 

 

0.981 

- 

 

0.186 

- 

 

 

0.977 

- 

 

0.215 

- 

 

 

1.115 

- 

SEASON  

          SUMMER 

          WINTER 

 

0.291 

- 

 

0.291 

- 

 

0.351 

- 

ZONE 

          NORTH 

          EAST 

         SOUTH 

         CENTRAL 

          WEST 

 

0.244 

2.018 

0.284 

-0.891 

- 

 

0.241 

2.020 

0.279 

-0.891 

- 

 

0.266 

2.635 

0.310 

-1.012 

- 

CHILD AGE 

     0-5 AGE GRP 

     6-10 AGE GRP 

   11-14 AGE GRP 

 

- 

 

0.057 

0.013 

- 

 

0.070 

0.017 

- 

      AIC 1.041E4 1.043E4 1.007E4 

      BIC 1.047E4 1.059E4 1.023E4 

       
Table 10: A Comparison Of Different Models Of The Anaemia  Disease In Children Less Than 14 Years Old In 

Jammu District 
 MODEL 1 MODEL 2 MODEL 3 

INTERCEPT -5.962 -5.890 7.592 

SEX      

            MALE 

           FEMALE 

RESIDENCE 

           URBAN 

            RURAL 

 

0.524 

- 

-0.598 

- 

 

0.508 

- 

 

-0.616 

- 

 

0.177 

- 

 

0.982 

- 

SEASON  

          SUMMER 

          WINTER 

 

1.405 

- 

 

1.400 

- 

 

1.370 

- 

ZONE 

          NORTH 

          EAST 

         SOUTH 

         CENTRAL 

          WEST 

 

-1.305 

-0.179 

-0.099 

0.032 

- 

 

-1.299 

-0.194 

-0.097 

-0.054 

- 

 

0.416 

-18.886 

0.099 

-0.348 

- 

CHILD AGE 

     0-5 AGE GRP 

     6-10 AGE GRP 

   11-14 AGE GRP 

 

- 

 

0.812 

0.783 

- 

 

0.818 

0.788 

- 

      AIC 1.058E3 1.065E3 1.065E3 

      BIC 1.118E3 1.224E3 1.224E3 

 

We  also estimated a logistic GAM with smoothing applied to the major of child age. At this stage , we 

could either conduct a series of likelihood ratio test or plot the non parametric estimate and inspect that for non 

linearity.  

Visual inspection of the plot may be enough to understand which terms are non linearly related and non 

parametric estimate. The visual test is quite clear that child age is non linearly related . 
 

 

Figure 1: Generalized additive model for Anemia disease in children 0-14 age group in Jammu 

district as a function of child age. 
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Figure 2: Generalized additive model for Seizure disease in children 0-14 age group in Jammu 

district as a function of child age. 

 
 

Figure 3: Generalized additive model for Bronchitis disease in children 0-14 age group in Jammu 

district as a function of child age. 

 
 

Figure 4: Generalized additive model for Thallesemia disease in children 0-14 age group in Jammu 

district as a function of child age. 
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Figure 5: Generalized additive model for Acute Gastro Enteritis disease in children 0-14 age group in 

Jammu district as a function of child age. 

 
 

Generalized additive models are very flexible, and can provide an excellent fit in the presence of non 

linear relationships and significant noise in the predictor variables. However, note that because of this 

flexibility, you must be extra cautious not to over-fit the data, i.e., apply an overly complex model(with many 

degrees of freedom) to data so as to produce a  good fit that likely will not replicate in subsequent validation 

studies. In other words, evaluate whether the added complexity (generality) of generalized additive models 

(regression smoothers) is necessary in order to obtain a satisfactory fit to the data. Often, this is not the case, and 

given a comparable fit of the models, the simpler generalized linear model is preferable to the more complex 

generalized additive model. 

 

IV. OBSERVATIONS AND CONCLUSION 
Children affected by diseases like Acute Gastroenteritis(AGE), Bronchitis, Anemia, Seizure and 

Thallesemia remains a leading cause of childhood morbidity in developing countries like India. These diseases 

are major cause of illness in  young Children and its prevalence is higher at low aged child particularly due to 

immature immune system, genetic reasons, neighborhood deprivation and exposure to environmental pollution. 

Children of rural areas are more susceptible to AGE, Bronchitis and Anemia  diseases than Children of urban 

areas  because of unhygienic living conditions, lack of good drinking water facilities, bad toilet facilities, 

nutritional deficiencies etc. The Generalised Linear Model (GLM) and Generalised Additive Model(GAM) 

,particularly, by assuming  ordinal logistic distribution(in case of local settings) are good diagnostic techniques 

for studying the status of Children‟s diseases in any area and helps in forming government policies for 

mitigating health problems of our society to create conducive atmosphere for further sustainable development. 
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