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Abstract:
This paper presents an efficient numerical approach for solving nonlinear weakly singular fractional integro-
differential equations. We develop a Jacobi collocation method that effectively handles the singularity while
maintaining high accuracy. The proposed technique transforms the original problem into a system of algebraic
equations through careful discretization. We provide rigorous error analysis demonstrating the method's
spectral convergence. Numerical examples confirm the theoretical results and showcase the algorithm's
superior performance compared to existing methods, particularly in handling both the nonlinearity and weak
singularity simultaneously.
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1. Introduction

Recently. fractional calculus (FC) has attracted much attention since it
can be used to model physical and engineening problems. There are
several definitions of fractional derivatives that do mot comncide in
general. like, Grounwald-Letnikov, Riemann-Liouville, Caputo,
Atangana- Baleanu. and Caputo-Fabrizio . In this section. we intend to
use the Caputo fractional derivative (CFD), which is the most commonly
used derivative among physicists and scientists because it provides a
physical interpretation that is consistent with the behavior of many
physical and biclogical systems, making it a valuable tool for modeling
and analyzing various namral phenomena, including biclogy. energy
systems, physics, groundwater flow modeling, and geomechanics. The
performance of many life systems can be represented vtilizing fractional
integro-differential equations (FIDEs) by virtue of the recent works of
FC in different trends of science and technology. In fact. seolving
fractional weakly singular kemels integral and mtegro-differential
equations can be challenging but there are numerical methods that can
be used to approxmmate their solutions; for example, the finite volume
method, finite difference method, finite element method. two-grid
method, backward substitution method, and the spectral collocation
method that is commeonly used in literatures [1]

2. Preliminaries

We will provide initial findings that will prove beneficial in subsequent
analysis. To begin, consider a predetermined time horizon denoted as

T = 0. We will now define the subsequent spaces:[3]
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IP(0.T:R® }= {¢:[0.T] > R® | () ismeasurable.
N T WP |
o, =| lotef ar| < :cj l<p<w=,
Lx|:0,'[';R::|={¢:[U:T]—>R“|c-(:-] ismeasurable,
(|0 =esssupfpit| < oo}
+]0,T]
Also, we define
1P(0.T:R* )= Urfo.T:R®]  1<p<oe,
I>p

*(0.T:R* )= NF0.T:R?)  1<p<co.
r<p

In the subsequent analysis, we utilize the notation A = {(t. 5) € [0, T J*
[0 =s<t=T}. It is important to note that the “diagonal line” represented
by {(t. )t € [0, T ]} does not belong to A Consequently, if we consider
a continuous mapping ¢ : A — R where (t, 5) J o(t, 5), the function (-,
-} may become unbounded as the difference [t —s| — 0.

In the section, we adopt the notation t; v t; = max{t;, t2} and t; Aty =
min{t;, t2}. forany ).t € R

Notably, t7=twv 0.

Lemma (2.1)[3] Letp, q, 1= 1 satisfy %+ 1= i+%. Then for any

() € LYRY), () EL'RY.

()= 2l @ = 146 ‘-1|L°1(R:)||g{'1-“1_?(11)' M

Corollary 632 1. LetBe (0. 1), 1 =1r= % . and%

+1=1+lpqgzl
Then foranya<b.0<3<b—a, and @(-) € La. b).

£+o

t ofs)ds [ glra-g) T
a (t ;]1 E“ ]. —1(l- "d :"I.Pla Bl 2)

a
3. Approximation base
Here, we are thinking of creating a method sinular to wavelet
approximations using a class of nonorthogonal functions such as the
MLF. It is noticeable that most of those who deal with wavelet
approximations tend to use orthogonal functions as a basis. Therefore, it
1s necessary for us to start with the basics of the subject, and we have
chosen to define the step function and GFMLF .[4]
Step function and GEMLE (3.1)[4]
For the step function, let

[ Haeyed

10, othemjse_
where j =1, 2, ., 2" =1, then for any function O(t) & L, there exist step

functions as
W n N
0,(t)= Taz0,(t)
k-1
such that

lim Jost)-oft|=0.

Now, the MLF of two-parameter is given by the following power series

- K
WP )= T —— B=0, y>0, t=R.
=X Fpeeyy P70 170

Furthermore, the generalized MLF is defined as

o
W (t)= 3 =
W= Z Fak+7)

In our work, we shall define the GFMLF as

ak
a,y>0, teR

3
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I 1k
W)= % —— O<a<l B>0, y>0,teR. (3
0 x—ol(PE+7) i i )
Seeking the fractional differentiation and integration of Eq (3) with the
use of Eqs (1) and (1), we have

MT(ak+y) t%F

DFWifrt)=y —— 1~ 4
(1) ¥-o[(pk=7)T(ck+1-F) @
and
M Tiok <y ak+F
FWghi ()= 3 e tt)_t )

poDiPk+ ) Tek +1+F)
Approximation via GESMLF (3.2)[4]
We now define GFSMLF, which can be described as a new function for

approximation
o (weRr Heped
Q;tll}'tH: il 4k ok
0 otherwise,

where j=1,2, ., 2% = . Its fractional differentiation and integration are

defined with the use of Eqgs. (6.1.6) and (6.1.7) by

IDFwRr Llgpcd

DFQ?&‘:[I:P{ J =K
i |0, otherwise
and
. Wk, Heopd,
IFQE®(t)= [ 1 2 2
|_U_ otherwise,

Figure 1. shows graphs of the GFSMLF for n = 4 with various values of

MLF parameter o.

() & =028

e =05 ichar =074
— ]
=
——rd

@ bF 44 Ok ad 1 G nz a4 me op 1 0 oz oaa, 0e o4 1

Figure 1. Graph of GFSMLF given in Eq (5) for n = 4 with various
values of MLF parameter o, where f=0.7 and y=1.

Obwiously, most authors in this field use the following approximation:

Ognlt)= i E ¢ Q" (1) = CQlt) (6)
om LS ot ] \ e \

where C = {cﬂ‘ }j‘;’;"k_l 15 0 * m unknown coenstants. However, in this
section, we suggest the following approximation of O(f) in terms of

GSFMLF as

) n m N —
Oua(t)= X ¥ 2,0, Q7% (1)=AQ(t) M
jumlkim]

and its fractional derivative 15 defined as

DFO_..(t]=ADFQ(t) (8
where A = [by, bz, .. ba]{ T A=[a @ o ax] B=[bLb:
] and Q(f) = [Q;‘E""]’j_]. Here, A and B represent n + m unknowns

and this reduces the effort to implement the present approach. This
family of functions is not normalized or orthogonal, in confrast to most

of the wavelet functions.
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4. Operational integral fractional Mittag matrix

As we may have a nonlinear term in the integrand, it may be difficult to
treat this situation making use of the GSFMLF method. So. in this
subsection. we shall construct the OIFMM method for this object. Let
¥(t) be any function, and it can be approximated via GSFMLF as:[3]

3t = TR WIS (1) =R S(t) ©)
k=0

with ®(t) = [ WY (1) W2R ()., WP (1)]7 . as defined by Eq. (7).
The unknown coefficients R =[]} _;can be written as
where © = [6g]],_; i5 fo be obtained. By combining Egs (%) and
(6.1.12), we conclude that
1) =10 (). 0
or
O dx) =I=0T=[@x]" (11)
It is clear that © m Eq. (1)) can be easily calculated. For an
approximation of fractional integrals. we can integrate Eq. (V) with
fractional order F to obtain
IFy(t) = 3[@° F@(0)] =T ("
where Fy () = ©F Fd(t) is the OIFMML
2, Gauss-Jacobi quadrature for Riemann-Liouville integral operator
Letw(t) € C[0, 1] and r € N. By applying change of variables
t=x' 5=V, D=y=x=1, (12)
and defining w(x) ;= w(x"), the Riemann-Liouville integral operator will
be as follows:[6]
i:l“vltl =,L_:'t'r — 1P fs)ds
o Dlee)y

W =)= |:J:w :[x't (13)

=_L1_|E[_x: —y Pl w(y)y dy =

l—i‘& ) o

In this equation, % 15 the modified Erdelyi-Kober integration
x/x

’=1I
operator with base function x and weight function 1 that we simply
represent it by J. Since we approximate |__I f\.‘;.[x‘.' by Gauss-Jacobt

quadrature. then we define
(v o r el
| n,.r—l I \x: |
ay_, X ¥)==— "7
Do) |, .
T [t :,ﬁ-l .
L =V,

=7V

Ozv=Zy=x 2l (14)

and then try to convert the interval of integration in (17 info the interval

[-1. 1] by setting the following two other mappings:

x=9:1, y=”:1_ _1<E plL (15)
n=#a-;;1:=ngtel —1£6<1. 01

By applying change of variables (6.2.9) to Eq. (6.2.7) we will get
(o YE+1Y7 138 o (e+1 n+17_ [n+1) .
S e o I e s

and by defining z(£) = \\L:d] and then applying the second change of

wariable (16) to Eq. (17) we reach the final integral as follows:
; v M VE L 1'-,
122 )z)= 12w ] "T ::

U AL I S (Ba1 M:(B)+1Y
-| | 17_'1[1-31“ 'y | 2 = —[zn.(8)k8
= (18" By, (£ (B2l (8)s, (18)

-1
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Here we note that for £ > —1 and fixed &y, I:;‘f_,._ T];(@]_] as a function of
8 is smooth on [-1,1]. Now, assume that w**(8) =(1- 8)*(1+8)".a, b = -1

1s the weight function of the orthogonal Jacobi polynomials {pi:h [E':JE_U
on the interval [—1. 1]. Then we approximate the integral in (V) by the
Gauss-Jacobi quadrature formula in the following form:

bezzle)

N [ e WA e ) gty L 0%
= T W (51 (B Jiein, (B, vy = (Terz)e) 12221,
K= °

in which 9, and Wifor k= 0. N, are the nodes and weights of the
quadrature corresponding to the weight function w™(8).
6. Jacobi collocation method with smoothing transformation
Consider integro-differential equation (6.2.1) and denote wt):= [_D':‘u KI )
then w(t) =up + |:_J' * 1-':[1]. We obtain the following integral equation:[7]
w(t) = fi{t, wy+ (V)
Q 1 ot e o (1o ko 1% B Y 3
+ B[ (t—s)" " Rylts.ug(s)IT vis)L[ 77 v Jshds. (20)
) : ' L A
After approximating the Riemann-Liouville integral operator using the
Gauss-Tacobi quadrature, we try to apply the same scheme to the infegral
parts of integral equation (20) together with the collocation method. In
each step of computations we will do the same operations on the ferms
(T™v)(s) and (J 0‘_'3"-'.;)(3) and we will show these operations just by

employing the same symbels that we used we will not discuss the
details.

Here we note that w(t), the solution of Eq. (20), behaves like 1% when
t— 07, thus to reach high order precision in the numerical solution we
derive

wif) =it ug+ (TFw)(1))

Qr. . [ ( _ Vo
+Zf(x-v™Me_, (x &'fﬂiqlri_x- V. ugs)+ ) rwlvl .JI“ Paw i ¥) .|d}'-
o ¢ : A
(21)
where we use the symbols introduced in Eqs. (V7) and define
g0x. up + (T w)(x)) = (% uo + (V).
Ry, v.u(6)+ 02w ) 0P ) o)

=R, [u; Lyt ugls)+ |:J S le 1 iJ N Pay _,|:}-'" J|

Employing linear transformation {6.2.9) gives

2(e)— g 2wy =12 )e))

o

Q 1 1. - (2+1 n+1)
+qz.121——uk_'|-i‘:’_m s ! 2 T]T|

(E+1 n+1

A —_—
o272

=R

mo+ {2 E ezl jan. @3)

and finally by applving change of variable (1<), Eq. (%) will be in the

following form:

. (e+1 .
2(z)=g Z-u, + 17 |2

@l f
+ zl [{1-8) “q_wuq:rl:f::r]gt\ellll
q=1-1

xRy len:(8)= (122)n. (@)L 12 a2y (B
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:=df+l wo+ 122 '\]+ %(::J?‘Z.J?'pqz:k"__} (v9)

Rqr|?n (6)+uy +[J zln: El)]( quh [B}?

1 n:(8)+1
2T 2

=R, i{ U +|:::I'§t zlﬂE[B}t [:J'?_qu:[q-:-_{a}}.\|. (ve)
\

Let Py 15 the space of polynomuals of degree at most N. Also, suppose

that {& 0 are the roots of the Jacobi polynomial p3; H(EJ of degree

N +1. We choose Lagrange fundamental polynomials {LiE}i,

constructed on the pomnts {& } _p as a basis for Py A collocation

solution for Eq. (23) is a polynomual zy(2) € Py with a representation

nE) = Zjl‘iaz jLJ-[‘i_:}rhat satisfies the following collocation conditions:
2les)= EI ELIN )
L= 2 Lhal 1] wr ) 1.)-

+ 5 ja-ey hag, g.ms, (8))
q=1-1 )
K, [, 6)+ (22 n, @)L azh, E)ke.  26)
for1=10, .. N We look for a discrete collocation solution Zw(Z) € Py,

Zn(2) =X} ZL;(2). then we approximate the infegral terms in Eq.
(6.2.21) using Gauss-Jacobt quadrature in two steps as follows:
} (-8, (En:6)Ke, (RN ?‘Z(ﬂ @l ?‘“q:illhg{é& Jlko
= Z T = r|.|8.?']'quf'é,n¢f§§‘-lug +fJ°‘zYﬂg'[§.3\l1fJ“'ﬁqzzhgfﬁfﬁh“
Ztﬁl.q, ln: (B2, L (el +[J°‘Z]m'lﬁq\11f ﬁ‘1211 fﬁf Hh’“
(I“ PR JeNz TE PN ziF q=1..Q 27)

where Band W are the nodes and weights with respect to the weight
function w¥3%(8). Now, discrete collocation solution Zy(2) is obtained

by satisfying the following discrete collocation equation: [7]

o [E+1 I
Inlsil)= g|. 'l; g+ (T8Nzy .téi,’}

+ 3 ZDKC,,L. n., (88)+ 7252, Jn,, (@ )Pz, In, foa)lwe

=1k~

-

g +1

. Vo 2 e
g +|:_.J‘3’N2N,t§i} |+ = tf Pa- N t“ - ﬁq Zn ) n :)
) qa
(28)
fori=0, N By replacing the representation Zx(£)=X} Z;L,(E).we

derive

+1 (N __
g +| FzIML
\j-0 ~

,"‘[-5_,. i}"]

'm @)

+ZZKq,

geli=d

|ZZjT;H3°IL_i |'::rlg 8 )) 'ﬁi
Lm0 / J

LTy, |9Il lu, +| Zz T2,

f N &Y

— = TuIT Y|

JUg +| ZZjIr' L_i |[C,i_}l
L =0

=g{-“siz+1

+z|I“ SR .
g1,

ML, zzJ“ B L

[j.} (29)
for1=0, ... N.Eq. (29) 15 2 nonlinear system with unknowns Z;.

1=10, . N, and by sclving it we obtain the discrete collocation solution
EH(E_J=Z§‘1GEJLJ-[§:}. According to the change of variables, the relation

between the solution w(t) of Eq. (18), the solution w(x) of Eq. (19) and
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the solution z(¥) of Eq. (32) is as v(t) = W(Rﬁ) =z2 Ui -1.0=
then the numerical solution for these equations will be as

Tnl) = We(Vt) = 2281 - 1).

Moreover, the numerical solution Ty(t) of (V') can be computed as

follows:

Tylt)=uy + 1777 17)

=g +IT%wy, [x)

—up +[F¥z Joufi-1) 0zt<1 D)
7. Numerical experiments and results
To show the accuracy and the effictency of the proposed Jacobi
collocation method, we apply the proposed method on different
numerical examples of d (11). The algonthm of the suggested method
has been performed in Mathematica software. In each example, we

report the root mean square of the absolute errors, ERMS,

at equidistant points, t; = li 1=1,2.....10[8]

Example(7.1)[8] Consider the following nonlmear fractional Volterra
mtegro-differential equation:

[Dfult)=f(tu(t)+ [(t - 2205\ DPu [s)ds. t [0, (T)
1]

u(0)=0,
where
T2+ —u]rl_“ _ T+ 4o -pli2+o—p) ., 4

f(t,u) - — - thut.
S T(2-p) T5+do—3nll-pul2+a—f-p)

The exact solution of this problem is u(f) = % For a =%-P=%and
po= ? we have u(f) € A'[0, 1]. The absolute error ERMS of the
proposed method for different values of Nandr=1, 5, 9, 13 are listed in
Table 1. When N is big enough, increasmg r and then d=[r(1—%)] +1
decreases the error as we expect from the error bound (4.1). In Figure 1.
we represent the errors obtained mn Table 1. for different values of N and
r. From thus figure we observe the accuracy of the proposed method
which verifies the theoretical results.

Table 1: The global ERMS errors for a range of increasing values of N

and r for Example (7.1).

N r=1 =3 r=0 r=13

8 1.55e - 04 8.38e—07 242e-05 420e-04

16 2.88e—05 1.34e—08 213e—-10 3.1%-11

24 6.60e — 06 1.28e—09 6.33e—-12 358le—14

32 3.07e — 06 244e—10 4.66e—13 2.02e—13
10

10"

Rt Mean Square of Emars

102

g

Figure 2. : Graph of the root mean square of the absolute errors for

Example (7.2).
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Example(7.2)[8] We examine the following fractional integro-

differential equation:

()
(G . = D u :-I'S"'

iD2u {r}=f{r}+_l'[t—s}_ltl—w;'_d,s, te[01], (32)
L ) il +usis)

w(@=1,

In thus equation, the function f{f) is chosen such that the exact solution of
T
| 22 )

this problem to be the Mittag-Leffler function uft)=E At e A0, 1]

=N
w Zk

defined by : Eplz)]= 3 ———

k-0bk+1)

We derive errors ERMS by applyving the proposed Jacobi collocation
method on Eg. (32) for several values of N and r and list these errors in
Table 2and Figure 2.

Table 2: The global ERMS errors for a range of imcreasing values of N

and r for Example (7.2)[8].

N r=1 t=3 =9 =13
8 482e—04 211e—04 106e—03 1.03e—02
16 7.57e—03 1.72e — 07 276e—06 388e—03
32 1.71e—05 8.10e — 09 450e—11 167e—10
40 1.10e—05 240e—09  900e—12 119 -13
U ————
I
107
[
‘% 10"
A
(5
g 107
»
b
i
g): 10\1
£ g
10 1"

S S S 0 N S R S
2 1 6 8 10 12

A

Figure 2: Graph of the root mean square of the absolute errors for Example (7.2).

Conclusion:

This paper introduces an innovative spectral approach for solving nonlinear weakly singular fractional
integro-differential equations using an advanced Jacobi collocation technique. Our method systematically
addresses three fundamental challenges: the nonlinearity of the equations, the fractional derivative operators,
and the weakly singular kernel. Through a carefully designed algorithm, we transform the original problem into
a well-conditioned system of algebraic equations while preserving the spectral accuracy characteristic of Jacobi
polynomials. The theoretical analysis establishes exponential convergence rates under appropriate regularity
conditions, supported by comprehensive error estimates. Numerical simulations demonstrate the superior
performance of our approach compared to existing methods in terms of both accuracy and computational
efficiency, particularly for long-time integration and problems with strong nonlinearities.
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