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Abstract:

In this research paper, we proposed to study the behavior of a fluid particle inside
a vorter with time-independent or time-dependent of speed components. This
study is realized in three dimension. In preliminaries, we have defined some
properties and calculate some of the terms necessary for our study. We have
shown in the case where speed is independent of time, an impossibility of having
an incompressibility situation in flow and that the value of the density does not
affect the pressure of the particle. We have also shown in the case where the
speed is time dependent, the possibility of having an incompression situation if
the partial derivative equations or the value of t check certain conditions, and
that in this case the density has strong influence on the pressure of the particle
which depends on the position. The simulation in the case where v is indepen-
dent on time and the external forces are not functions of x,y,z shows that the
pressure follows a increasing linear behavior for a power from n =2 ton = 5,
a resemblance of pressure according to whether that n is even or odd. In the
case that v depends on time, the velocily remains different and does not show
the sinusoidal but a rectilinear pace. The four speeds appear to be stackable but
it is not between the different models. We show that the trajectory followed by
the particle influences the pressure, a small resemblance of the pressure between
the models two by two. The simulation of ratatinal, divergence and pressure
together show that the trajectory of the fluid particle has an influence on these
variables. And a small resemblance have been seen between the models two by
two.
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I.  Introduction

The notion of fluid refers to the absence of an organized structure of matter at the microscopic level,
which allows a large capacity for movement of the atoms that constitute a fluid. It is for this reason that the fluid
state is represented by the liquid and gaseous bodies [1]. The study of fluids plays a very important role
nowadays because it allows the development of models which make it possible to improve the performance of 1
machines in the maritime, terrestrial and space fields. A particle of a fluid can be viscous, compressible, or
incompressible. When we are interested in viscosity, an exact analysis of the radiative effect of the free
magnetohydrodynamics (MHD) of convection flow of an incompressible viscous fluid on a vertical plate is
studied and the continuity, the moment and the energy equations are solved using an appropriate transformation
[2]. An explicit form solution of the moment diffusion equation for a viscous fluid flowing around a plateau
taking into account the deceleration with three regions characteristic of the viscous flow at is given in [3]. In the
case of an incompressible flow, a new method of scalar projection presented for the simulation of
incompressible flow with a variable density is proposed with a first phase of purely kinematic projection. The
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predicted speed is subjected to a discrete Hodge-Helmholtz decomposition, [4]. A solution of an incompressible
fluid flow is also studied in [5]. However the study of the kinematics of fluid flow plays a very important role by
what it constitutes in most of the time, the starting point of a study in mechanics of continuous mediums in [6],
[7] and [8]. Incompressibility, divergence and rotational have been studied more recently in new kinematics of
vortex flow in [9]. The further away the particle is from the center, the more volume and speed). In this
document, we first start with a preliminary study of the mechanics of fluid flow by defining some tensor used in
this study. We are going to apply some tensors defined in the preliminaries to two examples of vortex flow with
time dependent or non-time dependent velocity components, in order to determine the pressure, rotational and
divergence of these kinematics. As a contribution, we will shown that in a flow where the velocity components
are independent of time, the condition of incompressibility is impossible and that the volume density has no
influence on the pressure. We will also show that in the case of a dependence of the speed on the time, the value
of the volume density influences the pressure which also depend on the position of the particle and that with the
partial derivatives checking certain conditions or for a specific value of t, we can have a situation of
incompressibility in this case of fluid flow. Finally the simulation and the results will allow us to see the
correlation of our study compared to the reality, and this is what allowed us to validate our study.

Il.  Preliminaries
In mechanics of continuous mediums as in the particular case of fluid mechanics, a kinematics of
transformation is always given from one of the two following configurations that are: the Lagrangian
configuration and the Eulerian configuration. The Lagrangian configuration observe the fluid particle passed in
a fixed point of the space while the Eulerian configuration follows the particle continuous mediums in its
movement.

x; = fi(X); (1)
where f;(1<;<q) are one to one applications and X = (X3, Xo, X3) in the case
of a spatial transformation.

It is possible that a kinematic of transformation becomes defined from the wve-
locity components as:

v; = g:(X); (2)
To better understand the behavior of a fluid, we define the speed tensor noted
D and which is defined by:

1 v, v ;
D=D,, == | — - 3
J 2 (@)fj - C}_XZ-> ' (3)

From the speed tensor, we can define the stress tensor noted ¢ which is a function
of the first.
o= h(D); (4)

An isotropic medium is a medinum whose properties are identical regardless of
the direction of observation. Fluids are generally considered to be isotropic
medium [A].

we can calculate the three isotropic elementary invariants which are:

I =tr(D);
Iy =tr(D"); (5)
I — det(D);
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where D* is the adjoint tensors of D, tr is the trace operator and det is the
determinant operator.
The incompressibility conditions are given by:

I]_ =0;

I3 =1. ©)

Let us now consider a fluid particle of volume V with an external pressure P..
This fluid will be said to be incompressible if its vulume varies when the external
pressure varies, Mathematically, that means that:

aP.

ot
Compressibility is a characteristic property of gases. Most liquids such as
petrolenm are incompressible. It is from the same that the principle of Archimed
comes to us.

Let Q be a regular bounded domain of R™, 8Q the border of Q and u € C! @)
a continuous vector field. So the Ostrograsdski’s theorem gives us:

/ﬁQ u.nds = fQ div (u) du; (8)

with 77 the unit normal oriented outward.

It should be noted that a simply related field can be regular under certain con-
ditions. If {2 is a connected regular bounded domain of connected components
¢, then the connected components restrictions are paramerizations absolutely
continues

The general or integral formula for the conservation of mass at time t also ap-
plies to a fluid, which explains the use of the integral tool. So the mass of a
fluid can be written as:

av
A0— — 40 (M)

m (t) = L du, () ()

The density of a substance noted p, also called density of mass, is a physical
quantity which characterizes the mass of this substance per unit of volume. In
the case where du, (z) = p(x,t), we obtain:

m (t) = L p(z.t) (10)

The conservation of mass is a fundamental law of the mechanics of continu-
ous mediums. It indicates that during the whole transformation, the mass is

CDHSEI‘VBd . d
4y =2 z,t) =0,5Q (t). 11

The mechanical deformations of continuous mediums are one-to-one transfor-
mations between the initial configuration and the deformed configuration, which
gives us:

z; = fi (X) &= X; = ¢i (z), (12)
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where ¢;(1<i<3) are the reverse of fi1<i<3)

The Lagrange representation makes it possible not only to follow a particle
in its movement but also to study the particle derivative or total derivative or
Lagrangian derivative which takes into account not only the local variation of
the parameter over time but also the wvariation of that - here related to the
displacement of the particle.

We define the particle derivative by:

d d
Ef(X?t) = af(x=t)+

(13)
a d
gzt (#(@).8) 5z (=0),

What finally yields:
d o
Ef = Ef‘f' (V) .v, (14)

The term convective or convection term represented by (V f).v refers to the
heat transfers oceurring between a surface and a moving fluid when these are
at different temperatures. In addition to the energy transfer due to diffusion,
there is also transfer through the movement of the fluid.

Using the density function in the previous relation withe condition of (10), we
get:

th [%P (z,t) + p(2,t) div (?‘)} dr =0, (15)

and the integral on a segment of a continuous function of constant sign such as
the density is zero if and only if this function is zero. So

%p (z,t) + p(z,t) div (V) =0, (16)
¥ is the velocity of the fluid particle.

This previous relation defines an important principle called the continnity equa-
tion which describes the principle of conservation of mass in several different
forms: local conservative (derivative in normal time), non local-conservative
(the derivative in time follows the particle in its movement), or integral.

In differential calculus, the Reynolds transport theorem (also known as the
Leibniz-Reynolds transport theorem), or in short Reynolds theorem, is a three-
dimensional generalization of the Leibniz integral rule which is also known as
differentiation under the integral sign.

This theorem is stated as follows:

Let @ be a regular domain of R™, 8Q the frontier of @ and v,, the outgoing
normal speed at point € dQ. Then for any tensor field continu admitting a
temporal derivative, we have:
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o f@ pi = fQ Bypdv + fa p(wmds (17)

with 1 the unit normal oriented outward.
You should know that this theorem is fundamental because it makes it possible
to obtain all the fundamentals relations of mechanics.

The law of conservation of momentum states that the total momentum of a
system before a transformation is equal to the total momentum in the same
system after the transformation.

When we replace p by pv in the Leibniz-Reynolds transport theorem, we obtain:

d .
— [ pvdv = f 0y pvdv + pv (v.n3) ds, (18)
dt Jo Q oQ

Accordind to the Ostragrasdski theorem, we have:

pv (v.n)ds = f div (pv @ v) dv (19)

aq Q

By using (18) in (17) and removing the term from the integral, we end up with:

d :

7= Orpv + div (pv @ v) , (20)
The fundamental principle of dynamics is that any variation in the amount
of motion results from the application of forces. So the general relation of
conservation of the momentum, the divergence theorem and the momentum
conservative law give:

O (pv) +div(pv @ v) = div (a) + [, (21)

o = —pl+ 29D+ Adiv (u) is the Cauchy stress tensor which allows to character-
ize the state of stress, that is to say the internal forces brought into play between
the deformed portions of a material in mechanics of continuous mediums, and
I the identity tensor.

The criterion of incomprehensibility is also defined by the relation:
div (v) = 0. (22)

as we pointed out at the beginning defines incompressibility as a non-variation
of the volume as a function of time, this will also imply a non-variation of the
density. So we have:

p(z,t) = po. (23)

We have several mathematical formulations to study the movement of a fluid.
In fluid mechanics, the Navier-Stokes equations are nonlinear partial differential
equations that describe the motion of Newtonian fluids.

In the case of a spatial and in incompressible, these equations are defined by:
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dv n ap
podt * 01’1

= 2uAv; + fi,i=1,2,3. (24)

A fluid is defined Newtonian if the behavior model which gives the Cauchy stress
tensor  as a function of d is an affine relation, i.e.

o =—pl+ADyl+ 2uD (25)

with p, A and p independent scalars of D.

Viscosity can be defined as the set of phenomena of resistance to the movement
of a fluid for a flow with or without turbulence. The high viscosity decreases
the freedom of flow of the fluid and dissipates its energy.

3 Application to a vortex flow

Let now consider a particle on an domain {2 of R? with the following flow kinetics
defined as:
Ty, = Xt »,=v X, 1)
091 (X,1); =y = voge (X, 1) (26)
z. = vogs (X,1);

With our flow kinematics, the velocity components are described by the follow-
ing kinematics:
vz = vog1 (X,1); vy =voge (X, 1);

27
v, = vogs (X, t); (27)

with vg the initial velocity of the fluide paticle and ¢; functions of = = (z,y, 2)
verifying :

73! (X-U) =02 (X, U) = g3 (X'O) = 1.

The components of the gradient tensor of velocity become:

32 @2

Du =vog—g1; Do = LD@ 292;
Dy = vy 9
1
Dyg =Dy = (—91 + —9 ) (28)

2
1
Dy =Dy = 3 (—91 + —9 )
1
2

Daog = Dag = (—92 + —93
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Without calculating the isotropic invariants, we can see frome the compenents
of D that the condition of incompressibility of our flow is given hy:

52 a2 92

) sah+ B2 5292t 530 = 0. (29)
The previous equation also means that the volume does not vary, that is to say
P (I: y t) = fo-
Applying these conditions to the Navier-Stokes equations, they become:

dp tali
povodi + 5- —2#10 L +F=

3_@2 _
ay + Fy: (30)

Ip
povoda + v 2pvp
Y

. dp D
povods + = = 2pvg—— 95 4 F,.

Using the following expressions with (48) we obtain components of the partial
derivatives of the pressure in the general case by which are:

gi = meo% — povodt + Fi;

8, Ao

@_i B 2”’“0(9—. — povoda + Fy; (31)
a Oda

‘;j = 2uvy 9 Povods + F.

This gives us the general expression of the pressure which becomes:

1 1
P=3 (2pvo (g1 + g2 + g3) + §/ (—vopodr + Fr) Ox
1 (32)
+§ (f (—vopode + F,) Oy + (—vopods + F) @z) .

In the case of our kinematics with the component of the speed dependent on
time, the rotational is is given by:

?i:uo(%_aﬂ)aﬂo(%_%)a

o Oz Oz d
Y NN (33)
pyy (P02 001
O\ oz Ay

Here a condition which will give us an irrotational How is that of the initial
speed vg, which means that there is no transformation, ie no flow.
The other conditions for an irrotational flow are given hy:

dg1  Oga  Ogs
09y _ 09y _Ogs _ 34
o "o ot Y (34)

or
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991 _ 095, (35)
0z O’
992 _ 991
Oz Oy
The divergence becomes:
. 041 , 042 | 043
div (V) = v [ — + == : 36
v (V) LO(6I+6y+ﬁz (36)

This result shows that our flow can be performed with a change in volume. So
if there is a transformation with vg # 0, the only condition of incompressihility
will be given by:
O 03 _ Oiy
Oz Ay 0z

—0. (37)

3.1 Case of a speed independent of time

Let’s consider a fluid particle located inside a velocity field vortex given by the
following kinematics [9]:
Y x
vy = —-L!D;; vy = UDE; v, = Z1 (38)

with vy and a the initial velocity and the initial radius respectively.
With the previous kinematics, the speed tensor becomes:

D;; =0 sinon. (39)
And its adjoint D* is the matrice defined by:
Dj;=0VvV1<ij<3 (40)
For our study, we will restrict ourselves to isotropic invariants
I, =1,
I =0 (41)
I3 =0;

By seeing the value of the first or the third isotropic invariant, we see the
hypothesis of a compressible low. A variation in volume which will also cause
a variation in pressure.

And as the volume varies, we will have the density which varies:

p=p(z,t); (42)

In the simple case where du; (z) = p(z,t) we can easily determine the compo-
nents according to each direction of p by:

Pz = Uz,
Py = UVys (43)
Pz = Us.
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As a first result, this means that the further we move away from the center of
the vortex, the more the density will increase and an increase in density results
in a decrease in the volume of the fluid particle.

As a second result we can interpret using Bernoulli’s theorem that the pressure
decreases with increasing speed, i.e. the further the particle moves from the
center the less pressure it is subjected to.

Using the assumption that (17) on p et v we obtain:

Pz = VUz;
Py = Uy: (44)
Pz =1z

With the Navier-Stokes equations defined in (24) and in the absence of external
forces, we obtain the following PDE:

op

ar =¥

dp K
Op

= —0.

dz

This means that the pressure is not a function of any of the three Eulerian
variables z, y and z. And as the pressure decreases with the increase in distance
(radius a) between the center of the vortex and the position of the fluid particle
we find the expression of the pressure which becomes

= — (46)
P o
with k a constant.
This means that in the absence of external forces, the pressure p follows an
affine variation which increases when the radius a decreases.

With the relation (24) and in the presence of an external force of component
F., F, and F., we end up with:

op

fr O F

dp

L _F- 47
8y s ( )
dp

— =F..

Oz #

In the case where the components of the external force are constants or inde-
pendent of x, y and z, the equations (41) give us:

p=zF. +yF,+z2F. +C (48)

with €' a constant.
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as the expression of the pressure indicates it we have a linear pace.
But on the other hand if the components of the external force are functions of

the three variables =, y and z, then we obtain the expression of the pressure
given by:

1 i i i
r=3 / (Fu0z + F,0y + F.02) (49)

We will denote by n, the sum of the powers of a monomial being the greatest

in the expression of the pressure.

Power n=2 Power n=3

P
N2 Y2
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Power n=4 Power n=5
P
ny 2
10 10
[} 8 1l
/
3 i & {
N f N .'l
q ! q !
/ !
2 f 3 {
S f
T /
0 ] o | \
4000 | \ LN i )
] b T [ — T
3000 \\ / ) /iu 30 , 2 ’\\ | - /iu 30
2000 /e o™ 10 -
100;\\ | / 10 0 10
"0 "0
Y 0 -0 x ¥ -2 10 x

Even with the components of the external forces which are functions of the vari-
ables x, iy and z; we have the pressure which follows a increasing linear behavior
for a power from n = 2 to n = 5. We notice a resemblance of pressure and of
the trajectory according to whether n is even or odd.

We find that in the case where du, (z) = p(xz,t), the fact that the density
is a constant or is dependent on the position of the fluid particle does not influ-
ence the pressure component. this is due to the fact that the speed components

are not time dependent.

Using the relation (39) the value of the rotational becomes

= 222el. (50)

Using also the relation (42), the divergence is given by:
div (V) = va (51)
this value of the divergence comes to prove again the variation of the volume of

the particle.

3.2 Case of a speed dependent of time
Let us now consider a fluid particle inside a vortex with a helical trajectory
discribed by the following kinematic [9]:

r = Recos (Bt)e (Z)

52
i y= Rsin(Ot)e(Z); z=2t; (52)

where R is the initial radius, © the angle before deformation and ¢ = £(Z) a

function of Z representing here the perturbation parameter.

From this kinematics, we can find the particule speed components by derivation

of the deformation kinematic components according to the time. what gives:

v, = —ORsin (Ot)e (Z)

53
; vy =OReos (Bt)c(Z); v. =Z; (53)
The speed tensor becomes:
Dy = cos [Gt) g; Dos = GRcos (Qt} £;
Das = 1;
1 . . .
Dlg = Dzl = 56 (J. — RQ) RSITL (Qf-)c,_. (54)

M =D4 = —%Er Rcos (Qf) )

D23 = D32 = %Er Reos (Qf) .

X2
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In order to find a condition of incompressibility, we compute the first isotropic
invariant:
I =c(1+©R)cos (GL) + 1. (55)

So a condition of incompressibility is given by:

t— écos*1 (—ﬁ) . (56)

As in the previous case, we have a pressure defined by:

1 i
p-s / (F,0z + F,0y + F.0z) (57)
The use of the previous relation allows us to have the pressure from the kine-
matics. So then:

p=C+ gpsvu (RO (cos (©t) — sin (O1)))
+5 (20007 + B (Fz — LpoR6%cos (1)) ) (58)
+é (ZFZ — R (9(:05 (et) + %sin (et))) .

with C' representing a costant of integration, vg is the initial speed and p defines
the viscosity

In the case of a vortex with a radius which evolves in an increasing way with
time, the simulations of the flow kinematics, the flow speed and the flow pressure
give the following graphs:

increasing radius increasing radius
e Xy

v

6000

increasing radius

L,
]
2
15.
e 1.
0.5
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In the case of a vortex with a radius which evolves in a decreasing way with time,
the simulations of the flow kinematics, the low speed and the flow pressure give

the following graphs:

decreasing radius

Y.z
VN,

decreasing radius

—n

decreasing and increasing radius

[4

- 60
M 40
20
[t}
i
5
>
¥,
¥
decreasing radius
2
15. -
M 1
0.5
1]
6000
In the case of a vortex with a radius which evolves in a decreasing way and then
in an increasing way with time, the simulations of the How kinematics, the flow
speed and the flow pressure give the following graphs:
decreasing and increasing radius
xy.z
v,
80 B0
60 60
A

a0 .

20 [
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dec and incr radius

VM
1]

In the case of a vortex with a radius which evolves in an increasing way and
then in a decreasing way with time, the simulations of the flow kinematics, the
flow speed and the How pressure give the following graphs:

increasing and decreasing radius increasing and decreasing radius

Y2 Y.z
LT —n

iyt

increasing and decreasing radius

0s
0
10000
5000 e 100
S - - 50
AN
Vy 5000 50 v

As an important result in our simulation, we can see that the behavior of the velocity remains in a
different evolution which does not show the sinusoidal shape in a different domain with a rectilinear pace on the
scale of variation of the trajectory and the pressure. We can also note that the difference in trajectory leads to a
difference in behavior in terms of pressure. This proves that the trajectory followed by the particle influences the
pressure undergone by the particle, which in practice shows a good behavior of our models. Nevertheless, we
can see a small resemblance of the pressure between the model of increasing radius and the model of decreasing
then increasing radius but also between the model of decrising radius and the model of increasing then
decreasing radius. Using the relation (39) the value of the rotational becomes
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W =0 = (©(1 — tR) cos (6t) — Rsin (6t)) €. (59)
Using also the relation (42), the divergence is given by:
V = div (V) = Reos (6t) — © (1 +tR) sin (6t) (60)

this value of the divergence shows that in the case of our kinematics where the
velocity components depend on the time, it is possible to have a non variation
of the volume of the particle in certain conditions.

To better visualize the rotational and the divergence, We simulate them to-
gether with the pressure
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The four figures show how the three simulated variables vary differently in each case of trajectory. We
can see that the variables are in no case superimposable between two models. This means that the trajectory of
the fluid particle has an influence on these variables. Nevertheless, we can see also a small resemblance between
the model increasing radius and the model decreasing then increasing radius but also between the model
decrising radius and the model increasing then decreasing radius.

4 Results
In this mathematical study of the modeling of the behavior of a particle inside a vortex, the
mathematical calculations and simulations of the trajectory, the speed, the pressure, the ratational and the

divergence gave us: In the case of a transformation where the speed components are independent on the time,
we have:
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¢ The hypothesis of an incompressible low is impossible. A variation of the
volume that goes to cause variation of the density and the pressure.

¢« The further away the particle is from the center, the more volume and
speed will increase and the pressure will decrease. This result shows that
near the center of the vortex a particle is compressed, which is dangerous
for a living heing.

¢ In the absence of external forces, the pressure is not a function of any of
the three Eulerian variables x, y and z and depends only on the radius.

¢ In the case where du,; (x,t) = p(z,t), the fact that the density is a constant
or is dependent on the position of the particle luid does not affect the
pressure. And that we get the same pressure even though du, (z,t) #
p(z,t), because quite simply, if the speed is independent of time, the
value of the density does not change the pressure in any way.

¢ The simulation of the pressure and the trajectory with the components of
the external forces which are functions of the variables x, y and z shows
that we have the pressure which follows a increasing linear behavior for a
power from n = 2 to n = 5. We notice a resemblance of pressure and of
the trajectory according to whether that n is even or odd.

In the case of a transformation where the speed components dependent on the
time variable, we hawve:

¢ The hypothesis of an incompressible How is possible in certain conditions
verified by the partial derivatives or by a certain value of of the time
t. In the case of a constant volume density and in the presence of an
external force, we have the Navier-Stock equations which depend on many
parameters. The calculation of the pressure gives p = p (R, 9, Z, ).

e The result proves that we have here a pressure which depends on the
position of the particle. Consequently the particle will undergo variations
in volume.

e The expression of the divergence of the fluid particle comes to prove again
the possibility of having an incompressible flow.

e In our simulation, we see that the behavior of the velocity remains in a
different evolution which does not show the sinusoidal shape in a different
domain with a rectilinear pace on the scale of variation of the trajectory
and the pressure.

e We even see that these four speeds appear to be stackable between the dif-
ferent models, what is false and also note that the difference in trajectory
leads to a difference in behavior in terms of pressure. This proves that
the trajectory followed by the particle influences the pressure undergone
by the particle, which in practice shows a good behavior of our model.

Nevertheless, we see a small resemblance of the pressure between the model of increasing radius and the model
of decreasing then increasing radius but also between the model of decrising radius and the model of increasing
then decreasing radius.

* The simulation of ratatinal, divergence and pressure together shows that variables vary differently in each case
of trajectory. We can see that the variables are in no case superimposable between two models. This means that
the trajectory of the fluid particle has an influence on these variables.

* Nevertheless, we see also a small resemblance between the model increasing radius and the model decreasing
then increasing radius but also between the model decrising radius and the model increasing then decreasing
radius.
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This study shows that if the flow kinematics have velocity components which depend on time, then the
pressure, the rotational and the divergence will all depend on the trajectory, and shows also that the further away
we are from a vortex the less we feel its effect.

5. Conclusion

In this document, we have proposed to study the the behavior of a fluid particle inside a vortex in cases
where the speed component depends or not on the time, in order to better understand its behavior according to
the boundary conditions. After preliminary, we have difined flow kinematics and / or velocity fields, in order to
calculate the velocity tensor, isotropic invariants, pressure, rotational, divergence and incompressibility
conditions depending on whether the velocity is dependent on the time or not. We have shown that in the case
where the speed is independent of time, it is impossible to have a situation of incompressibility except in the
case where there is no flow and the value of the density does not influence on the pressure of the particle and
that this pressure is independant on the position where the particle is located.

We have also shown that in the case where the speed is dependent on time,
it is possible to have a situation of incompressibility if the partial differential
equations satisfy certain conditions or for a certain value of the parameter t. In
this case the density has a strong influence on the pressure of the particle which
strongly depend on the position where the particle is located.

The simulation in the case that v ¢ v (t) of the pressure and the trajectory with
the components of the external forces which are functions of the variables =, y
and z shows that we have the pressure which follows a increasing linear behavior
for a power from n = 2 to n = 5. We notice a resemblance of pressure and of
the trajectory according to whether that n is even or odd.

The simulation in the case that v = v (f) shows that the behavior of the velocity
remains in a different evolution which does not show the sinusoidal shape but

a rectilinear pace. It even shows that these four speeds appear to be stackable between the different models but it
is not true in reality and we also note that the difference in trajectory leads to a difference in behavior in terms of
pressure. So the trajectory followed by the particle influences the pressure undergone by the particle, what
shows a good behavior of our model. We have a small resemblance of the pressure between the models two by
two. The simulation of ratatinal, divergence and pressure together shows difference in each case of trajectory
and the variables are in no case superimposable between two models. So the trajectory of the fluid particle has
an influence on these variables. A small resemblance have been seen between the models two by two.
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