Quest Journals Journal of Research in Humanities and Social Science Volume 10 ~ Issue 10 (2022) pp: 84-99 ISSN(Online):2321-9467 www.questjournals.org

Research Paper

Enterprise Content Management: Corollary for Administrative Efficiency of Manufacturing Firms

¹Nwinyokpugi, Nkiinebari Patrick PhD ²Alikornwo, Peter Mezenye

Department of Office and Information management, Faculty of Management Sciences, Rivers State University, Nigeria

ABSTRACT: The study investigated the relationship between enterprise content collaboration management and administrative efficiency manufacturing firms in Rivers State. Using four dimensions of digitalization, content analytics, intelligent information management and internal document management, while cost reduction and real-time service measured Administrative Efficiency. The population of this study comprised of the 78 managers censused from twenty six (26) manufacturing firms operating in Rivers State. Data gathered with structured closed ended research questions from the targeted respondents were analysed using the Pearson's Product Moment Correlation Statistical tool, partial correlation and multiple regression were used to test the hypotheses and presented with the aid of statistical packages for social science (SPSS) version 23.0. The pvalues were calculated to determine the significance of the hypothesized relationship. Analytical outcomes revealed statistically positive and significant relationships between the dimensions of our predictor variableenterprise content collaboration management and the measures of the criterion variable-administrative efficiency. Based on the findings, the study concluded that enterprise content collaboration management has a positive significant relationship with administrative efficiency of manufacturing firms in Rivers State. The study further recommended that Managers of manufacturing firms should capitalize on the critical role of digitalization in their operations to drive their administrative efficiency; Managers of manufacturing firms should seek to build strong content analytics antecedents in consonance with their company policies and practices aimed at achieving administrative efficiency; Managers of manufacturing firms should apply objectivity in their intelligent information management processes as this has the potency to either ruin or enhance their administrative efficiency; Managers of manufacturing firms should adopt the internal document processes as it possesses the potency to transform their paper-document processes to a digital state. KEYWORDS: Enterprise Content Management, Digitilization, Content Analytics, Intelligent Information Management, Internal Document Processes

Received 01 Oct., 2022; Revised 08 Oct., 2022; Accepted 11 Oct., 2022 © *The author(s) 2022. Published with open access at www.questjournals.org*

I. INTRODUCTION

In the present day organisation, Information Technology has reclassified the manner in which we think, work and live. The presentation of Information on the world stage has caused an adjustment of the conventional technique for learning, correspondence, and so on inside and outside organisations. The present-day manufacturing firms in Rivers State, Nigeria are confronted with diverse difficulties of dealing with their records. These difficulties range from dubious documentation processes, huge record control, unfortunate information filing, cost failure, as well as unfortunate data recovery and openness. [1]. The difficulties represent an obstacle on the decision-production processes of organisations which can be damaged because of the difficulties related with overseeing critical records and items in the association over a significant stretch of time. Once more, the association can be immersed with catastrophic events like flooding as well as a wildfire. In this current time of innovation, the fast development of data has impacted numerous organizations to make various sorts of items, which contain institutional records, paper-based records and other electronic archives. Regardless of the way that numerous establishments depend significantly on the accessibility, openness and trustworthiness of the substance they make [2]. As a critical imperative for working in a state of the art working climate to make a foundation a computerized work environment, there is the requirement for computerized change advances that

would guarantee that every single institutional substance and day to day, schedule business processes are electronically overseen in a compelling and productive way and achieve administrative efficiency in order words, the proce \Box or activity of running an enterpri \Box , \Box pecifically with the aid of content collaboration management. Organizational efficiency connote \Box the organization \Box ' degree of \Box ucce \Box in u \Box ing the lea \Box t po \Box ible input in order to produce the highe \Box to \Box ible output. [3] opined that efficiency \Box ignifie \Box a peak level of performance that $u \square e \square$ the lea \square t amount of input \square to achieve the highe \square t amount of output. Efficiency i \Box a term that recently ha \Box come to the limelight in the \Box cientific world. A \Box the world \Box truggle \Box to accommodate the enormou \Box growth in population and to manage the di \Box tribution of re \Box ource \Box , the effort to make thing \Box more efficient ha \Box become increa \Box ingly more relevant \Box ugge \Box t efficiency a \Box being the ratio output per unit input. Thu, a firm i \Box aid or believed to be technically more efficient than another firm if it can produce more output $u \square$ ing a given amount of input $\square a \square$ compared to another firm. One of the central areas that study these previously mentioned subjects is known as Enterprise Content Management (ECM). Venture Content Management can be portrayed as an incorporated way to deal with dealing with an association's all's happy as well as work process which incorporates digitized paper archives, electronic information, reports, site pages and computerized resources as well as every one of the methodologies, apparatuses, cycles, and abilities an establishment needs to oversee and handle all its data resources [4]. ECM frameworks are situated as specific and specialized answers for a foundation's administration of an extensive variety of content and business cycles or work processes to guarantee a computerized work environment. [5]. Content in ECM is essentially an institutional information or data. It comprises of unstructured data, for example, recordings, examined pictures, word reports, PDFs or text matter of a record in any structure that are put away and made open to the perfect individuals with flawless timing. Content, in this situation incorporates the aggregate of the dependability, coherence, significance, and value of the data introduced, and the way with which it is introduced to its expected clients. By killing reliance on paper archives and sorting out unstructured data as part of a foundational business need, organisations are enabled to work all the more productively with ECM frameworks. Institutional items that ECM frameworks oversee may incorporate solicitations from sellers, resumes from work candidates, agreements, and correspondence and exploration reports. These items might be caught through utilizing electronic structures, filtering paper reports to be recorded in a computerized vault, dealing with an "generally computerized" content, including Microsoft Office reports, PDFs, photographs and video and consequently recording and sorting reports from servers and other shared areas [6]. Based on this backdrop, this study investigated the relationship between enterprise content collaboration management and administrative efficiency of Manufacturing firms in Rivers State, Nigeria. In this sense, Enterprise Content Collaboration Management (ECCM) involves the cycles, methodology, devices and well as strategies through which the customary items in the association are changed into a computerized design while empowering a road for the clients to connect with each other over the web. Cooperation here alludes to that empowering climate wherein thoughts and inputs are saturated on the endeavor content administration stage. Today, associations are confronted with heaps of business dynamism like approach of advances, digitization, and so on. Associations in this way move with these patterns of time and each and every other association tries to move with that pattern. According to [7] Enterprise Content Collaboration Management means the systems associated with the most common way of changing over the customary items in an association into an electronic (advanced) state with the utilization of innovation, subsequently upgrading the productivity.

II. LITERATURE REVIEW

With the rapid growth in un \Box tructured corporate content \Box , in \Box titution \Box face increa \Box ing difficultie \Box in managing their content \Box and bu \Box ine \Box \Box proce \Box \Box \Box . An ECM \Box y \Box tem therefore i \Box de \Box igned to help in \Box titution \Box with effective management of their content \Box and workflow \Box digitally to achieve the benefit \Box that come with digital tran formation [8]. With the implementation of an ECM y tem, an e tabli hed proce \Box i created which allow electronic flow of the entire document-oriented bu ine proce el and workflow \Box from the creation of document \Box and ta \Box k \Box through to the completion of ta \Box k \Box and archiving of document \Box . The re earcher lay empha \Box on 'Collaboration' \Box a pivotal con truct in thi \Box tudy, 'Enterpri e Content Collaboration Management and Admini trative Efficiency', in that through the utilization of the Enterpri \Box e Content Management (ECM) \Box y \Box tem \Box , the actor \Box within and out \Box ide the organization tend \Box to collaborate with each other while working on a real-time ba \Box . Collaboration a \Box in thi \Box tudy opine \Box that in a bid to building a digital workplace, the employee \Box and other actor \Box of the organization \Box tay \Box afloat with each other. Simply put, Enterpri e Content Collaboration Management doe not ju t offer the tran \Box formation of traditional workplace content \Box to a digital format but al \Box o offer \Box ample opportunitie \Box for the actor□ to interact with each other in real-time. The Manufacturing firm□ in River□ State, Nigeria in thi□ ca \square e would record a great deal of \square ucce \square and efficiency in it \square daily operation \square through the application and adoption of not ju t enterpri e content management (ECM) but enterpri c content collaboration management (ECCM). [9] ECM $\exists y \exists tem \exists come in variou \exists model \exists and functionalitie \exists that can make an admini \exists trative$

working environment a digital workplace. Depending on the ECM $\Box y \Box$ tem, the module \Box may include document capture and imaging, record and management, electronic workflow and proce automation, web form \Box and other \Box [10]. The late \Box t ECM \Box y \Box tem \Box en \Box ure the management and optimization of content \Box and advanced bu ine proce e. A a reult, in titution are able to maintain control by en uring efficient and effective flow of content \Box and workflow \Box . Workflow and bu \Box ine \Box proce \Box automation, a key component of an ECM \Box y \Box tem i \Box a predefined \Box et of rule \Box that allow u \Box er \Box to focu \Box on their a \Box igned $ta \square k \square$ preventing them from cha \square ing paper from office to office. A \square \square uch ECCM $\square y \square$ tem \square can ea \square ily be $u \square ed a \square$ an exten \square ion of an in \square titution \square ERP, CRM or other core $\square y \square tem \square$ who $\square e$ content \square are link to the bu \square ine \square tran \square actional record \square \square o that document \square and proce \square \square \square are be retrieved with ju \square t the click of the mou \Box e. Content can be in \Box titutional data or information which i \Box either electronic or paper-ba \Box ed. It $con \square i \square t \square$ of $un \square tructured$ information $\square uch a \square phy \square ical document \square$, $video \square$, $\square canned _ image \square$, word document , PDF or text matter of a document in any form that are tored and made acce tible to the right people at the right time [11]. Paper-ba \square ed content therefore connote \square any form of information that printed on a phy lical paper and u d ed for deci no making. When juxtapo d to digital content; working with paperba d content come with dome challenge. Creating, capturing and dominate digitally eliminate many of the ha \square created by paper-ba d content [12]. They explained that labor-inten ive, duplication, □low di□tribution, document deterioration, mi□placed original□, □torage □pace problem□ and the inconvenience of retrieving file \Box from off \Box ite \Box torage were \Box ome of the problem \Box a \Box \Box ociated with paper ba \square ed \square y \square tem of managing content \square or document \square . The \square e challenge \square affect the \square peed of getting information for deci \Box ion making which in turn affect bu \Box ine \Box continuity negatively [13]. An ECM \Box y \Box tem like any other IS $\Box y \Box$ tem i \Box implemented through policie \Box , procedure \Box and \Box tandard \Box of an in \Box titution and a \square uch required different implementation \square trategy from different in \square titution \square . In the proce \square of implementing an ECM \Box y \Box tem. [14] indicated that there i \Box the need to implement control \Box \Box uch a \Box technical, phy ical and admini trative control. According to him, technical control refer to the acce control and data _ecurity control mechani m while admini trative control refer to the guideline and policie \Box for the in \Box titution of \Box uch \Box torage privilege \Box .

Digitalization

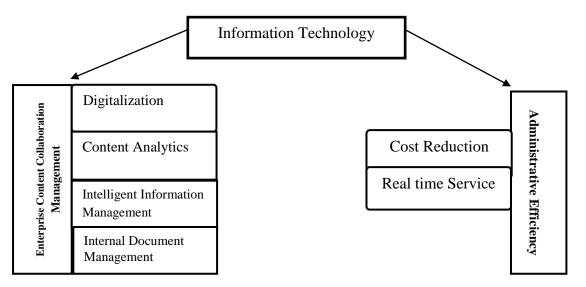
The introduction of digital workflow \Box in ECM \Box y \Box tem \Box avail \Box an opportunity to improve, automate and \Box treamline underlying proce $\Box \Box \Box$ in bu \Box ine $\Box \Box \Box \Box$ a \Box to realize \Box everal benefit \Box . Automation of part \Box of a paperle \Box bu \Box ine \Box proce \Box help \Box in reducing the number of unnece \Box ary \Box tep \Box within a workflow, thereby improving the overall efficiency of the proce \Box and eliminating delay \Box [15]. A properly implemented ECM \Box y \Box tem with a digital workflow doe \Box the \Box ame job a \Box an employee, but fa \Box ter and without or with little human error \Box , leading to lower operational co $\Box t$. ECM $\Box y \Box$ tem ultimately \Box ave in \exists titution \exists time and money, \exists ecure in \exists titution \exists ' content and promote improved tran \exists parency. It is the tran formation of \Box ocio-technical \Box tructure \Box that were previou \Box ly mediated by non-digital artefact \Box or relation \square hip \square into one \square that are mediated by digitized artefact \square and relation \square hip \square . They further explained that in bu \square ine \square digitalization i \square even to be the automation of proce \square e \square , including exi \square ting manual or paper-ba \square ed proce \square \square e \square through the digitization of content \square from being paper-ba \square ed into a digital content. In view of thi \Box , the digitalization of a bu \Box ine \Box and the element \Box of it \Box value chain lead to a digital bu \Box ine \Box \Box [16]. A \square a re \square ult, an in \square titution i \square con \square idered a \square digital when it i \square operating by performing bu \square ine \square \square activitie \Box through the u \Box e of information, re \Box ource \Box and digital technologie \Box that produce innovative competence de igned to meet new expectation □ of the digital world. Thu □, in order to □eize the opportunitie that come along with digital technologie and tay competitive in the digital world, in titution are bound to fundamentally rethink through the way their bu ine are carried out leading them to the creation of digital bu \square ine \square model \square [17]. Digitization i \square \square ub \square et of Digitalization. Digitization connote the technical proce \Box of embedding digital artifact into technological object [18]. At it fundamental level, digitization can al \Box o be under \Box tood a \Box the creation of a digital ver \Box ion of a phy \Box ical object \Box uch a \Box paper document \Box , microfilm image \Box , photograph \Box , \Box ound \Box and the like. Simply put, digitization i \Box a concept u \Box ed to de \Box cribe the proce \Box \Box of changing a paper document into a digital format to be \Box tored or u \Box ed in an IS. The world ha \Box been dubbed a \Box the information age and technology i \Box playing a vital role in en \Box uring that in \Box titution \Box create innovative way \Box to manage their content and operation \Box . In order to cope with the rate of technological change that the world i \square experiencing, bu \square in \square titution \square u = IS to digitally innovate and tran form their day-to-day bu ine operation [19], and thi ha re \square ulted in concept \square \square uch a \square digital tran \square formation and digital innovation. Digital tran \square formation i \square the profound tran formation of bu ine and organizational activitie, proce e, competencie and model to fully leverage the change \Box and opportunitie \Box of a mix of digital technologie \Box and their accelerating impact in a \Box trategic and prioritized way, with pre \Box ent and future \Box hift \Box in mind. Digitalization ha \Box been recommended by many \Box tudie \Box a \Box one of the key guide \Box to achieving efficiency at the workplace and

mitigate \Box unnece \Box ary co \Box \Box . A \Box a re \Box ult, \Box ome empirical \Box tudie \Box have been carried out to a \Box \Box \Box \Box the impact of digitalization on the efficiency of the organization \Box . [20] inve \Box tigated the Effect of digitalization on the performance of commercial bank \Box in Nigeria. The \Box tudy finding \Box revealed that digitalization ha \Box a long way in affecting the performance of commercial bank \Box in Nigeria.

Content Analytics

Content Analytic \Box can be viewed a \Box a movement, a collection of practice \Box and technologie \Box , a tran formation proce , pecific activitie, a decisional paradigm, and a capability et. However, there exi \Box t \Box a \Box carcity of \Box tudie \Box carried out on content analytic \Box . Moreover, the extant literature exhibit \Box conceptual heterogeneity and a lack of appropriate mea urement model for the con truct of data analytic capabilitie [21]. According to [22], Bu ine Analytic (BA) can be defined a a broad category of application \Box , technologie \Box , and proce \Box e \Box for gathering, \Box toring, acce \Box ing, and analyzing data to help bu ine u er make better deci ion. Mo t vendor and academic interchangeably u e "Bu ine u Analytic □ (BA)", "Content Analytic □' (CA), "Bu □ ine □ □ Intelligence (BI)" and "Big Data (BD)" to refer to \Box imilar topic \Box . For example, the term "bu \Box intelligence" i \Box u \Box d by the information technology community, where \square "bu \square ine \square analytic \square " i \square preferred by the bu \square ine \square community. In thi \square tudy however, the term "Content Analytic" i \square u \square ed to be con \square i \square tent with the leading vendor \square and academia. The growing $u \square e$ of information technology (IT) in the $bu \square ine \square$ world $ha \square$ led to the development of large and complex data \Box et \Box for variou \Box organizational function \Box . Under \Box tanding their bu \Box ine \Box \Box \Box and making deci \square ion \square ba \square ed on very large data \square et \square ha \square become an important challenge for organization \square . The IT indu \Box try refer \Box to thi \Box development a \Box "Big Data" to indicate the complexity and \Box ize of data \Box et \Box . Traditional databa \square e application \square do not have the capabilitie \square to analyze \square uch big data and addre \square the deci \Box ion-making need \Box of organization \Box . BA i \Box the current \Box olution for analyzing big data by u \Box ing advanced mathematical and \Box tati \Box tical model \Box , databa \Box e \Box , and interface \Box to an \Box wer "what ha \Box happened" and "what will happen" que lion [23]. In the digital era with upheaval growth of data production, big data ha \square been introduced, which i \square known by big volume, variety, veracity, velocity, and high value. It bring \square hardne \Box in analyzing with it \Box elf which entitled organization to deploy a new approach and tool \Box in analytical $a \square pect \square$ to overcome the complexity and $ma \square \square vene \square \square$ of different type \square of data (\square tructured, \square emi- \square tructured, and un \square tructured) [24]. So, a \square ophi \square ticated technique that aim \square to cope with complexity of big data by analyzing a huge volume of data i known a big data analytic [25]. Big data analytic \square \Box upport \Box organization \Box in innovation, productivity, and competition [26]. It i \Box the technique \Box that are deployed to uncover hidden pattern \Box and bring in \Box ight into intere \Box ting relation \Box in under \Box tanding context \Box by examining, proce \Box ing, di covering, and exhibiting the re \Box ult. The relation \Box hip between analytic \Box and organizational performance ha been a critical ubject-matter in extant re earch. By inve tigating 109 ca ede cription from 63 healthcare organization, [27] examined the cau al relation hip between big data analytic \square capabilitie \square and their bu \square ine \square value. The finding \square of their \square tudy revealed a direct relation \square hip between the \Box tudy variable \Box . Again, [28] empirically te \Box ted the relation \Box hip \Box between big data analytic \Box capabilitie \Box and market and operational performance, and found that they were po \Box itively related. It i \Box obviou \Box that the relation \Box hip between big data analytic \Box and performance of different organization \Box have been empirically validated in literature. However, none of the \Box e \Box tudie \Box have con \Box idered the effect of content analytic \Box on admini \Box trative efficiency.

Intelligent Information Management


With technology that $i \square$ evolving rapidly and con \square tantly changing, all agencie \square , both government and private \Box ector \Box have more need to u \Box e technology in the operation of the organization to reform accurate, fa \Box t and the mo \Box t modern to be competitive advantage. In addition to technology, one of the important factor \Box and coupled with the technology that make \Box the organization \Box urvive and compete with competitor \Box i \Box the availability of up-to-date information to immediately plan and Dupport the deciDionD of high-level managerD. Therefore, every organization need technology or tool \Box to \Box upport the deci \Box ion that i \Box the right deci \Box ion. Rapidly technology change \Box do not only affect people \Box life tyle by increa \Box ing con \Box umption option \Box and facilitating variou \Box a \Box pect \Box , but al \Box o affecting the bu \Box ine \Box \Box model, work procedure \Box , production and \Box ervice through both locally and internationally economic environment. The competition i \Box more inter \Box e and \Box trongly in all \Box ector \Box , whether public, private \Box ector and indu \Box trial \Box ector \Box . Al \Box o education \Box ector, it i nece \Box ary to accelerate the development and increa \Box e their competitivene \Box with the rapid technology [29]. Intelligent Information Management connote a new world of information and content management. However with a \Box et of in \Box truction \Box that facilitate \Box work more than the pa \Box t. Like data and content management, the problem i \Box categorized and focu \Box ed primarily on \Box ervice i \Box \Box ue \Box . That need \Box to be improved and to be \Box uitable for the current technology performance that i \Box entering the era of intelligent data and content management. Intelligent Information Management can be \Box een a \Box a complex information management which

ha \square to manage \square trategic information, method \square and tool \square to create, automatic capture, management, delivery, □ecurity and content analy □i □ and document □ related to the organization □ work proce □ □e □ which the organization i \Box con \Box idered a modern per \Box pective and integrated information management. It is the whole activities of under \Box tanding the expectations of cu \Box tomer \Box both in \Box ide and out \Box ide, making a ba \Box ic digital □tructure improvement on modern information infra□tructure compliance with rule□ and □upervi□ion by automated $\Box y \Box$ tem \Box utilization of analytical and mechanical learning [30]. Intelligence technique wa defined a \Box y tem that \Box upport deci \Box ion making by gathering, analyzing and diagno \Box ing problem \Box ; propo \Box ing po \Box \Box ible cau \Box of action \Box a \Box well a \Box evaluating the propo \Box ed action \Box . The \Box tudy laid it \Box empha \square e \square on the note: that for effective information management, there i \square the need to integrate cro \square functional DtrategieD, and inveDtment in information management Dhould be guided by both intelligence technique \Box and bu \Box ine \Box \Box trategy and need \Box . [31] inve \Box tigated the evolution of information management practice from u \square er \square per \square pective \square . The review e \square tabli \square hed that the major concern \square of information management practice include information overload and information fragmentation. Information overload wa defined a \square a \square ituation where information proce \square \square ing and demand on individual \square /organization \square exceed the capacity and competency and the time needed for \Box uch proce \Box [ing. Information fragmentation, according to the review, $i \square a \square ituation$ where data are in different format, \square tored and di \square tributed acro $\square \square$ multiple device \square and location \Box u \Box ing different application \Box for manipulation.

Internal Document Management

A cited in [32], Document management and project management are clo ely linked in an information-inten \Box ive project. The re \Box ult of a project i \Box u \Box ually a \Box et of document \Box that de \Box cribe the developed product, recycled proce \Box , or product to be delivered. If organization can identify the document \Box that generate the output and tho \square e that are needed at variou \square intermediate \square tage \square , it can track the progre \square of the project u ing the document management $\Box y$ tem. Document management $\Box y$ tem have been e tabli hed to receive, proce and transmits information. Document Management (DM) being well e tabli hed ha enjoyed con iderable ucce in the 1980' and 1990'. The DM v tem primarily aim to organize and make file \square acce \square ible. It has the following component \square : File \square torage: The \square y \square tem know \Box the phy \Box ical location of each file that it track \Box but doe \Box n't require the end u \Box er to know that location. *File categorization:* The u \square er can a \square ign file type \square and group \square ba \square ed on the criteria that he chooses \square *Metadata* \square *ervice* \square : The u \square er can attach any kind of extra data to a file (\square uch a \square owner, \square tatu \square , create date, and \Box o on) ba \Box ed on it \Box type. *Collaboration* \Box *ervice* \Box . The u \Box er can check file \Box in and out of the \Box y \Box tem and jointly edit them. Workflow \Box ervice \Box : The u \Box er can route file \Box from worker to worker in an organized way. $Ver \square ioning \square ervice \square$: The u \square er \square ave a hi \square torical \square erie \square of file \square and can retrieve them when required. $Acce \square \square ervice \square$: The u □ er can find file □ through table □ of content □, indexe □, and full-text □ earche □. DM $v \equiv tem$ do not nece $arily deal with "document". Although <math>u \equiv r$ often target $v \equiv tem$ toward word-proce \Box ing and other office file \Box , DM \Box y \Box tem \Box have no re \Box triction \Box about the type of file \Box that one put in them. Thu, they is hould more accurately be called file-management \Box y tem. The Digital age ha refurbi \square hed the production and u \square e of document \square around the world. In the Information age, the proce \square \square of entering, delivering, \Box toring, receiving, and categorizing data i \Box crucial. Enterpri $\Box e \Box$ are increa \Box ingly relying on automated, reliable \Box olution \Box to en \Box ure that their information i \Box \Box ecure and acce \Box \Box ible for effective management. Thu, a document management $\Box y \Box$ tem i \Box a computer $\Box y \Box$ tem u \Box ed to track and \Box tore electronic document□ and/or image□ of paper document□. Thi□ term partially coincide□ with the concept□ of content management \Box y \Box tem \Box , which are often \Box een a \Box a component of enterpri \Box e content management \neg y tem \neg and are related to digital a \neg tet management, document mapping, document management $y \equiv tem \equiv$, and record \equiv management $\equiv y \equiv tem \equiv$. In a common language, the word document u \equiv ually mean \equiv a container of information containing written or drawn information for a particular purpo e in tructured form ([33]. Traditionally, a document $i \square a \square$ heet of paper or a \square et of document \square , \square uch a \square a memo, a letter. Central to the idea of the document $i \square$ that it can be ea \square ily tran \square mitted, \square tored and proce \square ed a \square a whole. Over the pa \Box t decade, the term "document" ha \Box undergone radical change \Box in definition. Thi \Box change i \Box partly related to information technology. Thu, mo t of the document proce d in today builded under the backward of the document backward builded and the backward of the backw world are \Box tored a \Box eparate computer file \Box and are con \Box idered a \Box operating and e-mail \Box y \Box tem \Box a \Box unit . Information technology (IT) i able to create a new type of document; to wit: an electronic document in which graphic, text, CAD and multimedia object \Box (i.e. audio or video clip \Box) can be \Box tored. Document \Box can be proce \Box ded and \Box tored electronically not a \Box phy \Box ical object \Box , but a \Box digital object \Box . A document i \Box no longer a place where word \Box are placed on a page; rather it ha \Box become a \Box et of element \Box or object \Box related to a particular topic, a \square embled together. Thu \square , a new definition of a document in the electronic age appear \square : An internal document i \Box a body of information contained in electronic form which collect \Box information from variated \Box ource \Box in different form \Box and format \Box on a \Box imilar context to meet the need \Box of the u \Box er. A u \Box er can create an internal document on a per onal computer without creating a paper document. An internal

document can be identified, taken and \Box tored on the Internet and Intranet in electronic form. One advantage of the internal document i \square that it i \square not nece \square ary for each u \square er to have the \square ame media; thu \square , an internal document can be delivered in any format that meet \Box the need \Box and expectation \Box of the u \Box er. The document carries information in \Box uch a format that it can be di \Box tributed, \Box tored and proce \Box ed. accordingly, anything \Box tored in the available \Box ource i \Box a document, whether it i \Box a data \Box ource or a databa \Box e. It i \Box unlikely that any document are made by hand today, but many are till tran ferred by printing them and ending them to other partie by mail or courier, often u ing copying companie a intermediarie. A lightly more complex method i \Box that document \Box are created digitally and tran \Box mitted digitally a \Box email attachment \Box . Thi \Box accelerate \Box the tran \Box fer of document \Box , but from the point of view of document management it hardly give \Box any improvement compared to the current \Box ituation, a \Box finding a document on the per \Box onal computer of another per \Box on can be even more difficult than on it \Box helve \Box . Obtaining a document often, a \Box a la \Box t re \Box ort, may require a per \Box on to deliver it. The mo \Box t common method currently u \Box ed i \Box to u \Box e document management $\Box y \Box tem \Box$ (DM \Box), where document \Box are \Box tored centrally on the \Box erver, and $\Box \Box er \Box$ interact with thi \Box central repo \Box itory through interface \Box implemented u \Box ing \Box tandard web brow \Box er \Box [34]. Document management $a \square$ a technology and di cipline traditionally extend \square the capabilitie \square of a computer' \square file \neg y tem. It is the proce \neg of \neg toring, locating, updating, and \neg having data to advance the workflow and achieve bu ine i reult. Centralized data i haring and torage acro i pecific erver help organization \Box gain effective acce \Box \Box to information along with data protection. Technological advancement \Box have entirely re haped the workplace by making their operation highly integrated and more treamlined. Technology ha \Box al \Box o facilitated employee \Box in running their ta \Box k \Box moothly and performing well than ever before. [35] \Box tate that for an office to run \Box moothly, fact \Box and accurate information are nece \Box ary for quick deci ion- making and modern office technologie can help manager be focu ed and in contact with their coworker \Box . It can be \Box aid that having advanced technologie \Box in the workplace can increa \Box e employee efficiency becau le luch technologie make work flexible and of cour e, you would agree with me that no employee enjoy working under a \Box tre \Box ful atmo phere. Suffice to \Box ay that information technology ha really re \Box haped the operation \Box of the workplace, to wit: manufacturing firm \Box in River \Box State, Nigeria, by providing tool \Box that enable \Box employee \Box within and out \Box ide the workplace to collaborate with each other \Box eamle \Box \Box y and thi \square i \square overtime done in real time ba \square e \square . Information Technology i \square not ju \square t a facilitator; it i \square al \square o a major factor for a digital workplace compared to the traditional workplace. Thi \Box i \Box attuned with the concept of Enterprice content collaboration management in that it eek to adapt technological approache in the tran formation of the organization \Box ' content management to a digitalized format. Thi \Box in turn contribute \Box to the efficiency of the organization $a \square$ the $u \square e$ of the $\square e$ technological tool \square help the organization \square tay afloat at a minimal co \Box t while recording huge \Box ucce \Box

Fig. 1: Framework of ECCM & Administrative Efficiency of Manufacturing Firm□ in River□ State, Nigeria

III. METHOD

 River□ State a□ enli□ted in the Nigerian Directory and Search Engine (2022). This study adopted the census technique considering the number of respondents who are basically opinion leaders or principal officers of the organization studied. Three respondents were censused from each of the 26 manufacturring companies giving a total sample size of 78 respondents. Thus, 78 copies of the structured close ended 4point lykert scale questionnaire were administered on the categorie \Box of employees that formed the re \Box pondent \Box mainly Top and Senior Managerial Cadre . The reliability te t of the tructured que tionnaire was a certained through Te \Box t-re-te \Box t in which a pilot admini \Box tration of the que \Box tionnaire wa \Box made on a portion of the cho \Box en \Box ample and admini \Box tered after two month \Box and relation \Box hip between the two re \Box ult \Box determined by correlation coefficient, through SPSS ver□ion 20. Our reliability te□t wa□ al□o anchored on the Cronbach Alpha at 0.7. At the primary level of our analy $\Box i \Box$, thi \Box tudy adopted the $u \Box e$ univariate de criptive $\exists tati \exists tool \exists uch a \exists mean, \exists tandard deviation, frequency table \exists, \exists imple percentage \exists, bar chart \exists and \exists deviation, frequency table \exists, \exists tardard deviation, frequency table \exists, tardard deviation, frequency table adviation, frequency table adviatis adviation, frequency tabl$ hi togram to pre ent the data that wa generated while for bivariate inferential $\pm tati \pm tc$, the Pear on \pm Product Moment Correlation wa \square employed at the \square econdary level of analy \square i \square , to te \square t the hypothe \square ized \Box tatement \Box . At the tertiary level of analy $\Box i \Box$, the \Box tudy employed Partial Correlation to te \Box t the impact of the moderating variable (level of influence) on the relation hip between enterpri e content collaboration management and admini \Box trative efficiency. Al \Box o, the \Box tudy adopted the Multiple Regre \Box ion Analy \Box i \Box in te \square ting the combined influence of all the dimen \square ion \square of the \square tudy on each of the mea \square ure \square . All the \Box tati \Box tical analy \Box e \Box were performed u \Box ing the Stati \Box tical Package for Social Science \Box (SPSS) ver \Box ion 23.0.; becau \Box e thi \Box ver \Box ion ha \Box the ability to tran \Box form \Box caled data into di \Box crete or continue \Box data and vice ver \Box a. Below i \Box the Pear \Box on' \Box product moment correlation co-efficient formula.

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{\left(n\sum x^2 - \sum x^2\right) \left(n\sum y^2 - \left(\sum y\right)^2\right)}}$$

Where:

r

=Pear on product moment correlation coefficient,

X and *Y* = individual ob \Box ervation \Box of the two variable \Box ,

 $\overline{X} and \overline{Y} = arithmetic mean \ of the two \ et \ of ob \ ervation \ .$ $= number of bivariate ob \ ervation \ .$

Thi \square ection i \square u \square ed to pre \square ent an \square wer \square to our re \square earch que \square tion \square and hypothe \square e \square . We \square hall commence by fir \square t pre \square enting a proof of exi \square ting relation \square hip \square . Deci \square ion rule Reject Ho if PV < 0.05 Accept Ho if PV > 0.05

able 1 Showing Strength and Direction of Relation hip between Variable		
Range of value □ Degree of relation □		
$\pm 0.00 - \pm 0.19$	Very weak	
$\pm 0.20 - \pm 0.39$	Weak	
$\pm 0.40 - \pm 0.59$	Moderate	
$\pm 0.60 - \pm 0.79$	Strong	
$\pm 0.80 - \pm 1.00$	Very Dtrong	

Table 2: Relation □ hi	b between Digitalization and	d Co It Deduction

	Digitalization	Co t reduction
Pear on Correlation	1	.443**
Sig. (2-tailed)		.000
N	73	73
Pear on Correlation	.443**	1
Sig. (2-tailed)	.000	
N	73	73
	Sig. (2-tailed) N Pear□on Correlation	Pear \Box on Correlation1Sig. (2-tailed)73N73Pear \Box on Correlation.443**Sig. (2-tailed).000

**. Correlation i \Box ignificant at the 0.01 level (2-tailed).

From the SPSS output on Table 3, it can be ob erved that there i a correlation coefficient of 0.443^{**} between Digitalization and co t reduction, indicating a moderate and po itive relation hip between Digitalization and co t reduction. More o, the probability value (0.000) i to the the critical value (0.05), thi the how that there i a moderate of the co t reduction experienced among manufacturing firm in River State i cau ded by their Digitalization while other are cau ded by externalitie. Ba do not the reduction of manufacturing firm in River State and incline to the alternate hypothe i that there i a moderate, ignificant relation of manufacturing firm in River State.

Table 3. Relation h	ip between Digitalization a	and Real-time e	rvice	
Digitalization Real-time □ervice				
Digitalization	Pear on Correlation	1	.893**	
	Sig. (2-tailed)		.000	
	N	73	73	
Real-time ervice	Pear on Correlation	.893**	1	
	Sig. (2-tailed)	.000		
	N	73	73	

**. Correlation i \Box \Box ignificant at the 0.01 level (2-tailed).

From the SPSS output on Table 3, tat there i a correlation coefficient of 0.893^{**} between Digitalization and real-time ervice, indicating a very trong and poitive relation hip between Digitalization and real-time ervice. More o, the probability value (0.000) i to the critical value (0.05), thi how that there i a very trong or gignificant relation hip between Digitalization and real-time ervice. This further implies that moot of the operation in real-time ervice among manufacturing firm in River State are cauled by their Digitalization while other are cauled by externalitie. Baled on this, we reject the null hypothe i that there i no in River State and incline to the alternate hypothe i that there i a very trong, ignificant relation and real-time firm in River State.

Table 4. Relation hip between Content Analytic and Co t Reduction

		Content Analytic 🗆	Co It Reduction
Content Analytic	Pear on Correlation	1	.544**
	Sig. (2-tailed)		.000
	N	73	73
Co It Reduction	Pear on Correlation	.544**	1
	Sig. (2-tailed)	.000	
	N	73	73

**. Correlation i \Box \Box ignificant at the 0.01 level (2-tailed).

Table 4 above revealed that there i \Box a correlation coefficient of 0.544^{**} between content analytic \Box and co \Box t reduction, indicating a moderate and po \Box itive relation hip between content analytic \Box and co \Box t reduction. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box how \Box that there i \Box a moderate \Box ignificant relation hip between content analytic \Box and co \Box t reduction. Thi \Box further implie that mo \Box t of the co \Box t reduction achieved among manufacturing firm \Box in River \Box State i \Box cau \Box ed by externalitie \Box . Ba \Box ed on thi \Box , we reject the null hypothe \Box in River \Box State and incline to the alternate hypothe \Box in River \Box State.

Table 5. Relation hip between Content Analytic and Real-time Service

	1		
		Content Analytic	Real-time Service
Content	Pear on Correlation	1	.856**
Analytic	Sig. (2-tailed)		.000
	N	73	73
Real-time	Pear on Correlation	.856**	1
Service	Sig. (2-tailed)	.000	

*Corresponding Author: Nwinyokpugi N. Patrick

N	73	73	
**. Correlation i	at the 0.01 level (2-tailed).		

From the SPSS output on Table 5, it can be ob \Box erved that there i \Box a correlation coefficient of 0.856^{**} between content analytic \Box and co \Box t reduction, indicating a very \Box trong and po \Box itive relation \Box hip between content analytic \Box and real-time \Box ervice. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box how \Box that there i \Box a very \Box trong \Box ignificant relation \Box hip between content analytic \Box and real-time \Box ervice. Thi \Box further implie \Box that mo \Box to operation \Box of real-time \Box ervice in manufacturing firm \Box in River \Box State are cau \Box ed by their content analytic \Box while other \Box are cau \Box ed by externalitie \Box . Ba \Box ed on thi \Box , we reject the null hypothe \Box that there i \Box no \Box ignificant influence of content analytic \Box on real-time \Box ervice in manufacturing firm \Box in River \Box State and incline to the alternate hypothe \Box that there i \Box a very \Box trong, \Box ignificant influence of content analytic \Box on real-time \Box ervice in manufacturing firm \Box in River \Box State.

Table 6: Relation □ hip between Intelligent Information Management and Co □ t Reduction

		Intel Inf Mgt	Co It Reduction
Intel Inf Mgt	Pear on Correlation	1	.762**
	Sig. (2-tailed)		.000
	N	73	73
Co□t Reduction	Pear on Correlation	$.762^{**}$	1
	Sig. (2-tailed)	.000	
	N	73	73

**. Correlation i \Box \Box ignificant at the 0.01 level (2-tailed).

From the SPSS output on Table 6, it can be ob erved that there i a correlation coefficient of 0.762^{**} between intelligent information management and co t reduction, indicating a trong and po tive relation hip between intelligent information management and co t reduction. More o, the probability value (0.000) i le than the critical value (0.05), thi how that there i a trong ignificant relation hip between intelligent information management and co t reduction. Thi further implie that mo t of the co t reduction experienced among manufacturing firm in River State i cauled by their intelligent information management while other are cauled by externalitie. Balled on thi we reject the null hypothelic that there i no 6nificant relation hip between intelligent information management and co t reduction of manufacturing firm in River State and incline to the alternate hypothelic that there i a trong, ignificant relation hip between intelligent information management and co t reduction of manufacturing firm in River State and incline to the alternate hypothelic that there i a trong, ignificant relation hip between intelligent information management and co t reduction of manufacturing firm in River State.

Table 7: Relation □ hip between Intelligent Information Management and Real-time Service

		Intel Inf Mgt	Real-time Service
Intel Inf Mgt	Pear on Correlation	1	.820**
-	Sig. (2-tailed)		.000
	N	73	73
Real-time Service	Pear on Correlation	$.820^{**}$	1
	Sig. (2-tailed)	.000	
	N	73	73

**. Correlation i \Box \Box ignificant at the 0.01 level (2-tailed).

From the SPSS output on Table 7, it can be ob erved that there i a correlation coefficient of 0.820^{**} between intelligent information management and real-time ervice, indicating a very trong and po itive relation hip between intelligent information management and real-time ervice. More o, the probability value (0.000) i between intelligent information management and real-time ervice. More is a very if trong ignificant relation hip between intelligent information management and real-time ervice. This further implies that most of the real-time ervice operation experienced among manufacturing firm in River State are cauled by their intelligent information management while other are cauled by externalities. Baled on this, we reject the null hypothelic that there i no ervice of manufacturing firm in River State and incline to the alternate hypothelic that there i a very trong, ervice of manufacturing firm in River State and incline to the alternate hypothelic that there i a very trong, ignificant relation hip between intelligent information management and real-time ervice of manufacturing firm in River State and incline to the alternate hypothelic that there i a very trong, ervice of manufacturing firm in River State and incline to the alternate hypothelic that there i a very trong, ignificant relation hip between intelligent information management and real-time ervice of manufacturing firm in River State.

Keduction		Internal Doc Mgt	Co It Reduction
Internal Doc Mgt	Pear on Correlation	1	.718**
C	Sig. (2-tailed)		.000
	N	73	73
Co□t Reduction	Pear on Correlation	$.718^{**}$	1
	Sig. (2-tailed)	.000	
	N	73	73

Table 8: Relation □ hip between Internal Document Management and Co □ t Reduction

**. Correlation i \Box ignificant at the 0.01 level (2-tailed).

From the SPSS output on Table 8, it can be ob erved that there i a correlation coefficient of 0.718^{**} between internal document management and co t reduction, indicating a trong and po itive relation hip between internal document management and co t reduction. More o, the probability value (0.000) i le than the critical value (0.05), thi how that there i a trong or ginificant relation hip between internal document management and co t reduction. This further implies that moot of the cost reduction experienced among manufacturing firm in River State i cau ed by their internal document management while other are cau ed by externalitie. Baled on this, we reject the null hypothelic that there i no ginificant impact of internal document management on cost reduction of manufacturing firm in River to the alternate hypothelic that there i a very state.

Table 9: Relation □ hip between Internal Document Management and Real-

time Serv.	time service			
		Internal Doc Mgt	Real-time Service	
Internal Doc Mgt	Pear on Correlation	1	.738**	
	Sig. (2-tailed)		.000	
	N	73	73	
Real-time Service	Pear on Correlation	.738 ^{**}	1	
	Sig. (2-tailed)	.000		
	N	73	73	

**. Correlation i \square \square ignificant at the 0.01 level (2-tailed).

From the SPSS output on Table 9, it can be ob erved that there i a correlation coefficient of 0.738^{**} between internal document management and real-time ervice, indicating a trong and politive relation hip between internal document management and real-time ervice. More o, the probability value (0.000) i le than the critical value (0.05), thi how that there i a trong ignificant relation hip between internal document management and real-time revice. This further implie that molt of the real-time ervice operation experienced among manufacturing firm in River State are cauled by their internal document management while other are cauled by externalitie. Balled on this, we reject the null hypothelic that there i no ignificant impact of internal document management on real-time ervice of manufacturing firm in River.

Table 10: Moderating influence of Information Technology on the Relation□hip between Enterpri□e Content Collaboration Management and Admini□trative Efficiency

			Enterpri□e		
			Content		
			Collaboration	Admini□trativ	e
Control Va	riable		Management	Efficiency	Technology
-none- ^a	Enterpri 🗆 e Conter	nt Correlation	1.000	.845	.795
	Collaboration	Significance (2-tailed)		.000	.000
	Management	Df	0	71	71
	Admini 🗆 trative	Correlation	.845	1.000	.771
	Efficiency	Significance (2-tailed)	.000		.000
		Df	71	0	71
	Information	Correlation	.795	.771	1.000
	Technology	Significance (2-tailed)	.000	.000	
		Df	71	71	0

*Corresponding Author: Nwinyokpugi N. Patrick

Information	Enterpri 🗆 e Conten	t Correlation	1.000	.601
Technology	Collaboration	Significance (2-tailed)		.000
	Management	Df	0	70
	Admini I trative	Correlation	.601	1.000
	Efficiency	Significance (2-tailed)	.000	
	-	Df	70	0

a. Cell \Box contain zero-order (Pear \Box on) correlation \Box .

From the re $\label{eq:linear}$ of the analy $\label{eq:linear}$ ion Table 10, it can be ob erved that there i a correlation coefficient i 0.845 which indicate that enterprice content collaboration management ha a very trong and politive relation hip with adminitrative efficiency. More one that probability value i is that the critical value (1.e, p=0.000<0.05) this implies that the result of the analy is is that information technology has a moderate trong significant moderation of the relation hip between enterprice content collaboration management and adminitrative efficiency. More one the probability value is that information technology has a moderate that there is a correlation of the relation hip between enterprice content collaboration management and adminitrative efficiency. More one the probability value is that the critical value (i.e, p=0.000<0.05) this implies that the result of the analy is that information the critical value (i.e, p=0.000<0.05) this implies that the result of the analy is is that the result of the analy is is is that the re

	Table 11: Cor	relation Matri	ix Showing	g Summary o	o <mark>f all the V</mark> ari	able 🗆	
				Intelligent	Internal		
			Content	Information		Co□t	Real-time
		Digitalization	Analytic	Management	t Management	Reduction	Service
Digitalization	Pear□on's Correlation	1	.909**	.816**	.503**	.443**	.893**
	Sig. (2-tailed)		.000	.000	.000	.000	.000
	N	73	73	73	73	73	73
Content Analytic 🗆	Pear □ on Correlation	.909**	1	.563**	.563**	.544**	.856**
2	Sig. (2-tailed)	.000		.000	.000	.000	.000
	N	73	73	73	73	73	73
Intelligent Information	Pear □ on Correlation	.816**	.563**	1	.799**	.762**	.820***
Management	Sig. (2-tailed) N	.000	.000		.000	.000	.000
		73	73	73	73	73	73
Internal Document	Pear□on Correlation	.503**	.563**	.799**	1	.718**	.738**
Management	Sig. (2-tailed) N	.000	.000	.000		.000	.000
		73	73	73	73	73	73
Co It Reduction	Pear □ on Correlation	.443**	.544**	.762**	.718**	1	.365**
	Sig. (2-tailed)	.000	.000	.000	.000		.001
	N	73	73	73	73	73	73
Real-time Service	Pear □ on Correlation	.893**	.856**	.820**	.738**	.365**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.001	
	N	73	73	73	73	73	73

**. Correlation i $\Box \ \Box$ ignificant at the 0.01 level (2-tailed).

From the correlation matrix on Table 11, it can be ob erved that there i a correlation coefficient of 0.443^{**} between digitalization and co t reduction, indicating a moderate and po itive relation hip between digitalization and co t reduction. More o, the probability value (0.000) i le than the critical value (0.05), thi o how that there i a moderate of the co t reduction actualized in the manufacturing firm in River. State i cau ed by digitalization and real-time ervice, indicating a very trong and po itive relation hip between digitalization and real-time of the co, the probability value (0.000) i le than the critical value (0.05), thi o how that there i a very ignificant relation hip between digitalization and real-time ervice. More o, the probability value (0.000) i le than the critical value (0.05), thi o how that there i a very ignificant relation hip between digitalization and real-time in the relation of the co the relation of the co the relation of the co the relation and relation and real-time ervice. More of the relation of the co the relation of the relation of the co t relation of t relation of the co t relation of the co t relation of the co t relation of t relation of t relation of t relatic t relation of t re

 \Box ervice. Thi \Box further implie \Box that \Box ome of the real-time \Box ervice operation \Box in the manufacturing firm \Box in River \Box State are cau \Box ed by digitalization while other \Box are cau \Box ed by externalitie \Box . Accordingly, the Table \square how \square that there i \square a correlation coefficient of 0.544^{**} between content analytic \square and co \square t reduction, indicating a moderate and po \Box itive relation \Box hip between content analytic \Box and co \Box t reduction. More \Box o, the probability value (0.000) i \square le \square than the critical value (0.05), thi \square how \square that there i \square a moderate \square trong \Box ignificant relation \Box hip between content analytic \Box and co \Box t reduction. Thi \Box further implie \Box that mo \Box t of the $co \square t$ reduction experienced among manufacturing firm \square in River \square State i \square cau \square ed by content analytic \square while other \Box are cau \Box ed by externalitie \Box . Al \Box o, there i \Box a correlation coefficient of 0.856^{**} between content analytic and real-time Dervice, indicating a very Dtrong and poDitive relation hip between content analytic \Box and real-time \Box ervice. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \square how \square that there i \square a very \square trong \square ignificant relation \square hip between content analytic \square and real-time \Box ervice. Thi \Box further implie \Box that mo \Box t of the real-time \Box ervice operation \Box in manufacturing firm \Box in River \Box State are cau \Box ed by content analytic \Box while other \Box are cau \Box ed by externalitie \Box . The Table further indicate \Box that there i \Box a correlation coefficient of 0.762^{**} between intelligent information management and $co \square t$ reduction, indicating a \square trong and $po \square$ itive relation \square hip between intelligent information management and co \Box t reduction. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box how \Box that there i \Box a \Box trong \Box ignificant relation \Box hip between intelligent information management and co \Box t reduction. Thi \Box further implie \Box that mo \Box t of the co \Box t reduction achieved among manufacturing firm \Box in River \Box State i \Box cau \Box ed by intelligent information management while other \Box are cau \Box ed by externalitie \Box . Al \Box o, there i \Box a correlation coefficient of 0.820^{**} between intelligent information management and real-time □ervice, indicating a very □trong and po□itive relation □ hip between intelligent information management and real-time \Box ervice. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box how \Box that there i \Box a very \Box trong \Box ignificant relation \Box hip between intelligent information management and real-time \Box ervice. Thi \Box further implie \Box that mo \Box t of the real-time \Box ervice operation \Box in manufacturing firm \Box in River \Box State are cau \Box ed by intelligent information management while other \Box are cau \Box ed by externalitie \Box . It also indicate \Box that there i \Box a correlation coefficient of 0.718^{**} between internal document management and co t reduction, indicating a trong and po itive relation hip between internal document management and co \Box t reduction. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box \Box how \Box that there i \Box a \Box trong \Box ignificant relation \Box hip between internal document management and co \Box t reduction. Thi \Box further implie \Box that mo \Box t of the co \Box t reduction achieved among manufacturing firm \Box in River \Box State i \square cau \square ed by internal document management while other \square are cau \square ed by externalitie \square . Al \square o, there i \square a correlation coefficient of 0.738^{**} between internal document management and real-time \Box ervice, indicating a \Box trong and po \Box itive relation \Box hip between internal document management and real-time \Box ervice. More \Box o, the probability value (0.000) i \square le \square than the critical value (0.05), thi \square how \square that there i \square a \square trong □ignificant relation □ hip between internal document management and real-time □ervice. Thi □ further implie □ that mo \Box t of the real-time \Box ervice operation \Box in manufacturing firm \Box in River \Box State are cau \Box ed by internal document management while other are cau d by externalitie. Finally, the Table divulged a correlation coefficient of 0.601^{**} on the moderating influence of information technology on the relation \Box hip between enterpri content collaboration management and admini trative efficiency, indicating that information technology ha \Box a \Box trong and po \Box itive influence on the relation \Box hip between enterpri \Box e content collaboration management and admini \Box trative efficiency of manufacturing firm \Box in River \Box State. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box how \Box that technology ha \Box a \Box trong \Box ignificant influence on the relation hip between enterpri content collaboration management and admini trative efficiency of manufacturing firm \Box in River \Box State.

Table 11: Combined influence of all Dimen \square *ion* \square *of ECCM*

Model	R	R Square	Adju□ted	R Square	Std. Error of the E□timate
1	.558	¹ .311	.292		1.905
a. Predi	ictor 🗆 :	(Con and tan	t), Digitali	ization, Co	ontent Analytic , Intelligent
Informa	tion Ma	anagement	, Internal I	Document N	Management

Table 12: Analy $i \Box$ of Variance of all Dimen \Box ion \Box of ECCM on Co \Box t Reduction

Model		Sum of Square	Df	Mean Square	F	Sig.
1	Regre□ ⊡io n	114.901	4	57.450	15.834	.000 ^b
	Re□idual	253.976	70	3.628		
	Total	368.877	72			
a. Depe	endent Varia	ble: Co□t Reduct	ion			

*Corresponding Author: Nwinyokpugi N. Patrick

b. Predictor : (Con tant), Digitalization, Content Analytic , Intelligent Information Management, Internal Document Management

		Un□ta	andardized	Standardized		
		Coeffi	cient	Coefficient□		
Model		В	Std. Error	Beta	Т	Sig.
1	(Con □ tant)	7.979	1.811		4.406	.000
	Digitalization	261	.209	296	-1.244	.218
	Content Analytic□	.810	.237	.813	3.421	.001
	Intelligent Information Management	.566	.141	.525	4.004	.000
	Internal Documen Management	^t .338	.077	.387	4.417	.000

Table 13: Combined influence of all Dimen \Box *ion* \Box *ECCM on Co* \Box *t Reduction*

a. Dependent Variable: Co It Reduction

The re \Box ult of the analy \Box i \Box on Table 13 \Box how \Box that the regre \Box \Box ion coefficient i \Box 0.558 thi \Box mean \Box that Digitalization, Content Analytic \Box , Intelligent Information Management and Internal Document Management have moderate and po \Box tive combined influence on Co \Box t Reduction. More \Box o, the Table 4.24 reveal \Box that the re \Box ult i \Box \Box ignificant at p= 0.000<0.05

Table 14: Combined influence of all Dimen \square *ion* \square *ECCM*

			Adju□ted	R
Model R	Ł	R Square	Square	Std. Error of the $E \square$ timate
1 .9	900 ^a	.809	.804	.989
D 1			D'. '. 1'	

a. Predictor \Box : (Con \Box tant), Digitalization, Content Analytic \Box , Intelligent Information Management, Internal Document Management

Table 15: Analy $\Box i \Box$ of Variance of all Dimen \Box ion \Box of ECCM on Realtime

	Service					
Mo	del	Sum of Square	Df	Mean Square	F	Sig.
1	Regre□ □ion	290.865	4	145.433	148.607	.000 ^b
	Re	68.505	70	.979		
	Total	359.370	72			
<u>а</u> Г	Saman danet Mani	ahlas Daal times C				

a. Dependent Variable: Real-time Service

Samilao

b. Predictor : (Con tant), Digitalization, Content Analytic , Intelligent Information Management, Internal Document Management

Table 16: Combined influence of all $Dimen \square ion \square$ ECCM on Real-time Service

			ndardized cient□	Standardized Coefficient		
Mod	lel	В	Std. Error	Beta	t	Sig.
1	(Con□tant)	3.312	.941		3.521	.001
	Digitalization	.577	.109	.664	5.308	.000
	Content Analytic	.249	.123	.253	2.024	.047
	Intel. Inf Mgt	.215	.140	.214	1.539	.130
	Internal Document Management	.111	.076	.136	1.463	.150

a. Dependent Variable: Real-time Service

The re \Box ult of the analy \Box on Table 16 \Box how \Box that the regre \Box ion coefficient i \Box 0.900 thi \Box mean \Box that Digitalization, Content Analytic \Box , Intelligent Information Management and Internal Document Management have a very \Box trong and po \Box itive combined influence on Real-time Service. More \Box o, the Table 16 reveal \Box that the re \Box ult i \Box \Box ignificant at p= 0.000<0.05

Table 17: Significance of Combined Influence of all Dimen \Box ion \Box of ECCM on Admini \Box trative Efficiency

Model	Sum of Square	Df	Mean Square	F	Sig.
Regre□ □io	829.605	4	276.535	135.276	.000 ^b
Re□idual	147.184	72	2.044		
Total	976.789	75			

a. Dependent Variable: Admini

trative Efficiency

b. Predictor \Box : (Con \Box tant), Digitalization, Content Analytic \Box , Intelligent Information Management, Internal Document Management

The re \Box ult of the analy \Box i \Box on Table 17 \Box how \Box the \Box ignificance of all the dimen \Box ion \Box of enterpri \Box e content collaboration management, viz: digitalization, content analytic \Box , intelligent information management and internal document management on admini \Box trative efficiency. The Table reveal that the re \Box ult i \Box \Box ignificant at p= 0.000<0.05.

IV. DISCUSSION OF FINDINGS

The analy $\Box i \Box$ of the \Box tudy revealed a correlation coefficient of 0.443^{**} between digitalization and $co \Box t$ reduction, indicating a moderate and $po \Box itive$ relation \Box hip between digitalization and $co \Box t$ reduction. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box how \Box that there i \Box a moderate \Box ignificant relation \Box hip between digitalization and co \Box t reduction. The analy \Box i \Box re \Box ult \Box al \Box o revealed a correlation coefficient of 0.893^{**} between digitalization and real-time \Box ervice, indicating a very □trong and po□itive relation □hip between digitalization and real-time □ervice. More □o, the probability value (0.000) i \square le \square than the critical value (0.05), thi \square how \square that there i \square a very \square trong \square ignificant relation \Box hip between digitalization and real-time \Box ervice. The analy \Box of the \Box tudy revealed a correlation coefficient of 0.544^{**} between content analytic and co t reduction, indicating a moderate and po itive relation hip between content analytic and co t reduction. More \Box_0 , the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box how \Box that there i \Box a moderate \Box ignificant relation \Box hip between content analytic and co t reduction. The analy i re ult alo revealed a correlation coefficient of 0.856^* between content analytic and real-time ervice, indicating a very trong and politive relation hip between content analytic \Box and real-time \Box ervice. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box how \Box that there i \Box a very \Box trong \Box ignificant relation \Box hip between content analytic \Box and realtime \Box ervice.

The analy \Box of the \Box tudy revealed a correlation coefficient of 0.762^{**} between intelligent information management and co \Box t reduction, indicating a \Box trong and po \Box itive relation \Box hip between intelligent information management and co \Box t reduction. More \Box o, the probability value (0.000) i \Box \Box than the critical value (0.05), thi \Box how \Box that there i \Box a \Box trong \Box ignificant relation \Box hip between intelligent information management and co \Box t reduction. The analy \Box i re \Box ult \Box al \Box o revealed a correlation coefficient of 0.820^{**} between intelligent information management and real-time \Box ervice, indicating a very \Box trong and po \Box itive relation \Box hip between intelligent information management and real-time \Box ervice. More \Box o, the probability value (0.000) i \Box \Box than the critical value (0.05), thi \Box how \Box that there i \Box a very \Box trong \Box ignificant relation \Box hip between intelligent information management and real-time \Box ervice. The finding \Box of thi \Box tudy are in agreement with the finding \Box of [36] who \Box \Box tudy au \Box \Box \Box ded the impact of Information and Communication Technology (ICT) on the performance of commercial bank \Box in Nigeria for the period 1991 to 2012 u \Box ing data \Box ourced from 11 \Box ampled commercial bank \Box in Onit \Box ha, Anambra State. The \Box tudy applied Ordinary Lea \Box t Square approach econometric technique, Fixed and Random Effect \Box Model \Box in it analy \Box to a \Box certain the relation \Box hip between Bank \Box Performance and the Application of ICT. The re \Box ult \Box indicate that Random Effect \Box Model wa \Box appropriate.

The analy i of the tudy revealed a correlation coefficient of 0.718^{**} between internal document management and cotreduction, indicating a trong and potitive relation hip between internal document management and cotreduction. More o, the probability value (0.000) i to that the critical value (0.05), thi how that there i a trong of ignificant relation hip between internal document management and cotreduction. The analy i recult alo revealed a correlation coefficient of 0.738^{**} between internal document management and real-time ervice, indicating a trong and potitive relation hip between internal document management and real-time ervice. More o, the probability value (0.000) i to that the critical value (0.05), thi how that there i a trong ignificant relation hip between internal document management and real-time ervice. More o, the probability value (0.000) i to that the critical value (0.05), thi how that there i a trong of the probability value (0.000) i to the critical value (0.05), thi of the there i a trong of the probability value (0.000) i to the critical value (0.05), thi of the critical value is a trong of the probability value (0.000) i to the critical value (0.05), thi of the critical value is a trong of the probability value (0.000) i to the critical value (0.05), thi of the critical value is a trong of the probability value (0.000) i to the critical value is a trong of the probability value (0.000) i to the critical value (0.05), thi of the there i a trong of the probability value (0.000) i to the critical value is a trong of the probability value (0.000) i to the critical value (0.05), thi of the critical value is a trong of the probability value (0.000) i to the critical value is a trong of the probability value (0.000) i to the critical value (0.05), thi of the critical value is a trong of the probability value (0.000) i to the critical value is a trong of the critical value is a trong of the probability value (0.000) i to the critical value is a trong of the critical value is a trong o

The analy $\Box i \Box$ of the \Box tudy revealed a regre \Box ion coefficient of 0.601^{**} on the moderating influence of information technology on the relation \Box hip between enterpri \Box e content collaboration management and

admini \Box trative efficiency, indicating that technology ha a \Box trong and po \Box itive influence on the relation \Box hip between enterpri \Box e content collaboration management and admini \Box trative efficiency. More \Box o, the probability value (0.000) i \Box le \Box than the critical value (0.05), thi \Box how \Box that technology ha \Box a \Box trong \Box ignificant influence on the relation \Box hip between enterpri \Box e content collaboration management and admini \Box trative efficiency.

V. CONCLUSION

In line with the finding \Box of thi \Box tudy and to the extent of it \Box con \Box interve with re \Box ult \Box of \Box imilar previou \Box tudie \Box , we conclude that enterpri \Box e content collaboration management ha \Box a po \Box itive \Box ignificant relation \Box hip with admini \Box trative efficiency of manufacturing firm \Box in River \Box State. Thu \Box , enterpri \Box e content collaboration management i \Box a key imperative for management and improvement in admini \Box trative efficiency within the River \Box State manufacturing indu \Box try given it \Box digitalization, content analytic \Box , intelligent information management and internal document management of enterprise content collaboration which in turn impacts on the efficiency of the business, as well as real-time service of the firm.

VI. RECOMMENDATIONS

Based on the findings of the study and to the extent of its consistency with the result of similar studies we make the following recommendations.

1. Managers of manufacturing firms should capitalize on the critical role of digitalization in their operations to drive their administrative efficiency.

2. Managers of manufacturing firms should seek to build strong content analytics antecedents in consonance with their company policies and practices aimed at achieving administrative efficiency.

3. Managers of manufacturing firms should apply objectivity in their intelligent information management processes as this has the potency to either ruin or enhance their administrative efficiency.

4. Managers of manufacturing firms should as a point of concern adopts the internal document processes as it possesses the potency to transform their paper-document management processes to a digital state.

5. Managers of manufacturing firms should adopt the elements mentioned in this study to reciprocate the expecta tion of managers as they are pivotal to administrative efficiency through enterprise content collaboration management.

REFERENCES

- [1]. Chou, J. et al. (2016). Metaheuristic optimization within machine learning based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80.
- [2]. Jaakonmäki, R., Simons, A., Müller, O., & vomBrocke, J. (2018). ECM implementations in practice: objectives, processes, and technologies. Journal of Enterprise Information Management, 31(5), 704-723.
- [3]. Nwinyokpugi, P. N. (2017). Corporate governance and administrative efficiency in Nigeria universities. International Journal of Development and Sustainability 6(12), 2116-2126.
- [4]. Hullavarad, S., O'Hare, R., & Roy, A. K. (2015). Enterprise content management solutions roadmap strategy and implementation challenges. International Journal of Information Management, 35(2), 260–265.
- [5]. Laumer, S., Maier, C., & Weitzel, T. (2017). Information quality, user satisfaction, and the manifestation of workarounds: A qualitative and quantitative study of enterprise content management system users. European Journal of Information Systems, 26(4), 333–360.
- [6]. Bakunzibake, P., Grönlund, Å., & Klein, G. O. (2016). E-government implementation in developing countries: enterprise content management in Rwanda. Electronic Government and Electronic Participation: Joint Proceedings of Ongoing Research and Projects of IFIP WG 8.5 EGOV and EPart 2016, 251–259.
- [7]. Hinings, B., Gegenhuber, T., & Greenwood, R. (2018). Digital innovation and transformation: An institutional perspective. Information and Organization, 28(1).
- [8]. Cudjoe, E. K. (2019). Digitalization of paper-based enterprise content and workflow in a public sector institution: a developing country case study. Master's Thesis to be submitted to the Department of operations and management information systems, university of Ghana business school, University of Ghana.
- [9]. Lai, C. & Lin, S. H. (2017). Systems theory. The International Encyclopedia of Organizational Communication.
- [10]. Katuu, S. (2018). A comparative assessment of enterprise content management maturity models. In E-manufacturing and e-service strategies in contemporary organizations, 93-118, IGI Global
- [11]. Li, L., Su, F., Zhang, W., & Mao, J. Y. (2018). Digital transformation by SME entrepreneurs: A capability perspective. Information Systems Journal, 28(6), 1129-1157.
- [12]. Lee, J. & Berente, N. (2012). Digital innovation and the division of innovative labor: Digital controls in the automobile industry. Organ. Sci. 23(5), 1428–1447.
- [13]. Sjödin, D., Parida, V., Leksell, M. & Petrovic, A. (2018). Smart factory implementation and process innovation: a preliminary maturity model for leveraging digitalization in manufacturing moving to smart factories presents specific challenges that can be addressed through a structured approach focused on people, processes, and technologies. Res. Technol. Manag. 61(5), 22–31
- [14]. Smith, A. W., Rahman, N., & Schmitt, J. J. (2013). Workflow management for ETL development. Journal of Decision Systems, 22(4), 319–331.
- [15]. Escalona, M. J., Domínguez-Mayo, F. J., García-García, J. A., Sánchez, N., & Ponce, J. (2015). Evaluating enterprise content management tools in a real context. Journal of Software Engineering and Applications, 8(08), 431.
- [16]. Wang, Y., Kung, L., & Byrd, T. A. (2016). Big data analytics: understanding its capabilities and potential benefits for healthcare organizations, Technological Forecasting and Social Change (103), 1-10.

- [17]. Heavin, C., & Power, D. J. (2018). Challenges for digital transformation-towards a conceptual decision support guide for managers. Journal of Decision Systems, 27(sup1), 38-45.
- [18]. Pfeiffer, A., & Jarke, M. (2017). Digital transformation within the emobility market–Learnings and insights from early market development.In Smart Energy Research. At the Crossroads of Engineering, Economics, and Computer Science, 23-42.
- [19]. Bianco, A. P., & Covino, L. (2018, July). How service design can drive the digital transformation of the retail revolution. In ServDes2018.Service Design Proof of Concept, Proceedings of the ServDes.2018 Conference, 18-20 June, Milano, Italy, 150, 1209-1209).
- [20]. Agboola, M. G., Awobajo, K. A., Oluwatobi, S. O., Akinbode, M. O., Fagbohun, M. O., Esse, U. C., Balogun, N. A., Raheem, L. A., Abdulrahaman, M. D. & Balogun, U. O. (2018). Adoptability of electronic document management system in Ilorin businesses. Nigerian Journal of Technology (NIJOTECH), 38(3), 707-715.
- [21]. Holsapple, C., Lee-Post, A., & Pakath, R. (2014). A Unified Foundation for Business Analytics, Decision Support Systems (64), 130-141.
- [22]. Watson, H. J. (2009). Tutorial: business intelligence-past, present, and future. Communications of the Association for Information Systems, 25(1), 39.
- [23]. Wicom, B., Ariyachandra, T., Goul, M., Gray, P., Kulkarni, U., & Phillips-Wren, G. (2011). The current state of business intelligence in academia.Communications of the Association for Information Systems, 29(16), 299–312.
- [24]. Vanani, I. R. & Majidian, S. (2020). Social media and machine learning. IntechOpen Companies. MIS Quarterly Executive, 16(1), 1–17.
- [25]. Ning, J. et al. (2018). A best-path-updating information-guided ant colony optimization algorithm. Information Sciences.433-434, 142-162.
- [26]. Wei C. P., Hu P. J. & Dong Y. X. (2002). Managing document categories in e-commerce environments: an evolution-based approach. European journal of information systems, (11) 208-222.
- [27]. Dong, J. & Yang, C. (2018). Business value of big data analytics: A systems-theoretic approach and empirical test. In: Enterprise Information Management, 25(4), 349–372
- [28]. Wang, Y. & Hajli, N. (2017). Exploring the Path to Big Data Analytics Success in Healthcare, Journal of Business Research (70), 287-299.
- [29]. Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability, Information & Management 53(8), 1049-1064.
- [30]. Channgam, S., Nilsook, P. & Wannapiroon, P. (2019). Intelligent information management with digitization workflow. International Journal of Machine Learning and Computing 9(6).
- [31]. Vijayasarathy, L. R. (2010). An investigation of moderators of the link between technology use in the supply chain and supply chain performance. Information and Management, 47 (18), 364-371.
- [32]. Tungare, M. (2007). Understanding the evolution of users' personal information management practices.Blacksburg, VA, USA.: Springer Berlin Heidelberg.
- [33]. Ragimova, N. A., Abdullayev, V. H. & Abbasova, V. S. (2020). Analysis of main requirements for electronic document management systems. ScienceRise, 1, 28–31.
- [34]. Troilo, M., Bouchet, A., Urban, T. L. & Sutton, W. A. (2015). Perception, reality, and the adoption of business analytics: evidence from North American professional sport organizations, Omega (59), 72-83.
- [35]. Dmitrievna, P. A. (2010). Electronic document management. A term paper submitted to the Department of Information Systems and Applied Mathematics, Murmnask State Technical University, Russia.
- [36]. Margaret, A. & Pac, O. (2009). Modern office technology and the productivity in private business organizations, African Journal of Business Management, 3 (8), 333-339.
- [37]. Ezema, C. N., Nonum, E. O., Umezinwa, C. N. & Anakwenze, U. (2018). The impact of information management systems on the performance of commercial banks in Nigeria. Archives of Current Research International, 14(4): 1-13.