Quest Journals Journal of Research in Humanities and Social Science Volume 2 ~ Issue 1 (2014) pp: 41-44 ISSN(Online) : 2321-9467 www.questjournals.org

Research Paper

Biodiversity of Chklipuna on Aravali range of Southern Rajasthan, India.

¹Lalit Choudhary and ²Seema Bharadwaj* Leo College, Banswara 327001, Rajasthan, India. HDJ Govt Girls College, Banswara 327001, Rajasthan, India.

ABSTRACT: This study is focused on the biodiversity of Chklipuna on Aravali range of Southern Rajasthan, India. This case study will be carried out in many different locations, with a variety of environmental conditions. In each area, biodiversity is affected by globalization. Forests are primordial houses of biodiversity and storehouses of necessities of ethnic inhabitants. In some locations, socioeconomic factors–including social, economic, political, and cultural factors–are at the root of globalization activities that are destroying habitats and species. This case study will expand understanding of these root causes of biodiversity loss. Forest recovery is a common demand throughout the globe; the ways of this unfold need to be specified, supporting inhabited forest landscapes with agents of bionetwork.

KEYWORDS: Bio network, Biodiversity, Globalization, Habitats.

I. INTRODUCTION

Globalization is a multidimensional and multidirectional process of this economic epoch. It is a process of integrating different flows such as capital, trade, information, labor, and technique, etc. [1]. Past globalization was a less economical process. This epoch of globalization is causing changes in society's nature, which can bring opportunities and risks. This economic globalization forced us to think about a healthy future environment and future generations [2]. The cultural, technological, traditional, and economic set- up of any society is coevolve with environmental variables that affect the natural resource- dynamic of the future. Local ecosystems constitute a critical link of socio-ecological dynamics because the population of that area derives a large part of their daily needs (Crop, fuel, fodder, and food) and income from their local ecosystem [3]. Changes in a landscape due to globalization affect the ecological make-up of that area. Biodiversity is (a vital ecological aspect) which is also directly consequenced by changes in the landscape. Alternative pathways of stress transmission are always significant because they help minimize stress in reverse conditions. These alternative pathways depend on the biodiversity of that ecosystem. Landscape changes of any area negatively impact biodiversity; therefore, alternative ways can disturb by landscape changes. Biodiversity is the visual beauty of our planet, which plays a fundamental role in maintaining ecological balance and regional ecosystem; we can gain millennium development goals [4]. Its biotic and abiotic components strengthen an ecosystem's resilience, but new globalization is reducing the strength of the ecosystem; this is because strength depends on biodiversity. Generally, ecosystems are constantly changing and adapting to new conditions due to resilience [5] and [6]. Biodiversity is a kind of natural shock absorbers and a fundamental force of resilience ability. This key force of resilience faces a rapid decline because local traditional and cultural diversity face rapid erosion [7].

Aquatic bodies are an essential ecosystem because a significant team of biodiversity agents of bionetwork spends their entire life or a necessary part of their life-cycle in these water bodies. These habitats also provide a platform for nesting, nursery, and resting stations for many migration birds. These aquatic bodies can control food & suspended nutrients, and therefore, these bodies are helpful in the enrichment of underwater assets of biodiversity. Wetlands are well known for their flora and flora. The diversity and abundance of plant and animal species. In different aquatic ecosystems by earlier workers [8], [9], [10] and [11]. Globally forested wetlands occupy more than 30000000 ha [12]. These wetlands are vital habitats that harbor high floral & faunal biodiversity [13]. Tropical peat swamp forests are a unique ecosystem is the most extensive in Southeast Asia, where logging, burning, urbanisation and land conversion are main threating pressure for biodiversity conservation [14].

Banswara is the southernmost district of Rajasthan State. It is bounded by Udaipur and Chittorgarh district in the north and northeast respectively, by Dungarpur district in the west and by M.P. in east –southeast while by Gujrat state in the south-west. The hills are mainly scattered in the northeast and southern part of the district, which belongs to the Aravali range. Mahi, Anas, Eru, Haran, Chap. Banswara, Ghatol, Garhi,

Kushalgarh, Bagidora are five main forest ranges in Banswara district. This district is chiefly inhabited by an ethnic population (Bhil, Garasia, and Meena).

II. MATERIALS AND METHODS

The present study was carried out in the village Chiklipuna cluster of Bagidura Range of Banswara Forest Division. This comes under sub tehsil Anandpuri and panchayat Samiti Chikliteja. This study is based on fields, site observations, and views of some viewers, villagers. The information and data were collected through discussions with members of the Forest Department of the related area. Some data are also managed through secondary sources; these include literature reviews, reports, and associated department records.

III. OBSERVATIONS

Assets of provincial biodiversity in the form of flora bio-network and fauna bionetwork of the study area were observed, shown in Tables 1 to 3.

IV. RESULT AND DISCUSSION

The Forest of the study area shows richness in flora and fauna. Quite a lot of bird calls were also noticed in the study area. Local ponds provide an excellent gathering place to water birds and other vital food web links and food chains. The bamboo plantation of the study area provides breeding and feeding ground to many resident and migrant birds. The above results were corroborant with earlier workers of the same field. The history of human civilization and communities worldwide shows the close links between Forest, flora, fauna, water and other natural resources and people these resources have a great deal of socioeconomic interaction [15]. Globalization industrialization shows negative and positive impacts on biodiversity because some projects and planes of international and national environmental problems of globalization positively impact local networks, such as J.F.M., programs of samajic vaniki, watershed projects, and some other strategies of water harvesting (check dam, ponds, reservoir, etc.) and water conservation. Wildlife conservation through projects, planning, and legislation is the safety measure of bionetwork on our planet. Villagers of Narukheda are busy socioeconomic harmony with their forest area [16]. The biodiversity of Borapada was appraisable, and the Forest of this area shows the richness of medicinal plants [17].

V. CONCLUSION

In the study area potential of the network is very good. Still, there is a need for conservative strategies and establishment of scientific study units in this area in this epoch of globalization.

REFERENCES

- [1]. Aggarwal, M.R., Globalization, local ecosystems, and the rural poor. J. World Development Elsevier. 2006, 34(8): p. 1405-1418.
- [2]. Huynen et. al., The health impacts of globalisation: a conceptual framework. J. Globalization and Health. 2005, 1: p. 14.
- [3]. Dasgupta, P., An Inquiry into Well-Being and Destitution. Oxford: Clarendon Press Inc. 1993.
- [4]. Bharadwaj, S. and L. Choudhary, A Beautiful Scenario of Biodiversity Conservation on Hill of Aravali Belt. Published By: World Academy of Science, Engineering and Technology Currently Viewing. 2009, 39.
- [5]. Holling, C.S., The resilience of terrestrial ecosystems: Local surprise and global change. In W. C. Clark, & R. E. Munn (Eds.), Sustainable development of the biosphere. Cambridge: Cambridge University Press. 1986.
- [6]. Perrings, C., Ecological resilience in the sustainability of economic development. Economic Appliquee. 1995, 48(2): p. 121-142.
- [7]. Blench, R., Globalization and Policies towards Cultural Diversity. Natural Resource Perspectives. 2001. ISSN: 1356–9228.
- [8]. Mitsch, W.I. and I.G. Gosselink, Wetlands. Van Nostrand Reinhold, New York, 1986.
- [9]. Williams, M., Wetlands. A Threatened Landscape, Basil. Blackwell, and Oxford, U.K. 1990.
- [10]. Ewel, K.C., Diversity in Wetlands. Evolutionary Trends in Plants. 1991, 5, p. 90-92.
- [11]. Bharadwaj, S. and L. Choudhary, Corroborant Prints & Reprints of Life in Habitat Corridors on Hills of Banswara (Rajasthan) Forest region After Promising Conservative Strategies paper presented in FIRST GLOBAL SUMMIT ON SUSTAINABLE DEVELOPMENT AND BIODIVERSITY (GLOSS 2008)7-9TH FEBRUARY 2009, RAIPUR, INDIA. 2009.
- [12]. Matthews, E. and I. Fong, Methane emission from natural wetlands, Global distribution area and environmental characteristics of sources. Global Biogeochemical Cycles. 1987, 1, p. 61–86.
- [13]. Sanger, P., Hegerl, E.J. and J.D.S. Davie, Global status of mangrove ecosystems. The Environmentalist. 1983, p. 1–88.
- Posa, M.R.C., Wijedasa,L.S. and R.T. Corlett. Biodiversity and Conservation of Tropical Peat Swamp Forests. BioScience. 2011, 61(1): p. 49–57. <u>https://doi.org/10.1525/bio.2011.61.1.10</u>
- [15]. Choudhary, et al., Joint Forest Management a man made tool for poverty alleviation Paper in national conference on "J.F.M. &Tribal awakening" sponsored by the Ministry of Environment and Forest Govt. of India, held at S. G. G. Govt. P.G. College Banswara (Raj.). 2008.
- [16]. Bhatt, D., R.F.O., Pipalkhunt Forest Range Banswara. 2008 rfodineshbhatt@gmail.com.
- [17]. Mathur, K., I.F.S. in Banswara Forest Division. In National seminar on J.F.M. 2008.

S. No.	FAMILY	BOTANICAL
		NAME
	Mimosaceae	A. catechu
	Mimosaceae	A. nilotica
	Mimosaceae	A. pinnata
	Malvaceae	Adansonia digitata
	Rutaceae	Aegle marmelos
	Cornaceae	Alangium salvifolium
	Malvaceae	Bombax ceiba
	Palmaceae	Borassus flabellifer
	Papilionaceae	Butea monosperma
	Capparaceae	Capparis decidua Forsk
11.	Samydaceae	Casearia tomentosa
12.	Burseraceae	Commiphoira wightii
13.	Sapotaceae	Diospyros montana
14.	Bambuseae	Dendrocalamus strictus
15.	Myrtaceae	Eugenia operculata
16.	Liliaceae	Aloe vera
17.	Papaveraceae	Argemone maxicana
18.	Scrophulariaceae	Bacopa monnieri
19.	Acanthaceae	Andrographis paniculata
	Euphorbiaceae	Jatropha curcas
21.	Cactaceae	Opuntia dillenii
22.	Solanaceae	Solanum nigrum
23.	Menispermaceae	Tinospora cordifolia
	Zygophyllaceae	Tribulus terrestris
25.	Rhamnaceae	Zizyphus oenoplia
26.	Loranthaceae	Viscum orientale
27.	Acanthaceae	Barleria cristata
28.	Euphorbiaceae	Securinega leucopyrus
29.	Plumbaginaceae	Vogalia indica

TABLE- 1 FLORAL BIONETWORK

S.No.	COMMON NAME	ZOOLOGICAL
1.	Common Langur	Presbytis entellus
	Baghera	Panthera pardus
	Jungle Cat	Felis chaus
	Common Mongoose	Herpestes edwardsi
5.	Ruddy Mongoose	Herpestes smithi
	Jackal	Canis aureus
	Indian Fox	Vulpes bengaalensis
8.	Striped Hyaena	Hyaena hyaena
9.	Blue bull	Boselaphus tragocamelus
10	Indian Porcupine	Hystrix indica
11	Indian Hare	Lepus nigricollis
12	Large brown Flying Squirrle	Funambulus phillippensis
13	Indian FalseVampire	Megaderma lyra
14	Indian Python	Python molurus
15	John Earth Boa	Eryx johnii
16	Termite gecko	Hemidactylus triedrus
17	Indian Cobra	Naja naja
18	Common Garden Lizard	Calotes versicolor
19	Common Indian Toad	Bufo melanostictus
20	Marble Toad	Bufo stomatcus
21	Indian Cricket Frog	Rana limroetaris
22	Indian Bull Frog	Rana tigerina
23	Skittering Frog	Euphlyctis cyanophlyctis
24	Peacock	Pavo cristatus
25	White breasted King fisher	Halcyon smyrnensis
26	Magpie Robin	Copsychus saularis
27	Grey Heron	Ardea cinerea
28	Baya Weaver	Ploceus philippinus

TABLE-2 FAUNAL BIONETWORK

TABLE - 3 AQUATIC FAUNAL BIONETWORK

S.No.	Phylum	Zoological Name
1	Protozoa	Amobea, Ceratium, Vorticella
2	Platyheiminthes	Planaria, Miracidium
د	Arthropoda	Daphnia ,Cyclops ,DragonFly, Mosquio larva, Amphiped, Lacctrephes, Notonecta, Panatra
4	Fish	Catla catla, Labio rohita, P. ficto, M. singhala