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ABSTRACT: Anthropogenic factors highly contribute to climate change which affects different forest 

dynamics devastatingly. A random forest (RF)-based machine-learning model was trained with historical data, 

including land cover, slope, elevation and aspect, and future data for temperature and precipitation to 

determine the effect of climate change on Amazon rainforest in Brazil and the Boreal forest in Canada.  During 

the training phase, a coefficient of determination (R
2
) scored 0.901 and 0.797 for the Amazonian and Boreal 

site, respectively. The RF classification model revealed almost the same fate for both zones. According to this 

study, the representative concentration pathway (RCP) 8.5 model would be more distressing than RCP 4.5 

model for both study sites at both 2041–2060 and 2061–2080 periods. According to RCP 8.5, 88% and 42% 

deciduous species of Amazon and Boreal site will be lost, respectively; more intense and long droughts, 

followed by lower succession rates and pest attacks, would possibly affect the Boreal region but heavy rainfall 

in dry areas, prolonged droughts in wetlands and forest fires will destroy tropical Amazonian tree species. 

Shallow-rooted crops might be more affected by long droughts, but short, heavy rainstorms might facilitate 

some woody and shrub species in the Canadian Boreal zone. 
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I. INTRODUCTION 
Climate change causes alteration of forest dynamics across the globe. Abiotic (e.g. fire, wind, drought) 

and biotic (e.g. insects, pathogens) disturbances have increased by more than 28% due to longer warm and dry 

conditions, which are affecting forest formation (Seidl et al. 2017; Teshome et al. 2020). Based on several 

general circulation models (GCM) runs, it can be predicted that future high temperatures are likely to bring 

moderate to severe reductions in precipitation to the Amazon rainforest, followed by significant drying of the 

forest regionally, which could make it highly prone to fire incidences (Cochrane and Barber 2009; Haghtalab et 

al. 2020). Furthermore, a model-based study on tropical cloud forests has suggested that less cloud is formed at 

lower atmospheric levels due to increased air temperatures, which will lead them to suffer drier conditions 

(Ellison et al. 2017).  

Since the early 20th century, primary forests have decreased by 6 million ha annually, 10,000 times 

faster than in the last glacial period, 21,000 years ago (Kirilenko and Sedjo 2007; Sandel et al. 2011). Moreover, 

the decrease rate has been the most rapid in the tropical rainforests (Thom et al. 2017; Tang 2019), while the 

boreal forests face high-velocity biome shifts to avoid higher temperatures and more frequent fire incidences 

(Beck et al. 2011; Grimm et al. 2013). Nonetheless, it has been found from earlier studies that global vegetation 

dynamics mainly depend on local climatic conditions; for example, higher temperatures and changes in 

precipitation patterns are crucial factors in forest cover change in the Amazon Basin. 

Tropical forests in the world are rich with diversified tree species. According to Wright et al. (2009) 

and Colwell et al. (2008), the plant species of tropical forests are more vulnerable to high temperatures because 

of their lower adaptability to temperature variations (Wright et al. 2009). Associated with temperature, change 
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of precipitation, and soil structure or texture are crucially driving tropical forests to a mono species land (Deb et 

al. 2014). Meanwhile, research on boreal forests has revealed that high temperatures, followed by droughts, 

cause higher fire incidences and insect outbreaks (Venalainen et al. 2020). Previous studies have identified fire 

as the leading cause of damage in boreal forests (Jactel et al. 2012; Hansen, M.C. et al. 2013). Being sensitive to 

temperature and unprecedented climate warming, the world’s boreal forests face a shifting biome problem. 

Several studies have suggested that the boreal biome’s margins will shift northwards towards the current tundra 

area, and grasslands will replace their southern regions to avoid extreme temperatures (Keret et al. 2020; Pecl et 

al. 2017; Pautasso et al. 2015; Hansen et al. 2013; Sturrock 2012).  

Apart from these studies, most prediction-based research uses machine learning modelling approaches 

to predict future forest cover, forest ecosystems or species distributions (Pearson and Dawson 2003; Pretzsch et 

al. 2007). In machine learning studies, selective models are trialled to predict target variables using known 

predictor variables (Mathew et al. 2017). For example, Pacheco et al. (2010) used a species distribution model to 

predict the spatial distribution changes of six distinctive tree species in response to climate change in the 

premontane subtropical forests in South America (Pacheco et al. 2010). Rogan et al. (2008) used three different 

machine-learning models to predict land cover changes at two sites in California, USA. They found that the 

neural-networks-based model was the most accurate (Rogan et al. 2008). Other studies have also used machine 

learning to predict future changes in forest areas over the next decade at national to global scales (d’Annunzio et 

al. 2015; Reddy et al. 2017). 

Machine learning models are used individually or collectively in different studies but verifying the 

predictions from model-based studies is necessary to demonstrate their validity. For example, Soja et al. (2007) 

cross-checked the results of a prediction model for landscape change in the boreal zones of Canada, Alaska and 

Russia using current field observations (Soja et al. 2007). Their field studies supported the predictions from the 

model. 

Another approach using machine learning models is the random forest (RF) classification; this method 

is usually used to monitor and map large areas to estimate land cover categories or biodiversity changes caused 

by climate change (Bala et al. 2007). The advantages of the RF classification over other machine-learning 

models have caused this model to be prioritized for prediction-based studies. Among the benefits of RF, 

determining important variables, multiple data analysis performances and high classification accuracy is 

noteworthy (Chan and Paelinckx 2008; Ghimire et al. 2010; Rodriguez-Galiano et al. 2012). In a study on 

predictive models and modelling techniques, the RF has been proven to have the superior predictive capability 

in mapping current distributions and future suitable territories for biodiversity (Prasad et al. 2006). One recent 

machine learning model-based study used a RF model to predict future land cover using spectral-band 

information from New Mexico and Washington sites (Patil et al. 2017). Their model was able to predict a future 

land-cover scenario using historical and climate-change data.  

Despite the increasing acceptability of model-based studies on future forest distributions, there is a lack 

of appropriate, rationalized global forest imagery or specific forest area images, hindering forest prediction 

modelling (Anderegg et al. 2013; Hansen, M. et al. 2013). Few field studies have been undertaken to forecast 

the future compositional shift of tree species that will result from climate change. Notwithstanding, different 

model-based studies have been done to quantify the climate change effect on forest productivity. There is a lack 

of potential explanatory model studies with clear interpretations to inform how far forests will be affected on a 

large scale due to severe climatic changes. Research on the forest cover of different climatic zones is also 

necessary for predicting which forest zones will face climate-change effects faster (Bhattacharya 2013; Exbrayat 

et al. 2017; Pukkala 2017; Albert et al. 2018). 

To address this problem, forests had to be selected from different climatic zones where historical, high-

resolution land-cover classification data and future climate data was available. Notably, the forests were 

significantly affected by current climate change rather than direct human interference. The study aimed to assess 

the relative climate change effects on selected areas of the Amazon and boreal forests by predicting, 

documenting and comparing the future conditions of these forest areas using an RF classification model for use 

in future modelling studies and in analyzing the possible eco-physiological processes that would result in the 

predicted forest cover changes. 

 

II. MATERIALS AND METHODS 
2.1 Site description 

The Brazilian Amazon rainforest and the other in the Canadian boreal forests were two study sites 

(Figure 6) considered for this study. These two sites were selected to test our modelling approach against 

contrasting bioclimatic conditions. Both the sites have multiple types of vegetation cover (Table 2) and almost 

zero human interference. 

The Amazon site is in the East-central region of Para, Brazil, and covers an area of 9551 km2. The 

Xingu River flows in a North-South direction in the Western part of the site, and the Tapirapé-Aquiri National 
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Forest is situated in its South Eastern section. The elevation ranges from 18 to 46 m above sea level; the annual 

mean temperature and precipitation range from 21℃ to 25℃ and 1690 mm to 2400 mm, respectively. The 

selected site of Amazon is a junction between the rainforest and savannah ecosystems, resulting in a highly 

diverse landscape that includes evergreen broadleaf forest, woodland, deciduous broadleaf forest and wooded 

grassland. In addition, a few grassland and cropland areas are also present on the site. The tree species of this 

area are a mixture of evergreen, seasonal deciduous, palm and rubber. Other prominent families represented 

across the area include the Chrysobalanaceae, Fabaceae, Annonaceae, Melastomataceae, Moraceae, Sapotaceae, 

Apocynaceae and Myrtaceae (Morandi et al. 2016). The soil type in this region varies between xanthic and 

orthic Ferralsols and ferralic Arenosols (FAO 1988; Sombroek 2000). 

Our boreal forest site (Figure 6) is situated in the south western part of Canada. It is surrounded by 

Jasper National Park and Banff National Park, from the east to northeast. The total area covered by the site is 

34,708 km2. The elevation ranges from 25 to 194 m from sea level, temperature from 1.4℃ to13.8℃ and 

precipitation 530 mm to 1730 mm. Evergreen needle leaf forest and mixed forest are the dominant land-cover 

types (Table 2). Also, woodland, wooded grassland and open shrubland occupy a significant percentage of the 

area. Among the various evergreen needle leaf and deciduous broadleaf species, black spruce, white spruce, 

balsam fir, larch (tamarack), lodgepole pine, jack pine, large-toothed aspen, cotton wood, white birch, balsam 

poplar, trembling aspen and paper birch are significant (Larsen 1980). The soils are mainly Brunisols, enriched 

in calcium carbonate (Earle 2015). 

 
Figure6: location map of study sites (Boreal site of Canada, Amazonian site of Para Brazil) 

 

FIG. 6. Location map of study sites (Boreal site of Canada, Amazonian site of Para Brazil) selected for testing 

modelling approach against bioclimatic conditions. The Boreal site is in the elevation of 25 to 194 m from sea 

level with 34,708 km2.  The Amazonian site is at an elevation of 18-36 m above sea level with 9551 km2. 

 

2.2 Data 

Land cover classification data were obtained from the Global Land Cover Facility, which uses the 

radiation-detection imager Advanced Very High-Resolution Radiometer (AVHRR) to capture the images. The 

images of both sites were at a spatial resolution of 1 km. The pixels were used in a hierarchical tree structure to 

classify the AVHRR data. Following this data from the hierarchical tree were classified into12 land cover types 
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based on multi-temporal AVHRR metrics.  Here, the minimum annual red reflectance metric was used to 

delineate woody areas, while the peak annual greenness was used to describe leaf types. Temperature metrics 

were used to differentiate among the tropical, temperate, and boreal zones. Temperature metrics were also used 

to separate the deciduous broadleaf forest from evergreen broadleaf forest, tropical woodland from the general 

forest, and shrubland from grassland and agriculture. Near-infrared metrics were used to separate cropland from 

grassland and shrubland, and tropical flooded grassland from woodland (Hansen et al. 2000). 

A future-climate dataset for maximum and minimum air temperature and precipitation was collected 

from WorldClim (Hijmans et al. 2005) based on the CMIP5 climate projections from the HadGEM2-ES ES 

general circulation models (GCM). All the previous GCMs had limitations, while HadGEM2 has been improved 

to address the systematic errors present in the previous models and versions (Martin et al. 2010). The 

HadGEM2-ES model incorporates the terrestrial, tropospheric chemical and ocean carbon cycles. Associated 

with this, the TRIFFID DGVM model represents the terrestrial vegetation, simulating the carbon balance of five 

vegetation types (broadleaf trees, needle leaf trees, C3 and C4 grasses, shrubs and bare soil) (Cox 2001; Jones et 

al. 2011). HadGEM2-ES also includes realistic stratospheric processes and variability, making the model better 

able to predict future climate (Hijmans et al. 2005). We used the future climate data for two RCPs –4.5and 8.5. 

The time scales used were 2050 (average of 2041–2060) and 2070 (average of 2061–2080). RCP 4.5 is a 

scenario that includes long-term, global greenhouse gas emissions, short-lived species and land-cover changes, 

and has been upgraded from previous GCM scenarios through the incorporation of historical land-cover and 

emission information, which also stabilizes the radiative force at 4.5W/m2 (≈650 ppm CO2 equivalent). Another 

significant feature of RCP 4.5 is that it considers the influence of sulphur aerosols and organic carbon emissions 

on climate change (Moss et al. 2010; Thomson et al. 2011). RCP 8.5 is the pathway with the highest greenhouse 

gas emissions, where no specific climate mitigation target is included. In this pathway, the radiative forcing is 

8.5 W/m2. As an extreme scenario, RCP 8.5 helps in obtaining a prediction about how land biodiversity will be 

affected as a result of extreme climate change (Fischer et al. 2007; Martin et al. 2011; Riahi et al. 2011; Betts et 

al. 2015; Sakschewski et al. 2016). Historical climate data, topographic data, mean annual temperature and 

annual precipitation data were collected (Table 3). 

All the primary data about land-cover, slope, elevation, aspect, and past and future climate images were 

resampled onto a standard, 150-m-resolution grid for all the images of either site to ensure rapid computation. 

 

2.3 Machine-learning model 

For predictive machine-learning modelling, decision trees (DTs) are an important type of algorithm, 

with RFs being among the most potent DT techniques. As with other computer models, DTs have drawbacks, 

such as tending to over-fit the training data set, which can lead to poor model performance (Bramer 2007; Patil 

et al. 2017). Among the DT models, only RFs can limit the risk of over-fitting the dataset; the RFsuse many 

ensemble members and a bootstrap aggregating method during the training session. In this study, we used the 

RF DT technique to simulate the future land-cover distribution in response to climate change. The RF model 

worked via two types of inverted binary tree methods – classification tree (CT) and regression tree (RT) 

(Breiman et al. 1984). The CT model was used for the categorical variables, while the RT model was used for 

the numerical variables.  We used an RF CT method to predict the future land diversity class (Breiman 2001; 

Abdollahnejad et al. 2017). Historical, classified AVHRR image data associated with spatial data, such as 

elevation, aspect, slope, mean annual precipitation and temperature, were used as the predictor variables to 

training the model. The coefficient of determination (R
2
) was used to measure the model’s OOB (out-of-

bagging / prediction error) score. We found no improvement in the OOB score during preliminary tests of the 

RF model with our data sets, where we used 50 and 100 ensemble members, respectively. Therefore, during the 

training phase of the model, we used 50 ensemble members (i.e. a combination of 50 individual CT models), 

and historical climate data (Table 2) and topographic variables (elevation, slope and aspect). The spectral-band 

information from the land cover classification images was used to compare the model outputs to calibrate the RF 

model. The RF model was used in the scikit-learn machine-learning package implemented in the Python® 

programming language (Pedregosa et al. 2011). Finally, the data collected from the machine-learning model 

were processed in ArcGIS and analysed using Excel. A comparative analysis was performed following three 

categories – tropical vs boreal, within tropical vs boreal, and 2050 vs 2070 period. 
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Table 1 Percent (%) change in forest cover for two averaged periods (2050 and 2070) for both Amazon and 

Boreal sites 
    

Forest cover Timeline (present) Amazon  

7216.245 (km2) 

Boreal 

 12019.365 (km2) 

 2050 (RCP 4.5) 18% 8% 

Evergreen forest 2070 (RCP 4.5) 17% 9% 

 2050 (RCP 8.5) 19% 11% 

 2070 (RCP 8.5) 23% 14% 

 Present 680.67 (km2) 513.607 (km2) 

 2050 (RCP 4.5) -71% -36% 

Deciduous broadleaf forest 2070 (RCP 4.5) -75% -35% 

 2050 (RCP 8.5) -75% -37% 

 2070 (RCP 8.5) -88% -42% 

 Present 916.312 (km2) 4781.925 (km2) 

 2050 (RCP 4.5) -46% -9% 

Woodland 2070 (RCP 4.5) -41% -9% 

 2050 (RCP 8.5) -49% -9% 

 2070 (RCP 8.5) -56% -10% 

 Present 578.992 (km2) 1946.902 (km2) 

 2050 (RCP 4.5) -53% -21% 

Wooded grassland 2070 (RCP 4.5) -50% -23% 

 2050 (RCP 8.5) -63% -23% 

 2070 (RCP 8.5) -71% -27% 

 Present 92.632 (km2) 1482.907 (km2) 

 2050 (RCP 4.5) -29% -7% 

Grassland 2070 (RCP 4.5) -34% -8% 

 2050 (RCP 8.5) -29% -7% 

 2070 (RCP 8.5) -67% -11% 

 Present 22.095 (km2) 280. 643 (km2) 

 2050 (RCP 4.5) -75% -24% 

Cropland 2070 (RCP 4.5) -73% -28% 

 2050 (RCP 8.5) -62% -32% 

 2070 (RCP 8.5) -86% -35% 

 

Table 2 Present percentage (% of total area) land cover occupied by different tree species 
 Amazon site Boreal site 

  Evergreen forest 75% 34% 

Deciduous broadleaf forest 7% 1.3% 

Woodland 9% 13% 

Wooded grassland 6% 5% 

Grassland 0.9% 4% 

Cropland 0.2% 0.8% 

Open shrubland         N/A 5.1% 

Closed shrubland         N/A 1.3% 

Bare land 1.9% 5% 

 

Table 3 Summary of all the input data used for training the machine-learning model 
Attribute Source Resolution Importance 

 

 Elevation 

 

US Geological Survey elevation data set 

 

30m 

 

Climate condition, 
vegetation, solar, energy 

 

Aspect 

 

Calculated from elevation data set 

 

30m 

 

Evapotranspiration, species 
distribution, solar energy 

Slope Calculated from elevation data set  

30m 

 

Precipitation, vegetation, 

flow rate and velocity 

Historical mean annual 

temperature and precipitation 

Worldclim-Normal 1950–2000 period 

(Hijmans et al. 2005) 

1000m  

 

Future mean annual temperature 
and precipitation 

 

Worldclim, HadGEM2-ES2041–2060 and 
2061–2080 (Hijmans et al. 2005) 

 

1000m 

 

 

AVHRRI and Classification 
imagery 

 

Imagery acquired between 1981 and1994; 
14 land classes distinguished (Hansen et 

al. 2000) 

 

30m 
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III. FINDING  
We focused on the training phase of the RF models, using topographic and historical climate data to 

train the model to produce predicted images for selected study sites. The Out-of-Bag (OOB) (R
2
) value for the 

Amazonian site was 0.901, whereas the OOB (R
2
)  score for the Canadian Boreal site was 0.797 (Figure 1). The 

RF model produced and captured approximately all of the major forest cover at both sites. 

 

 
Figure1: comparison between original (spatial image: left) and random forest (RF: right) 

 

FIG. 1. Comparison between original (spatial image: left) and random forest (RF: right)-trained images for the 

Amazon site of Para, Brazil (top) and Boreal site of Canada (bottom). Land cover classification data was 

collected from Global Land Cover Facility. The images were captured by a radiation-detection imager 

Advanced Very High Resolution Radiometer (AVHRR). Spatial resolution of both images was 1 km. 

Figures 2 and 3 show the comparative predicted forest-cover changes during different timelines and RCPs. In 

comparing satellite images with the modelled future image of the Amazon site, it was clear that the Amazon site 

will be severely affected under the RCP 4.5 and 8.5 scenarios over the long term. However, the effect is barely 

visible in the short time (2041–2060). In contrast, the machine learning model revealed comparatively less 

change in forest cover at the Boreal site (Figures 2 and 3). 
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Figure2: predicted forest-cover change 

 

FIG. 2. Predicted forest-cover change for Amazonian forest site of Para, Brazil (evergreen, 

deciduous, woodland, wooded grassland, grassland, cropland with area 9551 km
2
); maximum and 

minimum air temperature and precipitation was collected from WorldClim (Hijmans et al. 2005) using 

HadGEM2-ES general circulation models (GCM) model. Representative concentration pathway (RCP) 4.5 

is a long-term, global greenhouse gas emissions, short-lived species, and land-cover changes, and has been 

upgraded from previous GCM scenarios through the incorporation of historical land-cover and emission 

information, which also stabilizes the radiative force at 4.5W/m2 (≈650 ppm CO2 equivalent). RCP 8.5 is 

the pathway with the highest greenhouse gas emissions, where no specific climate mitigation target is 

included. In this pathway, the radiative forcing is 8.5 W/m
2
. 

 

 
Figure3: predicted forest-cover change 

 

FIG. 3. Predicted forest-cover change for Boreal site of Canada (water, evergreen, deciduous, mixed 

forest, woodland, wooded grassland, closed shrubland, open shrubland, grassland, cropland, bare ground 

with area 34,708km
2
; maximum and minimum air temperature and precipitation was collected from 
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WorldClim (Hijmans et al. 2005) using HadGEM2-ES general circulation models (GCM) model. 

Representative concentration pathway (RCP) 4.5 is a long-term, global greenhouse gas emissions, short-

lived species, and land-cover changes, and has been upgraded from previous GCM scenarios through the 

incorporation of historical land-cover and emission information, which also stabilizes the radiative force at 

4.5W/m2 (≈650 ppm CO2 equivalent). RCP 8.5 is the pathway with the highest greenhouse gas emissions 

with the radiative forcing 8.5 W/m
2
, where no specific climate mitigation target is included.  

Among the various land-cover types, there are six that are common to both study sites. These are 

evergreen forest, deciduous broadleaf forest, woodland, wooded grassland, grassland, and cropland. A 

comparison of the RF model results between the two sites revealed that the highest rate of decrease occurs 

in the deciduous forest (-88%), followed by cropland (-86%), with RCP 8.5 in 2070 at the Amazon site. At 

the boreal site, the climate change effect was also severe for deciduous forest and cropland. According to 

the model, the deciduous forest would reduce by 35%, and cropland would also reduce by 35% by 2070, 

relative to the present. The most significant change was found in the evergreen forest for both sites (Table 1). 

Studying all types of land covers of both study sites separately, the highest increasing trend was 

found by the model (13% and 15%, RCP 4.5 and 8.5, respectively) to be for open shrubland at the boreal 

site by 2050 (Figures 4a and b). Conversely, the highest decreasing trend was for closed shrubland (37% 

and 42%, under RCP 4.5 and RCP 8.5, respectively). On the other hand, by 2070, the highest increasing 

trend was also for open shrubland (13% and 24%, under RCP 4.5 and RCP 8.5, respectively) (Figures 4c 

and 4d). The highest decreasing trend was for closed shrubland (45% and 55%), followed by deciduous 

broadleaf forest (35% and 42%) under RCP 4.5 and RCP 8.5, respectively. 

 

 
Figure4: comparative land-cover area (square km) 

 

FIG. 4. Comparative land-cover area (square km) changes for the Boreal site of Canada for 

different periods and representative concentration pathways: a) RCP 4.5 during 2041-2060 time periods, b) 

RCP 8.5 during 2041-2060 time periods, c) RCP 4.5 during 2061-2080 time periods, d) RCP 8.5 during 

2061-2080 time periods. Representative concentration pathway (RCP) 4.5 is a long-term, global 

greenhouse gas emissions, short-lived species, and land-cover changes, and has been upgraded from 

previous GCM scenarios through the incorporation of historical land-cover and emission information, 

which also stabilizes the radiative force at 4.5W/m2 (≈650 ppm CO2 equivalent). RCP 8.5 is the pathway 

with the highest greenhouse gas emissions with the radiative forcing 8.5 W/m2, where no specific climate 

mitigation target is included.  *** minus (-) sign indicates decreasing rate 

 

By 2050, if climate change continues according to the RCP 4.5 scenario, the Amazon will lose a 

large portion of its deciduous forest (71%) and cropland (75%) (Figure 5a), with deciduous forest, 

decreasing really by 75% and wooded grassland by 63% under RCP8.5 (Figure 5b). By 2070, the highest 

loss will be to a deciduous forest (75%), followed by cropland (73%) under RCP 4.5 (Figure 5c).  The 



Quantifying forest cover changes in response to climate change using a machine learning model 

*Corresponding Author:  Joity Hossain                                                                                                     126 | Page 

machine learning model also revealed a shocking loss of deciduous forest (88%) and cropland (86%) under 

RCP 8.5 (Figure 5d). 

 
Figure5: comparative land-cover 

 

FIG. 5. Comparative land-cover change for the Amazon site of Para, Brazil for different periods 

and representative concentration pathway a) RCP 4.5 during 2041-2060 time periods, b) RCP 8.5 during 

2041-2060 time periods, c) RCP 4.5 during 2061-2080 time periods, d) RCP 8.5 during 2061-2080 time 

periods. Representative concentration pathway (RCP) 4.5 is a long-term, global greenhouse gas emissions, 

short-lived species, and land-cover changes, and has been upgraded from previous GCM scenarios through 

the incorporation of historical land-cover and emission information, which also stabilizes the radiative 

force at 4.5W/m2 (≈650 ppm CO2 equivalent). RCP 8.5 is the pathway with the highest greenhouse gas 

emissions, where no specific climate mitigation target is included. In this pathway, the radiative forcing is 

8.5 W/m2. *** minus (-) sign indicates a decreasing rate. 

In all cases, evergreen forests showed an increasing trend at a high percentage.  

 

IV. DISCUSSION 
The change of forest-cover losses for wooded grasslands and croplands and an increasing trend of the 

evergreen forest of Amazon and boreal deciduous forests were identified using a random forest (RF)-based 

machine learning model. However, the reason for the changes was different between the sites. Field-based 

research on the Amazon was shown that tropical forest species are highly sensitive to climate change. The 

productivity of tropical forests increases when water is sufficiently available. Moderate changes in climate can 

destroy the majority of this forest cover. According to previous climate research, droughts will become more 

intense, prolonged, and frequent in tropical region. While tropical forests can face a two-to three-month dry 

season, in expectation of a rainy spell to allow them to flourish, prolonged droughts could kill their habit. 

Another possible reason for forest cover loss is heavy rainfall. Continuous rainfall is favorable for evergreen 

broadleaf trees but can quickly kill off the deciduous forest. Heavy rain or prolonged drought are both fatal for 

cropland and grassland because of their shallow root systems. Heavy rain creates flooding, and intense drought 

causes severe water shortage. Therefore, nutrients become unavailable to shallow-rooted species (Feeley et al. 

2007; Doughty and Goulden 2008; Kang et al. 2009; Sankaran 2019; Matos et al. 2021). Our boreal site belongs 

to the pacific maritime-ecozone, the most productive boreal site in Canada (Johnston et al. 2009). Research has 

forecasted that deciduous forests will be benefitted from future warmer climates for a while but will then likely 

be destroyed by two possible indirect effects of drought– insects and gap re-generation. Generally, drought 

affects evergreen species faster, creating space that becomes occupied by deciduous species. Prolonged drought 

and less rainfall will lower the water table and reduce the amounts of nutrients in the soil. 

Consequently, the sap inside the deciduous species will decrease, making this valuable species more 

prone to insect attack. Boreal forest sites store the highest amount of carbon in their soils. This soil organic 
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carbon (SOC) is related to fire combustion. Therefore, prolonged drought and soil-bound carbon will increase 

the incidence of forest fires that will lead to the problem of succession. 

Deciduous species are naturally short-lived. With prolonged and frequent droughts, their offspring will 

fail to grow, and drought-tolerant evergreen species will take over their niche (Reich and Frelich 2002; Allen et 

al. 2010; Schindlbacher et al. 2012; Alexander and Mack 2017). Loss of species diversity will make the forests 

mono-species dominant, and these will then become vulnerable and less resilient to further climate change (Way 

and Oren 2010; Morandi et al. 2016; Sakschewski et al. 2016; Sung et al. 2016). 

Deciduous species will face difficulties flourishing because of prolonged and intense drought anywhere 

in the world. Meanwhile, with unfavourable conditions, the cell sap within trees will decrease and make the 

trees more susceptible to pest attack (Givnish 2002; Way and Oren 2010). According to studies, even without 

higher temperatures or elevated CO2, a 15% drop in precipitation alone in summer can destroy the diversity of 

deciduous species in temperate forests if the water output becomes higher than the input. It was also found that 

the deciduous forest will be heavily impacted by tornadoes, thunderstorms and wind disturbances (Peguero-Pina 

et al. 2020). According to Reich and Frelich (2002), deciduous forests of the temperate zone among the biomes 

will be heavily impacted by global change factors, whereas, in the tropics, deciduous forests will be affected by 

severe extra-tropical low-pressure(Reich and Frelich 2002). These might be the reasons that our RF model-

based study showed a severe loss of deciduous forest in the future for both sites while also indicated the 

flourishing of evergreen forests for the long term. 

According to this study, Amazonian deciduous broadleaf forest and cropland will be highly affected. 

Only evergreen forests will be able to occupy most of the area in the future. Previous research was shown that 

evergreen species have traits that allow them to be active at low soil water potentials, to reduce xylem 

cavitations to minimize water loss by producing small leaves, and to have small leaf areas and lower 

transpiration rates (Medlyn et al. 2001; Ackerly 2004; Kursar et al. 2009; Markesteijn et al. 2011; Carminati et 

al. 2020). Therefore, our study indicates that under elevated CO2 or higher temperature, or even during 

droughts, evergreens can pass less water vapor from their leaves which is vital to maintaining turgor pressure 

within the cells. Balanced turgor pressure makes species less susceptible to insects and helps them to withstand 

drought. Deep root structures are another physiological feature for the survival of the plant. Evergreens can 

increase their water uptake from deeper layers in the soil, allowing them to tap into more reliable water sources, 

such as that held in parent material or rocks, during dry seasons. This might explain why evergreen species 

would flourish under future extreme climatic conditions (Nelson et al. 2002; Hasselquist et al. 2010; Tomlinson 

et al. 2013; Bayala and Prieto 2020). 

Elevated temperatures can enhance shoot height, stem diameter and biomass in deciduous species more 

than evergreen trees. As a drought-avoidant group, deciduous trees can stop water use and loss by shedding 

leaves and almost halting their physiological activities in drought season (Parry 2000; Chaturvedi and 

Raghubanshi 2018). In the monsoon season, they use more water and nutrients than evergreen tree species to 

sustain their high photosynthetic rates and meet their requirements before the next drought. Using the BIOME3 

model, Parry (2000) suggested that European temperate deciduous forests could increase their productivity over 

the next 80 years because Europe will get more rainfall. Previous research has found boosted levels of foliar 

18O (∆18Ol¬) and 13C values in deciduous species, which indicate reduced stomatal conductance and, 

subsequently, greater water-use-efficiency (WUE) during the rainy season (Hasselquist et al. 2010). 

Nonetheless, it is known that future higher temperatures will promote drought conditions as well as extreme 

rainfall in boreal and tropical zones. Our model results showed unexpected increments of open shrubland at the 

Boreal site. However, rising temperatures, more rain, fewer nutrients, and increased evaporation will combine to 

promote shrubland to occupy deciduous forest areas (Arnell 2008; Allen et al. 2010; Chadwick et al. 2015). 

Even under elevated CO2 conditions, shrubby plants showed less acclimation of stomatal conductance than 

other species present in the Boreal zone, which gives them the key for survival under drier conditions 

(Ainsworth and Rogers 2007). Earlier, boreal regions will experience temperature increases from 4˚C to 11˚C 

with increased precipitation (Scheffer et al. 2012). With this extreme scenario, a large area of boreal forest will 

be replaced by shrubland (Boisvert-Marsh et al. 2014). Also, habitat shifts will expand evergreen species into 

the current habitat of the deciduous forests of the boreal zone (McKenney et al. 2007). Regularly updated 

satellite imagery of forest cover is also needed for more accurate prediction (Wang et al. 2016; Midekisa et al. 

2017). 

 

V. CONCLUSIONS 
This study predicted that both of our study sites were susceptible to losing a considerable percentage 

of their forest cover if the climate shifted according to RCP 4.5 and RCP 8.5. In brief, the tropical zone might 

lose its virgin forest cover due to extreme drought, tornado and fire in future. In contrast, the boreal site may 

lose its existing healthy forest to a lower succession rate, pest attack, drought, fire and low nutrient availability. 

According to our model, there is a chance that evergreen mono-species will dominate both highly valuable 
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forests in the future, which could make these forests more prone to further climate shift effects. The dying of 

these forests will release approximately 5 billion metric tons of carbon into the atmosphere, which would further 

fuel the process of climate change (Grudgings 2011; Kelly et al. 2013). 

To better understanding the future of earth’s forest cover and processes, it is essential to quantify and 

monitor the spatial forest dynamics. Machine-learning studies can provide predictive results but not real-life 

scenarios. Therefore, the results of this study should validate the data collected at the field level to match the 

consistency of the machine-learning model. 
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