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I.  Introduction

The Biharmonic Eigenvalue problem is one of the most fundamental model problems in
mathematics. They have wide applications in various fields such as modeling of thin plate vibrations
[1], fluid-structure interactions [2], inverse scattering theory [3], and electronic structures [4]. The
biharmonic operator, along with appropriate Dirichlet and Neumann boundary conditions, is widely
used to model the isotropic elastic behavior of thin plates and membranes. It has been proven that finite
element methods (FEMs) are highly effective in numerically solving such fourth-order elliptic
problems. Many FEM models have been developed, which can be roughly classified into three
categories: consistent, non-consistent, and mixed finite element models. Fourth-order compatible finite
elements require the finite element space to be a subspace of the Sobolev space H?(Q), where Q represents
the com- putational domain. Traditionally, a C! consistent space is introduced [5] for this purpose.
However, implementing such a finite element space is extremely challenging, especially whenit involves
high-order basis functions or three-dimensional domains, which is why it is rarely used in practice.
Another approach is to reduce the higher-order problem to a lower-order problem and then use mixed finite
element methods [6-8]. Of course, for fourth-order el- liptic problems, there are also nonconforming finite
element methods and inconsistent finite element methods [5, 7, 8].

In recent years, the DG finite element method has emerged as a highly effective dis- cretization
technique for solving non-conforming eigenvalue problems. This method has gained widespread
popularity due to its remarkable performance in this field. The DG method was first used in elliptic
problems in 1977 [9]. The DG method is capable of op- erating on completely discontinuous finite element
spaces, offering significant flexibility in mesh design. This makes it an ideal choice for adaptive
algorithms, where the mesh size h can be adjusted based on specific adaptive criteria. This adaptability
allows for efficient and accurate simulations in a variety of scenarios.

Reference [10] provides an in-depth discussion on the non-conforming finite elemen-t method
applied to linear plate eigenvalue problems. It explores the application of this method and offers
valuable insights into its implementation and effectiveness for such prob- lems. References [11, 12] discuss
the C°IPG method for plate vibration redetermination and eigenvalue problems. References [13, 14]
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discuss lower bounds for vibration redetermination and eigenvalue problems. Reference [15] discusses
posteriori error estimation for fourth-order problems using Morley elements. Reference [16] discusses the
application of plate vibration redetermination and eigenvalue problems in engineering fields such as
aerospace and nuclearenergy. Reference [17] investigates the relationship between characteristic pairs of
plate vi- bration redetermination and eigenvalue problems. Reference [18] provides a detailed analysis of
the posteriori error estimation for the biharmonic problem, specifically utilizing quadratic basis functions
and the CO interior penalty method.

The purpose of this paper is to further analyze the priori and posteriori error analysis of biharmonic
eigenvalue problems using the SIPDG method under fixed boundary conditions, building upon the
aforementioned studies. Our work is as follows:

1 Refer to reference [19), we extend the DG method originally developed for numerical

approximation of sccond-order elliptic partial differential cquations to address biharmon-
ic eigenvalue problems. Notably, we provide a prool demonstrating that | — wpllon =
Bt — 1y, indicating that the DG method achieves convergence order in terms of the
mesh size . Furthermore, our analysis reveals that employing high-order elements enables
optimal convergence order for the eigenfunctions in terms of error estimation.

2 We performed both a priori and a posteriori error analyses of the h-type interior penalty
PG method in the energy norm, focusing on biharmonie eigenvalue problems. Through the
use of the lifting operator, we confirmed the reliability and effectivencess of the posteriori
error estimation for eigenfunctions in the DG method. Our analysis offers valuable insights
into the accuracy and efficiency of this approach in tackling biharmonic eigenvalue problems.
3 We not only conducted numerical experiments on uniform grids but also on adaptively
refined grids. From the numerical results, it can be observed that our method achieves op-
timal convergence order for eigenvalues.

The structure of this paper is organized as follows. In Section 2, we introduece the model
problem, function spaces, and derive the discrete formulation used in our study. In Section
3, we define the energy norm, discuss the boundedness of the lifting operator, and establish
the ellipticity and continuity of the equations. Section 4 is devoted to priori error analysis,
while Section 5 presents the posteriori error analysis. Finally, in Section 6, we illustrate the

theoretical framework with numerical experiments.

Il.  Preliminaries
In this paper, we utilize L7(w) to denote the standard Lebesgue space, where 1 < p < o

and w C B2 The corresponding norm is denoted by || - || o). However, for simplicity, we
represent the norm of LP{w) as || - ||o. Next, we use H*(w) (where s > 0) to denote the
space of real functions on 2 C B? in the standard Hilbertinn Sobolev space. The norm and

semi-norm in H¥(w) are respectively represented by || - ||, and | - |, ..
2.1 Model problem, Meshes and finite-clement spaces

Let © denote a bounded open polygonal region in E* with boundary 80, and let n
denote the unit outward normal. We consider the eigenvalue problem for the following

biharmaonic equation to find A £ B and » # 0 such that
Ay = du in 0, (2.1)
together with the boundary conditions of the clamped plate (CP):

uw=Vu-n=10 andl (2.2)
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The weak formulation of problem (2.1) is to seek (A, u) € © x H3(Q), such that w # 0

and
Alw,y) = Blu,y), Yy e H,:f(ﬂj (2.3)

where A(u,y) = [, Aulydr, B(u,y) = Mu,y) = [, duydz.
Let T be a conforming partition of € into triangles, where the triangular elements £ € T
do not intersect. The length of an edge in element & is denoted as b, and the diameter of
element. & is denoted as b, Furthermore, h = max h,. Suppose the partition T is shape-

weT
regular, constructed via an affine transtormation U, : s, — & with a nonsingular Jacobian,

where x is the reference triangle. The aforementioned affine transformation W . ensures that

0=,k
I'or a non-negative integer r, we denote by (k] the set of all tensor product poly-
nomialz on kg of degree at most r in each coordinate direction. For v > 2 we consider the

finite-element space:
S = v e L), v, oW, € Pr(rg),¥s =T}
The piccewise function space defined on the partition T is given by:
H(T) = {v e LA(),v]. € H*(k),¥s € T}.
The union of all 1D element edges associated with T is denoted as F. Let F=F, | Fi.

where f; = F \ F, £; represents the internal edges, while £, represents the edges on the

boundary <.
Let the function h : @ — [ be represented as a collection of h,, where h|, = h.(k € 1)

and h|, = {h}{g C F).

Next, we introduce some trace operators. Let 7 and £~ be two elements in T hat share
an edge g, which is denoted by g = dx% M dx~. Define the outward normal unit vectors
n' and n on g corresponding to dx' and dk . respectively. For functions y : 1 — R and

q: 0 — % which may be discontinuous across [, we define the following quantities. For

VT = vgcants 1T = Ulgcan—, and g1 = dlycon- .97 = Qoo we gel
)= 307+, bl =y +y 0, {a) = Sla" +a0). fal = a™n® +qn
If g © &, Fy, these definitions are modified as follows:
{wb=v" =y " A{at =q", la| =q'n".

With the above definition, we can easily obtain the following identities:

> [ vanas = [l taps+ [ toajas (2.4)
kT dw f F
2.2 SIPDG

For the sake of simplicity in error analysis later on, we introduce the concept of a lifting
operator £: S} 4+ HZ (1) — S},

/ L(w)ydr = f ([wl{Vy} - {y}Vuw])ds vye 5. (2.5)
0 /
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Then, we can reformulate the eigenvalue problem of equation (2.1) as a system of first-
order equations:

Vu=t.V - t=5Vsi=q.V-q=2An, inlLieC (2.6)
u=0Vu-n=10, on (50 (2.7

Firstly, define the following numerical fluxes:

ﬁ_{{ua.}: ifgC 1t f_{-[\-fm]-, ifgCFoe

(1, ifgc it (. ifgc i,

; {Aup} — E[Vuy], ifgcFi X {(VAupt +nlun],  HgcFy
&= _
Auy —E(Vup-n),  ifgC Fa,

VAuy, + nuy on, itg < Fu,

Remark 1. The piecewise constants n and £ defined on | — R are given by 5|, =
C,(hl,) (O, = 0) and £|, = Ce(h|,) "(Ce = 0), respectively. Of course, in the subsequeni
IPDG method, in order to ensure stability, we choose n and & {o be sufficiently large positive
constants that depend only on the mesh parameters [20].

Then, (2.6) can be equivalent to: For any wy,, y, € S}, 2u. 1y, € S) 257, find uy, s, € S},
tn.qu € 5), xS}, such that

j ty - zpdr = —j 1w,V - Zpda +j itn - zyds, (2.8)
" i

"
-/ spopdr = — / ty, - Viopde + [ to,n - tds, (2.9
® of o e
f‘lh crpdr = — /sh'\?’ srpdr + / in - rpds, (2.10)
[}rm,yhtl:x: —fqn - Vy;,cln:+f Y1 - fds, (2.11)
I3 " s

where z and r are vector test functions, w and y are scalar test functions, and n is the unit
ontward normal vector of 902

Then for (2.8) — (2.11) using the Green formula and the identity (2.4), we get

/ ApupApynde + f (uh(Viyh 1)+ (VA - n) — Ay (Vg -n) — D (Vg - Il})ds
i1 Fe
- -/ ('r,l-esf,yh + E(Vuy -n)(Vyy, - n])ds +f ('Fj[ﬂ'h] < Nun] + .f[Vuh]['\?yh]) ds
B re
+_/ (lml-{Vﬁyh}+[ya'-{Vﬂ'tr-h}—{tiyn}lvun' - {ﬁuﬁ}lvyhl)d-«— [Auhmd-‘c-
L LA
(2.12)

Recalling the conventions [y]|, = ym. [r]|, =rn. {y}|, = y and {r}|, = r, equation (2.12)

can be expressed in a condensed form

[ avusunds+ [ (st o)+ €9ulm)as+ [ (tunl- (92m)

(2.13)
+ Tl (V) as = [ ({ayh}[w.] +{Au v )as = [ Nugde,
Ly S11
see that (2.13) gives rise to the SITP — DG
Juy, € 5, st Aulwp, un) = Bulyn) Yy, € 8], (2.14)
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where the bilinear form Ag(-, -) and the linear functional By (-) can be obtained from (2.13).

We substitute the lifting operator into (2.13) to obtain

Ap (i, yn) =L (ﬁhunﬁn!m + L{un) Apin + Apup i'(yh))d-t' +f (UIUM < [un] + €[V [V;Un]) ds,
/

Brlyn) / Aptiyip .
Ja

3 Improve the stability of operators, continuity and ellipticity of equa-
tions

First, define the DG —energy norm associated with A, (-, ), ¥ v € § = §; + HF (1), we
have

llelle = (l1awellf + [valelli7 + Ve, (3.1)
. 1
then the h-norm defined on the piccewise function space H*T*(T)(s = 2} is given by:
ol = lwllE + bl {AvHIF + BSI{VARYF . (3.2)

Note that on the discontinuous finite element space 57, | - |l¢ and | - ||, are equivalent.
Lemma 3.1(see [20] Lemma 3.1 ) Let £ be the trace lifting defined in (2.5). Then, for
%o e S, the following bound holds:

1£@)5 < edlvalllf + 1 VEveliz). (3.3)

Lemma 3.2 (sce [20] Lemma 5.2) Then the bilinear form A, (-, -) is continuous and coercive
in the sense that

[An(v, )| = [lvllellylle Yv.y € ST, (3.4)

|An (e, 0)| Z |lv][Z Vv € 5. (3.5)

4 A Priori Error Estimates for the Eigenvalue Problem

First, we present the source problem associated with equation (2.3) as follows: find
w £ HZ (1), such that

Alw,y) = (f.9).Vy € Hj (). (4.1)

Then, we provide the finite element approximation problem for equation {2.3) as follows:

find (Ap,up) € € x S}, such that wuy, # 0 and
Ap (g, yn) = Anlug, un ),V € Sy, (4.2}
The DG approximation of (4.1) is to find wy, € 5], such that
Aplwpsyn) = (frun), ¥V un € 55 (4.3)
Definition of a bounded linear operator A @ L*(Q2) — HZ(Q), such that:

A(Af.y) = (foy). ¥ f € L(Q), y € H{(9). (4.4)
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Therefore, equation (2.3) can be equivalently expressed in operator form as:
Mu=u, Yuec HI Q). (4.5)

The corresponding finite element approximation problem also has an equivalent form.
Firstly, let's define the discrete operator Ay, @ L*(Q) — S7(2), Then, equation (4.2) can be

written in the form of an equivalent operator as follows:
Apdpty =y, Yuy € S:, (4.6)
By the consistency of the DGFFEMs, we can obtain: Let aw be the solution of (4.1),
and [ £ L2(Q) then:
Aplw,yp) = (foun). ¥V un € 55, (4.7)
which together with (4.3) and (4.7) we obtain the error formulation:

Ah (1.!.: - “:.r.'-.y.ra} = U: ki n € Sjrl' (4'3)

If f € L*(92), then the solution w € H¥(L = ¢ > 0) of (4.1}, and the following regularity

estimate holds [21]:
lwllsse = | flo- (4.9)

When w; represents the quadratic element interpolation of w, and the following inter-

polation estimate holds:

[|w — willn < B |Jwllae- (4.10)
Attention: [w — w;] = (.
Lemma 4.1(see [22] Lemma 2.1 ) Let k € T, g € Ox, and 0 < ¢ < 5, for any © € H1*(x)

with A® £ L?(k), there exists a positive constant ¢ independent of © such that:

VO nl 1, = C([VO|ew + by 4O ]o.x) - (4.11)

Theorem 4.1 Let w € H*'* and wy, € S}, be the solution of (4.1) and (4.3), respectively.

Then, the following relations hald:

lw = wy|p = mf |w— yplls (1.12)
ynESE
lw—wnlc < bl flloo (4.13)
Proof By utilizing (3.4), {3.5) and (4.8), we can obtain

lwn — unlle < 1 An(wn — v wn — wa)| S Anlwn — w, wn — yi) + An(w — Yo, wh — un)

=l =y lln lum — ynl o

then |wy — ylle = lw = talls
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Further applying the triangle inequality, we obtain:

e — willa =l — wnlle + lwn — wnlle = lw — gl (4.14)
Therefore, (4.12) is proven.
To prove (4.13), we can utilize (2.13), (3.4), (3.5), (4.8) and (4.11), we can obtain
|wn — wy||f < |An(w — wy,wy, — wy)

< lw —willllwn — wille + 3 HAGw = wr) oIV (wn —wi)llo

q

+ 3 VAW —wi)} e nlle g gl (s — wr)ie — (1w — wr)e- 3 e

9

(4.15)

We can bound the third term in equation (4.13) as follows:

VA —wp)}-nll, 1 (e —wp)es — (wn —wr)e- 11,
i K
5 Z (||V15-(T-U - wr}”e.nmﬁ— + h,l.-,_I |$2{w - u"f)”n.n_l_ln_} (hr_l" |[:°-|'-’h - w;}~+ - {'f-l-‘h - Wy )k- ”l].h‘n}

(O w3y wron-) +(Zh* B FIR e ) )R

R fllosllwn — wile.

Ty — Wy

|

(4.16)

By applying the properties of Cauchy-Schwarz inequality, we estimate this bound for the

second term in equation (4.15):

Zu{a w = wr)Hlog [V (wn = w)log < Zuhﬂvcuh—uu Zhgu{a w = wr)}|3,)8

cllflla.g-

< hY|wn — willel|wl)see S A wn — wy
(4.17)

we obtain:

o — wilZ < (B + B llosllun — wr

G- (4.18)

After simplification, we obtain |Juy, — wyllg = At f|lo.n. Mrther utilizing the triangle
inequality, (4.9}, and {4.10) yields:

lw —wlle = |lw—wille + |lwn — wille S B fllogo- (4.19)

Theorem 4.2 lLet w and wy, be the solutions of (4.1} and (4.3), respectively. Then, the

following relations hold;
[l — wpfloe < A lw — wale, (4.20)
llw —wnllon S W) fllo.o- (4.21)
Proof By utilizing the symmetry and (4.8), we can derive:

(wr —twp, [) = Aplw —wp.w) = Ap(w —wp, w —wyp) + Aplw — wy, wy)

'T}}”flﬂ”[v{“: - ?f-'h;‘“ 0,y

=l — wi|e

(4.22)
+ Z {VA{w —wy)} - n||,_ all(w = wn)es = (w0 —wn)- 3oy

i
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Similar to the derivation of (4.13), we can obtain for (4.22):
[ 49w = wnHw = ] = (A = w)} T = wn)lds] £ 8w = wnlol oo
s

Therefore, (4.20) is proven.
Substituting (4.13) into (4.20), we obtain:

lw — wallog = B floq-

Assume A is the ith eigenvalue of (2.3) with the algebraic multiplicity g and the ascent
o A = A =00 = Aipgo1- When [|[Ay — Allgn — 0, g eigenvalues Ay = A0 =--- =

Aiigo1 will converge to A (as stated in Lemma 5 of reference [23]). Let M(A) denote the

space of generalized eigenvectors of equation (2.3) associated with the eigenvalue A, and let
Mp(A) be the direct sum of the generalized eigenspace of equation (2.14) associated with
the eigenvalue Aj, thal converges to A, And the arithmetic mean of A can be expressed as:
V.o lgata—l

)l.‘.l — i=j }‘?JA'

Theorem 4.3 Assume M(A) © H™(m 2 t), v = min{m + 1,r — 1} the following
inequalities hold:

A= Aul < B2 (4.23)
lu— wnllo.n S B, (1.2)
lu = wnlln = BT+ RY, (4.25)
[ — unlloe = A {le — uplln, (4.26)

where 1w € M{A) and w, € My (A) are the eigenfunction of (2.3) and (4.2) respectively.
Proof Let's denote Af ;= w and A, f := wy,, Combining the operator form and (4.21), we

can obtain:

Af— A, B2t
[A=Aplloa=sup IAf — Avflloa < sup - I/ lo.e

ogrecray  Ifloe Tozrerry Iflon
From Theorems 7.1, 7.2, 7.3, and 7.4 in reference [17], we have

< h% 5 0,(h — 0.).

Jg—1

2
|A—Anl = Z [{(A — An)es, i} + ”("t — ﬁn”_-uu]”c] o (4.27)
id=j i
e — unllog < |(A - A“'””{"-‘||o g (4.28)
here {{;:,}’;j:_l is any basis for A4 ().

From Theorem 4.1 and Theorem 4.2, we can infer that:

(A=Al = sup JAS = Auflow s sup AVAS .
O8F FeM(ALI[Fllon=1 FEMAL|Fllo0=1

(4.29)
Substituting (4.29} into (4.28), we can obtain (4.24).
By utilizing the properties of operators, (4.8) and (3.5), we can obtain:
((-'\ - "\h)‘r’h‘f’;) = Ap (Aps — A, Apr) = A (Aps — A, Apr — (M) r) (4.30)
= e — AngillallAgr — (Aedrlln £ B IIAGlaceah” | Apillayen S R
By substituting (4.29) and (4.30) into (4.27), we can derive (4.23).
Since v = AAw and w,, = Ay Apus. by using the triangle inequality, we can derive (4.23)
and (4.24) as follows:

< h)‘+u:

i~

(4.31)

|||H =y, = [l = Apull, | [un — AMpull, = [An(Anun = Mu)l], S (Ao = Aully
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which together with (4.12) yields (4.25).

From (4.12) and (4.20), we abtain:

(Au— An'ﬂ)|mr_).)||u‘“ S| Au— A

[l — uh”n_g: = e, S h! _inf’ [|Aw — vy lpa = R [l — Hn“h .
vy VR

Therefore, by obtaining (4.26), the proof is complete.

5 A Posteriori Error Estimates

5.1 Reliability

Lemma 5.1 Let’s assume that the mesh T is constructed as in Seetion 2.1. In the case,
there exists an operator I1: S} — S}fz (Y HG{£2) that satisfies the following bound:
Dl =Ty [a . < COIRE [Funllf + Cld ] [[}), (5.1)
reT"
with =10.1.2 and €' > 0 is a constant, that is independent of h and .
Proof See Lemma 3.1 in [24].
Theorem 5.1 Let u € HZ(Q) be a solution to equations (2.1) and (2.2). Let u; be the
approximate solution obtained using the Discontinuous Galerkin method. Let n and € be as
defined earlier. Then, there exists a positive constant C' that is independent of h, v and u;,.
such that:
Il — unll& SC-'(H/\H — Atnl @ + |0 (Anun — Afun)|[3 + |02 [Aun]|17 52)
5.
+ B2V Au]IE, + CoI= [l + [ 2(Tu]|2)),
where Cy = max{1,C,, C¢,C,CE}.
Proof Before the formal proof, we first construct the macro element S,’;”. and the specific
construction method can be found in reference [24]. For each node y of the C' conforming
finite element space .§;‘2. we define w, as the set of elements x € 7' that share the node v.
i.e., wy = {k €T :y € r}. The cardinality of w, is denoted by |w,|. It is worth noting that
if y lies in the interior of an element, then |w,| = 1.
We define the operator IT : ST — Sr*2 (" H2(S2) by
A ZN(:&J‘, Gy(uhlh‘) liy ¢ rint-.

Gy (TM(up)) = { ™
0 lfl/E rxnte

here, Gy, represents any nodal variable at y, which is a nodal point of S}J” It is important

to note that if y lies in the interior of an element, then G, (I{uy)) = G, (ug).

Let g, € 57,y € HZ() and ®{u,) =y — y;,. Thus, the error can be decomposed as:
R=w—y = (0 — W) + (un) —un) = 1 + R,
thus:
An(R.y) = An(wy) — Anlun.y) = (Adu = Ayup, y) + Bu(®) — Ap(un, ), (5.3)
and therefore:
An(Ri,y) = (A — Apun, y) + Br(®) — Ap(up, ) — An(Ra, u), (5.4)

since 1{uy,) € q;u and uw € H2Z(Q), we have 7y € H3().

3
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Therefore,we can deduce that £(H;) = 0, and upon setting y = R; in (5.3), we can also
deduce that:

AR 2 = Ap(Ry. Ry) = (M — Apuup, By) + Bi(®) — Ap(un. ®) — Ap(Ro. Ry),  (5.5)

IMirst, let’s estimate the four terms on the right-hand side of (5.5). Since £(1%) = [I})] =

[V 1] = 0 and using (3.4), we can obiain:

|AL(RQ,R|}| = ‘f{ﬂ-hﬂzﬁhﬂj + «E(R_:)ﬂnﬂddﬂf
[+

2 2 2}'"? >0
< (I1anRallE + CUITuall -+ [VETVuallF)) 1A Rallo.

Next, let’s estimate the second and third terms on the right-hand side of (5.5). By

applying the Green's formula, we obtain:

Bh((I’.J - ;"1;;['{{,1;.‘{’:] = / (Ahl{pl - ﬁﬁm,)*l‘-‘d;c — f{i-‘{‘I’}:ﬁ.huh + if(uh:lﬂﬂq’]d:z
Ju 0
(5.7)
=Y | (Auyn- Ve - VAu, - nd)ds - f (@[up] - [@] + £[Vuy|[VE])ds,
reT ¥ 0% I
since wuy,yp € S; and y € HE, we can use the lifting operator and the identity (2.4) to

transform (5.7) into:

Ba(®) — An(un. ) = [ (Ot — A%u0) — £(un) A B)dz + !' {@}[VAus]ds
Jor i (5.8)
_f Vo) [Auylds — /(?][uh] <[ P] + £[Vuy,[[V])ds.
F: r

According to [25], for 0 < 7 =< m < 2, there exists a constant €' > 0 independent of T,

=3

such that for any u € H3{Q) and x € T, there exists y,, € 5} satisfying:
=yl = chl a0 < j<m< 2. (5.9)

For the first term on the right-hand side of (5.8), using (5.9) and (3.3), we can obtain:

< C( Ih2(Aup — AZuy)||

]' (it — AZup)® — £(up) Ay ®)dx
0 (5.10)

L2
+ Iyl + IVETwIE ) 1R 20,
then, using the shape regularity, mesh regularity, and bounded local variation on the finite

element. space S}, we can bound the second, third, and fourth terms on the right-hand side

of (5.8) as follows:

= C| hJ’EQ[QHfl]”F. Rilz.a0.

‘/ {2V VAu,]ds| < C|h*?[VAu]| £ | Bz U (V) - [Auy]ds
S i

If (ilun] - [®] + &[Vun] [VO])ds| < CCF2 (0™ 2un]l[] + |02 [Vua] |7 )2 Ril2 -
!

The first term in (5.4) can be estimated as: [(Aw— Apug. 1) < O A — Apug||o f]2.0-
Since for Ry € H*(Q), we have |Ry o0 < C||AR1||n, we can obtain:

ARG <C (||)\-r: — Antnld + (102 (Anwn — Afun) |3 + |02 [Awg] |7 (5.1
5.11)
+ IR VAWG]F + Gyl 2]} + 2 [Tu]|F)).
This provides an estimate for | AR ||q, Next, we will estimate || ARa||q.

From lemma 5.1, we can obtaln:
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AR < Jup — (w3, < CUh 2 fu][[} + B2 [Vua][[7). (5.12)

wET

Therefore, by using (5.11) and (5.12), as well as the triangle inequality, we can obtain:

[ — ullE: “{5("(”/\% = Apun [y + [|[B* (e — Afw)|[§ + | b2 [Aw] (|7

+ 2V A [, + C b unl[f + (b= [Vu ][]} })'

5.2 Effectiveness

Theorem 5.2 Under the basis of Theorem 5.1, for every element & € T, the following

inequality holds true:
D20t — A%ua) 2 < 1A — un) 12 + 1020w — Awaun) 2, (5.13)

and for cach edge g € F; we have:

0= [Aua]ly S 1A (u = un) 1 F 0 + 10w = M), s (5.14)
0% [V A3 5 (140 (0 — up) 2, s + B = un) |2, - (5.15)

Proof First, determine & € T, then define a polynomial function y|,. = (Ayu, — A% )b on
s, with y € HEQ) n H3(k), and y = 0 when y € Q' k. Where b, : & — [ is a standard
bubble function defined as b, = bzoF,. If & is a reference triangular element with barycentric
coordinates Ay, As, Ag, then b, = 274, Az ;.
Take the above y in (5.3) and set y;, = 0 to get the result:
f&R&ydz = [(J\u — Apup ydr + f(/'\n'ﬂh — A%y, )yds = /(Au — Afuy)yds,  (5.16)
e

noting that [y] = [Vy] = {y} = {Vy} =0o0n { and that £{u) = £(y) =0 on Q.

Then using the reverse inequality, we can obtain:

A = A%un[l[lylle = AR Ay S D2 [AR] .yl (5.17)

and, from the norm equivalence, (5.17) and scaling argument, we obtain:
nn = A%unl2 5 [ O, = &%) 820 S [ (g = Ay e

(5.18)
= /{)«;,uh — Au A4 Au— Aluyyde < h 3 Alu — w)|| |yl + [ Anun = Ayl

For (3.18), using norm scaling and the Couchy — Sehwarz inequality, we can abtain:
Xt = A% S DF A = un) || + | Anun = M|, (5.19)

multiplying both sides of (5.18) by h*, then (5.13) obtained.

Next, let’s do some preparation work,

Firstly, let the largest rhombus in &, U ks be denoted as & C & U 82, The diagonal of
the rhombus ¥ is denoted as g £ 1 ,.

Furthermore, we deline a bubble lunetion on the rhombus &, denoted as bz - 5 — K.

Finally, we define an affine function by : § — R, which takes the value of 0 along the
edge g and such that (Vh -nl, = h™2).
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Using the above preparation work, we consider the function b, : 2 — R, with b, |z = b;b2
and b, = 0 on 2% K, that has the following properties:
by € (_‘J[Q:' n Htff;ﬂ]‘- [hrr; = [vb.r;] ={b}=0ony,
({Vhy} - m)ly = (W7'B3)ly,  {Vb} =0onFlg,
where Vg - n takes the value of 0 along the edge g.
Building upon the aforementioned foundation. Firstly, we define y = by, where y is a
constant function in the normal direction to gl(i.e., Vx -n|, = 0). For this y and for y, =0

to (5.3), we can obtain:

/{)«u — Apup)dz + [ (Anun — &iuh)yd:r - [ ApRAyde = /[.-'luh: -{Vy}ds,
of w wf w Les oo

o by Llees
(5.20)
in (5.20). let x|, = (h~'[Au] - n)|,, and then use norm equivalence and scaling to obtain:
[ 1] s = 110~ (A > € b [y (5.21)
/a

Furthermore, let 1 : ¢ —+ R, where I(s) denotes the length ofthe intersection ofthe line

normal to g, crossing g at the point s € g, and &. We can obtain:

; ‘ 1 1 . o
5l sims = ClIX fsome = € (f XQ(S)E(S)dS) < Clhzxl, = Clh™=[Aulfl,,  (5.22)
a
from (5.20) and (5.21), we can obiain:
| [Auall; < (12 (u = M)y + [ e, = Afuen) s + B8R yina) B3y,
(5.23)

by utilizing (5.13) and (5.22) in (5.23) and then multiplying both sides of (5.23) by h?®, ihe
(5.14) is proven.

To estimate [VAu,] we first observe that we have

B e CH N HI), (B =[VE]={VE} - n=0ons and [b]=0on/t\g (5.24)

We set y = ©b2, where 1 is a constant function in the normal direction to g. For this y

and for y, = 0 (5.3) yields

f(}uu — Apy )z +f (Anus — Aduy hyde — / Ap RALyde = f[v.&-rn.]{y}fl.ﬁ-,
I Wqllky o wy Uy g

(5.25)
in (5.25), let ¥, = [VAu,]|,. By following a similar proof as (5.14), we can obtain (5.15).

5.2 Reliability of cigenvalue estimation

Lemma 5.2 Let (A u) and (A, uy) be the eigenpairs of (2.3} and (4.2), respectively,
with (g, wy,) # 0. In this case, we can deduce:
(e — g, —wy,) Ap (e — wg,w—uy)

A=A = A . 5.26)
4 (Hn: 1y, ) (tp. ) (526
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Theorem 5.3 Under the conditions of Lemma (5.1), let M(\) ¢ H**(Q)(] = ¢ > 0) ,
then

A= Ml S Run)® + eRlup)® + € > (A — 1) loxR(un) + €Y hE[A(u = up)|R(w)

+ed ((h 2 +h 3 fllog+Run) + AL (A = Mnwnlos + | Awun — A%unllo,) )b flu - unlle,
) (5.27)

where ;o is the first-order interpolation of

R(us)? =0 (Auun — Al + B2 [Bug]] 7, + |12V Aus]|Z,
+ Oy 2] 2 + 102 Vua|2).

Proof According to Theorem 4.3, we know that ||i—uwp||o.n is a higher-order term compared

to [ — un|e. Then, by using (5.26) and the estimate for wy, in (5.2), we can derive:

|A = An| < llu = ualallu = unlle

+| Z[ ({V&(u — )b [w— ]+ {VA(u —ug)} - [u— Tih]Jﬂ'--‘-‘l

+] Z] ({&(u —up) - (Vi —ug)] + {Aw —up)} - [Vie— '”"‘)-)ds' (5.28)
a L

SR(u)® + 26 3 VA — )} -n,oy I = ) = (u = w)u-| 4y

9

+ 263 (A = un) Hlog [V = un)]lo.,-
@

From the estimate in (4.11), along with the interpolation estimate and inverse estimate,
we can deduee
e I{VA@ = u)} nllyy $ed (VAW = un)llewsin- + b IA (@ = un)o.m=us-)
q L3

o FZ (”3(“ - uh}|l1+f.n‘ T+ hl fl:”)“f- — Mg o + || Arun — ﬁuﬂh”ﬂ.ﬁ.})

Sed (lu—urllapes+ b7 (A0 = ur)llos + 1A — ua)llo.x)

+ h,lf_r(||f\u = Antnlox + || Anun — Aluy, |n.n.)J
1 3
Sed (W2 S lloa+h" 2 fllon + v —unle + At (Ixw = Antnllo + [Anten — A%unlo.x))-

3

IFrom the inverse estimates, the trace inequality and the interpolation estimate, we gel
S = e — (=) g S DRI = wn) e — (=) Jlag
g g
3 2 .1
SRS I = unl|2)F S A = walle,
9
then, combining the above two inequalities, we obtain
e S IHTAG = w)} -l sl (0= wn)es — (w3 ey
9

SeY ((hF + h D) fllon + R(un) + BEH (M — M flogs + [ Anun — A%uplloe) VAl — gl -

L3
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The second term in (5.28) can be estimated as follows

€Y A — un) Hlogl [V — )]0y

gel

— L 1
Selhntlu—uplle + > b * A — up)
LY

o+ 3 BEA (= up)]1e) hER ()

= eR(up ) + e Z |A(u = up)[o,xR(up) + € Z Bl A(u = wpe )1 Ry ).

Remark 2. From Theorems 5.1 and 5.2, we understand that the estimator W(uy)? for the
eigenfunction error ||u —wy |4 is both reliable and efficient up to data oscillation. Therefore,
the adaptive algorithim based on this estimator can generate o well-graded mesh, enabling the
approzimate eigenfunctions to achieve the optimal convergence rate of O(dof=™) in | - ||3.
As a result, we can anticipate that € l:|'u. — o +h 7 u— -up|3:ﬁ.} = dof™™, which leads

Lo [|A = Al < dof ™™ from (5.27). The numerical experiments in Secl. 6 demonstrale the

reliability and efficiency of ¥W(uy)? as the ervor estimator for Ay,
6 Numerical experiment

In this section, we will demonstrate the practical performance of the a posteriori error
estimators proposed in the adaptive refinement process through numerical results. We use
MATLAB2022a to solve the discrete cigenvalue problem, and our program was implemented
using the iFEM package. When @ € B?, we solve (2.14) on the unit square [0, 1]* and the
L-shaped domain [, 3]*/(0. §) x (F*,0). For ease of reference, let S represent the square
region and L represent the L-shaped region mentioned in the table. In the upcoming example,
we sl the internal penally parameters p = £ = 70, and set the constant € generated
in Theorem 5.2 to be 1 for caleulating the DG solution of equation (2.14). As the exact
eigenvalues are not known, we consider reference eigenvalues A = 1294.9339795796 in the
square region S and A = 6702.97945136574 in the L-shaped region L. These reference
eigenvalues have been obtained through adaptive computation to ensure the highest level of

accuracy.

Domain e dof A1 Frror
1 9216 TO1081038556621 60403 5.731860T2308789: + 03;
2 10788 AASTRETIOAIIATTe+00  3963003090402994050+-00;
3 13272 GHGZHANGOG264825e 400 2AOG0ETTTOGTIO2Tet 003,
4 17476 6.50861 2049380864403, 2. 123049T86633385e-+03;
o 24480 G.7T9985024160483e+03  1.041112814481431e+03;
g i a5088 GTARATHREEETTITIe40E 10558183701 50666+ 003;
T 49992 6. 73850361 5381 788e+08  (LTE2US194T081 21 e,
® fimtid 0. 7280452097 48004e+03  0L04489305 18766 Te—013;
] 103308 G.7ZLI0T342830408e+03 0. 38463 73905353064 +03
10 151932 6.714791825102930c+03 0.266363127506993c +03
11 212796 6.7121255406663040 403 0. 13D2328030080500 +03
12 208524 B T09GH1I51840216 Le4+00 0L 13282314153159520 +03

Table 1: Numerical solution of eigenvalues using 12 iterations of p2 adaptive method with an initial mesh size of

1/16 on the domain £k .
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Figure 1: Tterating 12 times with p2 adap- Figure 2:

Error of tha frad sigaivalos

w®
Number of degrees of freadom

Error and indicator subcurve

tive mesh refinement on the initial mesh plot for 12 iterations of p2 adaptive eigen-

size of 1/16 for the domain €2y .

value computation on the initial mesh size

of 1/16 for the domainy.

Drornain I o f Al Error
1 3072 1.449259880289040e+03  1.3146T1880406622e+03
2 4416 1.330502520545450e+03  0.819472333018605:+03
3 62400 L310010657754600e+03  0.474600744323542e 403
4 HEE N L30S0TIA1TRATA e +03  0.53388728908T4160+ 03
A 15584 1. 30062625 7832300 e+-03 02153 9004620546e+03
[i] G0 129973711 271 6T 0Me 00 (.1 AREY2EO0H 205408+
Ng 7 S0A00 124980512827 28404e+08 0092951 3405263445e+ 04
b 29494 L2956 330090429e+03  0.05380 160006336 130e+03
9 57192 L29G14296551T67e+03  0.036914358800048¢+03

1 140562
11 230352
12 338610

1295725508290 966+
12953621 02785030 +03
L. 295230 202836058e+03

L2436301 497 1004e+ 03
0.015128348635248e+03
0.009661 M0L2Z0606e+03

Table 2: Numerical solution of eigenvalues using 12 iterations of p2 adaptive method with an initinl mesh size of

1/16 on the domain 2.

Errior of e firal sigemealus

o

e v g e
T tha u perRror wnt s
Tha b Wi scpe 2|

Kumber of degrees of freedom

Figure 3: Tterating 12 times with p2 adap- Figure 4: Frror and indicator subeurve

tive mesh refinement on the initial mesh plot for 12 iterations of p2 adaptive eigen-

size of 1/16 for the domain Q5.

value computation on the initial mesh size

of 1/16 for the domain (1g.
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