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ABSTRACT:- Dislocation models can be simulated in active deformation caused by slip along a fault. The 

high-precision Global Positioning System (GPS) is used to geodetically constrain the motion of stations in the 

seismological areas and examine the deformation using IGS (International GPS Service) fiducial stations. Both 

forward and inverse modelling is used to understand the information about the deformation area. Finite 

Element Method (FEM) can be used also in 2-D and 3-D system to understand slip along deformation. In this 

paper slip has been calculated   using 3-D system and techniques has been presented to calculate the slip and 

the model the causative fault(s) that could have produced the observed deformation. 

 

I.  INTRODUCTION 
 The dislocation theory was first introduced in the field of seismology [1, 2]. Numerous theoretical 

formulations have been described for the deformation of an isotropic homogeneous semi-infinite medium and 

have been developed with increasing completeness and simplification of source type and geometry [1]. 

Anderson [3] recognized that since the principal stress directions are directions of zero shear stress, the fault can 

be placed in the context of principal stress. The faults have a common meaning, to shorten the crust one 

direction and extend the crust in other direction. In Cartesian Co-ordinate system (x,y,z) the half space occupied 

region z<0 if fault is located at (0,0,-d) the point force distribution can be given in following form [4]: 

 

 

 

   

2 2 2

1 4 2

2 4 2

3 2

1/ 2 1/ 2
2 2 2 2 2

2
(1)

1

x y x
F R d

r r R

xy xy
F R d

r r R

x d
F

r R

where R r d x y d



 



 



 

 
   

  

 
   

  

  
   

   

    

                            

 

Thrust faults: F1 and F2 will be horizontal and F3 will be vertical. 

Normal faults: F2 and F3 will be horizontal and F1 will be vertical 

Strike-slip faults: F1 and F3 will be horizontal and F2 will be vertical [3] 

Martin, H. Sadd [5] explain Navier,s  equation of elasticity can be expressed in vector form 

 2 ( ) . 0u u F        
 

 

or written out in terms of the three scalar equations 
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Where F1,F2,  and F3 represent the body forces in x,y and z direction and u, v ,w are corresponding 

displacements. The above equation can be solve by Galerkin [6] formulation for stress analysis which gives the 

solution 

{ } { } [ ]{ } (3)s Xf f k u   

Where {f}s=surface force 

{f}x= body force , [k]=global stiffness matrix
 
, {u}= displacement matrix 

The Forces equation (1) will work as a body force in equation (3). 

 

II.  FINITE ELEMENT MODEL 
The fundamental equation of Finite Element method (FEM), the displacements U on node of a body 

(Fig: 1) having area cross section A is given by: 

 

Fig 1: Body showing surface area in which force are acting in x and y direction 
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 Where F is acting force, E is elasticity constant and l is the length of the body and K is called Stiffness constant. 

The body and surface forces will act on body nodes surface displacement will take place in x and y direction 

(Fig: 2) 
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Fig 2: Displacements of node in x, y direction. The numbers are showing no. of nodes and  

Bar numbers are showing no. of elements 
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Melosh and Raefsky present a solution in 2-D system that an active deformation causative fault(s) fracture node 

will remove force [7]. Similarly for 3-D system due to the active deformation causative fault(s) fracture (Fig:  3) 

the above equation no. (5) will become like this 
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Similarly for other element the above equation can be written like this 
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Fig: 3, ANSYS (Brick 8 node 185) element [8], White concentrated area is showing finite rectangular 

fault.  

 

On adding both the elements equations (6 & 7) the final equation will be like this 
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Then modeled slip will be        
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The modelled slip can be calculated with the help of equation (8) easily. 
 

III.  DISCUSSION 
 I present a simple method to calculate the slip of finite rectangular fault. The above technique can be 

used in forward modelling method. Post processing high-precision campaign mode GPS station data gives 

observed displacements in x and y directions. Body force and surface force can be calculated with the help of 

equations (1, 2 & 3) on GPS stations. Then stiffness matrix will work as a model parameter of finite rectangular 

fault. This suggests that my uniform geologic structure of FEM model may be sufficient for simulating large 

continental earthquakes. 
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