Journal of Research in Applied Mathematics

Volume 5 ~ *Issue 2 (2019) pp: 40-43*

ISSN(Online): 2394-0743 ISSN (Print):2394-0735

Research Paper

On a p-valent Multiplier Differential Operator

Deborah Olufunmilayo Makinde

Department of Mathematics, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria.

ABSTRACT: In this paper, we focus on inclusion properties for the multiplier transformation of the form

$$D_{p,\alpha}^m f(z) = z^p + \sum_{n=p+1}^{\infty} \alpha \left(\frac{1 + \lambda(n + \alpha - 2)}{1 + \lambda(\alpha - 1)} \right)^m a_n z^n$$

using the principle of subordination.

MSC[2010]: 30C45

KEYWORDS: p-valent, differential operator, subordination, inclusion.

Received 28January, 2019; Accepted 11February, 2019 © The author(s) 2019. Published with open access at www.questjournals.org

INTRODUCTION AND PRELIMINARIES

Let A denote the class of normalized univalent functions of the form

$$z + a_2 z^2 + a_2 z^2 + a_2 z^2 \dots ag{1}$$

which are analytic in the unit disc $U = \{z : |z| < 1\}$.

For the function of the form (1), the following results are well known: fis said to be starlike respectively convex with respect to the origin, if, and only if,

$$\text{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0, |z| < 1$$

$$\text{Re}\left\{1 + \frac{zf'(z)}{f(z)}\right\} > 0, |z| < 1$$

Remark 1.1. From the above, it obvious that fis convex if and only if zf'is starlike. Respectively, f is said to be starlike, convex, of order yif and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \gamma, \quad |z| < 1$$

$$\text{Re}\left\{1 + \frac{zf'(z)}{f(z)}\right\} > \gamma, \ |z| < 1$$

Definition: Let $f \in A$ and g is starlike of order γ i.e. $g \in S^*(\gamma)$ then $f \in K(\beta, \gamma)$, if, and only if

$$\operatorname{Re}\left\{\frac{\operatorname{zf}'(z)}{\operatorname{g}(z)}\right\} > \beta, z \in U.$$

This functions are called close-to-convexfunction of order βtypey.

We denote by A_p , the class of function $f \in Aof$ the form

$$f(z) = z^{p} + \sum_{n=p+1}^{\infty} a_{n} z^{n}, p \ge 1$$
 (2)

Definition: Let g(z) be analytic and univalent in U and f(z) is analytic in U, then, f is said to be subordinate to g if there exists a Schwartz w(z) function which is analytic in U with w(0) = 0 and |w(z)| < 1for all $z \in U$ such that f(z) = g(w(z)). This is expressed as f < g.

Moreover, suppose g is univalent in U, then the following equivalence holds [1,4,5,6,10]

$$f \prec g \Leftrightarrow f(0) = g(0) \text{and} f(U) \subset g(U)$$

For $f \in A$, the following subclasses of starlike, convex and close-to-convex functions

 $S^*(\xi, \phi)$, $C(\xi, \phi)$, and $K(\xi, \rho; \phi, \phi)$ of order ξ , are studied by several authors (6, 8, 10) and are respectively defined

$$\begin{split} S^*(\mu,\psi) &= \left\{ f \in A : \frac{1}{1-\mu} \bigg(\frac{zf'(z)}{f(z)} - \mu \bigg) < \psi(z), z \in U \right\} \\ C(\mu,\psi) &= \left\{ f \in A : \frac{1}{1-\mu} \bigg(1 + \frac{zf'(z)}{f(z)} - \mu \bigg) < \psi(z), z \in U \right\} \\ K(\mu,\zeta;\psi,\phi) &= \left\{ f \in A : \frac{1}{1-\zeta} \bigg(\frac{f'(z)}{g(z)} - \zeta \bigg) < \phi(z), z \in U, g(z) \in S^*(\mu,\psi) \right\} \end{split}$$

For the function of the form

$$f^{\alpha}(z) = z^{\alpha} + \sum_{n=p+1}^{\infty} \alpha a_n z^{n+\alpha-1}$$
(3)

[5], obtained the multiplier transformation D_{α}^{m} f given by

$$D_{\alpha}^{m} f(z) = z + \sum_{n=2}^{\infty} \alpha \left(\frac{1 + \lambda(n + \alpha - 2)}{1 + \lambda(\alpha - 1)} \right)^{m} a_{n} z^{n}$$
(4)

Where $D_{\alpha}^{m+1} f(z) = (1-\lambda) D_{\alpha}^{m} f(z) + z \lambda (D_{\alpha}^{m} f(z))$

$$z\lambda(D_{\alpha}^{m}f(z))' = D_{\alpha}^{m+1}f(z)-(1-\lambda)D_{\alpha}^{m}f(z)$$
(5)

We denote $D_{p,\alpha}^m$ fby

$$D_{p,\alpha}^{m}f(z) = z^{p} + \sum_{n=p+1}^{\infty} \alpha \left(\frac{1 + \lambda(n + \alpha - 2)}{1 + \lambda(\alpha - 1)}\right)^{m} a_{n}z^{n}$$
 (6)

We denote by H_p , the class of all functions which are analytic and p-valentin U for which $\psi(U)$ is convex such that $\psi(0) = 1$ and $Re(\psi(z)) > 0$, $z \in U$

We denote by $S^*(\mu, \psi)$, $C(\mu, \psi)$, and $K(\mu, \zeta; \varphi, \psi)$ the subclasses of starlike, convex and close-to-convex functions of order μ respectively, for the function ψ , $\phi \in H_p$ which are defined by:

$$S_{p,\alpha}^{m}(\mu,\psi) = \{f \in A: D_{p,\alpha}^{m}f(z) \in S^{*}(\mu,\psi)\},\$$

$$C_{p,\alpha}^{m}(\mu,\psi) = \{f \in A: D_{p,\alpha}^{m} f(z) \in C^{*}(\mu,\psi)\},\$$

$$K_{p,\alpha}^m(\mu,\zeta;\varphi,\psi) = \{ f \in A : D_{p,\alpha}^m f(z) \in K(\mu,\zeta;\varphi,\psi) \},$$

In this paper, we shall investigate inclusion properties for the multiplier transform $D_{p,\alpha}^m f$ with respect to starlike, convex and close-to-convex functions using principle of subordination.

Next, we give the preliminary results that we shall employ to prove ourmain results.

Lemma 1: [2, 3, 8, 10]: Let ϕ be convex, univalent in U with $\phi(0) = 1$ and

 $Re\{k\phi(z) + \gamma\} \ge 0$, $k, \gamma \in C$. If p is analytic in U with p(0) = 1, then

$$p(z) + \frac{zp'(z)}{kp(z) + \gamma} < \phi(z), \ z \in U$$
implies $p(z) < \phi(z), \ z \in U$

Lemma 2: [6, 10]: Let ϕ be convex, univalent in U and w be analytic in U with

Re (w(z)) >. If p is analytic in U with $p(0) = \phi(0)$, then

$$p(z) + w(z)zp'(z) < \phi(z), z \in U$$
Implies $p(z) < \phi(z), z \in U$

In what follows, we give some inclusion properties of the operator $D_{n,\alpha}^m f$ using the principle of subordination.

Inclusion Properties

Theorem 1: Let f belongs to the analytic function of the form (1) and let

$$\varphi \in H_p$$
 with $\operatorname{Re}\left\{\left(p(1-\mu)\right)\psi(z) + \mu + \frac{1-\lambda}{\lambda}\right\} > 0$. Then, $S_{p,\alpha}^{m+1}(\mu,\psi) \subset S_{p,\alpha}^m(\mu,\psi)$ Proof: Let f belongs to the class $S_{p,\alpha}^{m+1}(\mu,\psi)$ and let

$$p(z) = \frac{1}{p(1-\mu)} \left(\frac{z(D_{p,\alpha}^m f(z))'}{D_{p,\alpha}^m f(z)} - \mu \right)$$
 (7)

Applying (5) in (7), we obtain:

$$\frac{D_{p,\alpha}^{m+1}f(z) - D_{p,\alpha}^{m+1}f(z) + \lambda D_{p,\alpha}^{m+1}f(z)}{\lambda D_{p,\alpha}^{m+1}f(z)} = p(1-\mu)p(z) + \mu$$

From where we have

$$\frac{D_{p,\alpha}^{m+1}f(z)}{\lambda D_{p,\alpha}^{m}f(z)} = \left(p(1-\mu)\right)p(z) + \mu + \frac{1-\lambda}{\lambda} \tag{8}$$

From (8), we obta

$$\frac{(D_{p,\alpha}^{m+1}f(z))'}{D_{p,\alpha}^{m+1}f(z)} = \frac{(D_{p,\alpha}^{m}f(z))'}{D_{p,\alpha}^{m}f(z)} + \frac{(p(1-\mu))p'(z)}{(p(1-\mu))p(z) + \mu + \frac{1-\lambda}{2}}$$
(9)

But

$$\frac{(D_{p,\alpha}^m f(z))'}{D_{p,\alpha}^m f(z)} = \frac{\left(p(1-\mu)\right)p(z) + \mu}{z} \tag{10}$$

$$\frac{1}{p(1-\mu)} \left(\frac{z(D_{p,\alpha}^{m+1}f(z))'}{D_{p,\alpha}^{m+1}f(z)} - \mu \right) = p(z) + \frac{zp'(z)}{\left(p(1-\mu)\right)p(z) + \mu + \frac{1-\lambda}{2}} (11)$$

Applying Lemma 1 to (11) shows that

$$p(z) < \phi(z)$$
, i. e. $f \in D_{p,\alpha}^{m+1} f(z)$

Thus,

$$S_{\alpha}^{m+1}(\mu,\psi) \subset S_{\alpha}^{m}(\mu,\psi)$$

Theorem 2: Let f belongs to the analytic function of the form (1) and let $\psi \in H_p$ with $\text{Re}\{(p(1-\mu))\psi(z) + (p(1-\mu))\psi(z)\}$ $\mu+1-\lambda\lambda>0$. Then,

$$C_{p,\alpha}^{m+1}(\mu,\psi) \subset C_{p,\alpha}^{m}(\mu,\psi)$$

Proof: From Remark 1, we have

$$f \in C_{p,\alpha}^{m+1}(\mu, \psi) \iff z f' \in S_{p,\alpha}^{m+1}(\mu, \psi)$$

and from Theorem 1, we have

$$\begin{split} f \epsilon C_{p,\alpha}^{m+1}(\mu, \psi) & \Longleftrightarrow z f' \epsilon S_{p,\alpha}^{m+1}(\mu, \psi) \subset S_{p,\alpha}^{m}(\mu, \psi) \\ & \Rightarrow z f' \epsilon S_{p,\alpha}^{m}(\mu, \psi) \\ & \Rightarrow f \epsilon C_{p,\alpha}^{m}(\mu, \psi) \end{split}$$

Thus,

$$C^{m+1}_{p,\alpha}(\mu,\psi)\subset C^m_{p,\alpha}(\mu,\psi)$$

The function $\psi(z) = \frac{1-Az}{1+Bz}$ is analytic and satisfies $\psi(0) = 1$. Thus, we have the following corollaries.

Corollary 3:Let $f \in A$ and $\psi(z) = \frac{1-Az}{1+Bz}$, $-1 \le B \le A \le 1$ in Theorem 1.

$$S_{p,\alpha}^{m+1}(\mu, A, B) \subset S_{p,\alpha}^{m}(\mu, A, B)$$

 $S_{p,\alpha}^{m+1}(\mu,A,B) \subset S_{p,\alpha}^{m}(\mu,A,B)$ Corollary 4: Let $f \in A$ and $\psi(z) = \frac{1-Az}{1+Bz}$, $-1 \le B \le A \le 1$ in Theorem 2.

$$C_{n,\alpha}^{m+1}(\mu,A,B) \subset C_{n,\alpha}^{m}(\mu,A,B)$$

 $C_{p,\alpha}^{m+1}(\mu,A,B) \subset C_{p,\alpha}^{m}(\mu,A,B)$ **Theorem 5:** Let f belongs to the analytic function of the form (1) and let

$$K_{p,\alpha}^{m+1}(\mu,\zeta;\varphi,\psi) \subset K_{p,\alpha}^{m}(\mu,\zeta;\varphi,\psi)$$

 $\psi,\varphi\in H_p \text{ with } \operatorname{Re}\Big\{\big(p(1-\mu)\big)\psi(z) + \mu + \frac{1-\lambda}{\lambda}\Big\} > 0. \text{ Then,}$ $K_{p,\alpha}^{m+1}(\mu,\zeta;\varphi,\psi) \subset K_{p,\alpha}^m(\mu,\zeta;\varphi,\psi)$ Proof. Let $f\in K_{p,\alpha}^{m+1}(\mu,\zeta;\varphi,\psi)$, then there must exist a function $g\in S_{p,\alpha}^{m+1}(\mu,\zeta;\varphi,\psi)$ such that $\operatorname{Re}\Big\{\frac{z(D_{p,\alpha}^{m+1}f(z))'}{D_{p,\alpha}^{m+1}g(z)}\Big\} > \zeta,z\in U$

$$\operatorname{Re}\left\{\frac{z(D_{p,\alpha}^{m+1}f(z))'}{D_{p,\alpha}^{m+1}g(z)}\right\} > \zeta, z \in U$$

That is, we should have

$$\frac{1}{p(1-\zeta)} \left(\frac{z(D_{p,\alpha}^{m+1}f(z))'}{D_{p,\alpha}^{m+1}g(z)} - \zeta \right) < \varphi, z \in U$$

Let

$$p(z) = \frac{1}{p(1-\zeta)} \left(\frac{z(D_{p,\alpha}^m f(z))'}{D_{p,\alpha}^m g(z)} - \zeta \right)$$
 (12)

From (5), we have

$$z\left(D_{p,\alpha}^{m}f(z)\right)' = \frac{D_{p,\alpha}^{m+1}f(z) - (1-\lambda)D_{p,\alpha}^{m}f(z)}{\lambda}$$

Now, from (5) we have:

$$\frac{D_{p,\alpha}^{m+1}f(z)}{\lambda} = \frac{1-\lambda}{\lambda} \left(D_{p,\alpha}^m f(z) \right) + ((p-\zeta)p(z) + \zeta) D_{p,\alpha}^m g(z)$$

^{*}Corresponding Author: Deborah Olufunmilayo Makinde Page

This implies that

$$\frac{z(D_{p,\alpha}^{m+1}f(z))'}{\lambda} = \frac{1-\lambda}{\lambda} z\left(D_{p,\alpha}^{m}f(z)\right)' + \left(p(1-\zeta)zp'^{(z)}\right)D_{p,\alpha}^{m}g(z) + \left(p(1-\zeta)p(z) + \zeta\right)z\left[D_{p,\alpha}^{m}g(z)\right]' + \left(p(1-\zeta)p(z) + \zeta\right)z\left[D_{p,\alpha}^{m}g(z)\right]'$$
Also, by Theorem $1g \in S_{p,\alpha}^{m+1}(\mu, \psi) \Rightarrow g \in S_{p,\alpha}^{m}(\zeta, \psi)$

$$q(z) = \frac{1}{p(1-\zeta)} \left(\frac{z(D_{p,\alpha}^{m} g(z))'}{D_{p,\alpha}^{m} g(z)} - \zeta \right)$$
 (14)

Using (5) in (14), we obtain

$$\frac{D_{p,\alpha}^{m+1}g(z)}{\lambda D_{p,\alpha}^{m}g(z)} = \left(p(1-\zeta)\right)q(z) + \zeta + \frac{1-\lambda}{\lambda}$$
(15)

and further, from (13) and (15), we obtain

$$\frac{z(D_{p,\alpha}^{m+1}f(z))'}{D_{p,\alpha}^{m+1}g(z)} = \left(p(1-\zeta)\right)p(z) + \zeta + \frac{\left(p(1-\mu)\right)p'(z)}{\left(p(1-\mu)\right)q(z) + \mu + \frac{1-\lambda}{2}}$$
(16)

But

Algebraic manipulation in (16) gives

apply

$$\frac{1}{p(1-\zeta)} \left(\frac{z(D_{p,\alpha}^{m+1}f(z))'}{D_{p,\alpha}^{m+1}f(z)} - \zeta \right) = p(z) + \frac{zp'(z)}{\left(p(1-\mu)\right)q(z) + \mu + \frac{1-\lambda}{\lambda}} (11)$$

Thus, making

 $\frac{1}{\left(p(1-\mu)\right)q(z) + \mu + \frac{1-\lambda}{\lambda}} = w(z)$ have we $p(z) < \varphi(z), i. e. f \in K_{p,\alpha}^{m+1}(\mu, \zeta; \varphi, \psi)$

and

This proves the theorem.

REFERENCES

- T. Bulboaca, Differential Subordinations and Superordinations, RecentResults, House, of Scientific Book Publ., Cluj-Napoca, 2005. [1].
- J. H. Choi M. Saigo H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. [2]. 276 (2002),432-445.
- [3]. P. Eenigenburg - S. S. Miller - P. T. Mocanu - M. O. Reade, On Briot-Bouquet differential subordination, General Inequalities 3, I. S. N. M., Vol. 64, Birkhauser Verlag, Basel (1983), 339-348.
- [4]. P. Eenigenberg, S. S. Miller, P.T. Mocanu and M. O. Reade, On aBriot-Bouquet differential subordination, General Inequalities, Vol. 3, birkhauser-Verlag, Basel, (1983), 339 - 348.
- [5]. D.O. Makinde, A new multiplier differential operator, Advances in Mathematics: Scientific Journal, 7(2) 2018, 109-114.
- S. S. Miller and P.T. Mocanu, Di_erential Subordinations and univalentfunctions, Michigan Math. J, 28(1981), 157 171. [6].
- [7]. S. S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics (N.225), Marcel Dekker, New York and Basel, 2000.
- T. M. Seoudy, Subordination Properties Of Certain Subclasses of P-Valent Functions Defined By An Integral Operator Le [8]. Matematiche, Vol. LXXI (2016) { Fasc. II,doi: 10.4418/2016.71.2.3, 27-44.
- H. M. Srivastava and S. Owa, Current topics in analytic theory, World Sci, Publ., River Edge, NJ, 1992.
- [10]. S. R. Swamy, Inclusion Properties of Certain Subclasses of AnalyticFunctions, International Mathematical Forum, Vol. 7, no. 36,(2012) 1751-1760.

Deborah Olufunmilayo Makinde" On a p-valent Multiplier Differential Operator "Quest Journals Journal of Research in Applied Mathematics, vol. 05, no. 02, 2019, pp. 40-43