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Abstract:

In this research paper we have proposed as a work, the simulation of elementary invariants, components of the
Cauchy stress tensor and internal pressure in the case of a cylindrical hyperelastic tube undeformed or
deformed by application to a constant, decreasing and increasing radius. To illustrate the radial deformation of
the hyperelastic cylindrical tube, we used a perturbation parameter in the kinematics with an isotropic and
compressible strain energy function in the Cauchy stress tensor to obtain our desired expressions. The
comparison of the simulated expressions allowed us to see differences and equalities in the elementary
invariants, resemblances in the components of the Cauchy stress tensor and the variation of the pressure in each
case, ie for a increasing and decreasing radius. Finally, these simulations have allowed us to prove how these
disturbances can perturb invariants and constraints in a hollow hyperelastic isotropic cylindrical tube.
Keywords: isotropic, compressible, incompressible, elementary invariants, Cauchy stress tensor, internal
pressure, disturbance parameter, decreasing and increasing radius.
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I.  Introduction

The description of the anisotropic hyperelastic mechanical behavior of a mechanical cylindrical tube is
still useful to better understand the diseases that plague the cardiovascular system [1].To achieve these studies
many variables and tensors must be considered, the deformation gradient tensor F which is nothing more than
the tangent linear application serves to describe the state of local deformation resulting from the internal forces.
In the biomechanical modeling, there are various strain energy functions which allow to realize such work
among which we can quoted the polynomial, exponential, power or logarithmic form [2]. These energy
potentials have been established as part of a phenomenological approach that describes the macroscopic nature
of the material and there are functions of elementary invariants [3]. Most of these mechanical studies have
different and diverse objectives, one part of this is most often concentrated in the analysis of stresses and
pressure in incopressible, in the isotropic or anisotropic case [4,5,6]. In an other part there are interested to
establish a direct correlation between the mechanisms of deformation and the physical characters of the structure
and certain mathematical criterias which are known, such as convexity, ellipticity and objectivity should
normally be satisfied by the strain energy functions [7,8]. As a contribution in the biomechanical modeling, we
study a smooth hollow cylindrical structure or with an internal deformation in the compressible or
incompressible isotropic case by application to a decreasng and increasing radius. The elementary invariants, the
non-zero components of the Cauchy stress tensor and the internal pressure will be simulated and analyzed in the
case of internal radius deformation in order to highlight the differences that can be observed between these
parameters which are studied according to whether that the radius decreases or increases what can represent
respectively in the reality a pathological artery.
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1. Preliminaries

A continuous material body in which a material particule is described by X
in hte undeformed reference configuration and by x in the deformed configura-
tion.The local deformation is described by the deformation gradient tensor F
which is the tangent linear application. This tensor allow to have the volume
change, his determinant is always positive, so that

x = x(X); F = Grad x; det F = 0. (1)

In incompressible deformation, there is no volume change so the determinant is
equal to 1. The deformation gradient admits polar decompositions into rotation
R and right stretch U or left stretch V with

U=FR'; V=R'F. (2)

Where R~' is the reverse matrix of R. It is important to specify from the
folloving tensors U and V that their square gives us familiar tensors that are:
right Cauchy-Green tensor C and left Cauchy-Green tensor B

UZ=F'F=C; VZ=FFT =B. (3)

In three dimension, these tensors admit representations in terms of eigenvalues
(A1, A2, Az) and the right and left principal stretch vectors which are respectively
(u',u? u?) and (v, v2,v3) [9)].

However during his deformation, the mechanical behavior of a material is de-
seribed by a thermodynamic potential W called strain energy function and is a
function of the deformation gradient F and so it becomes a function of C or B:

W =W(F)=W(C)=W(B). (4)

We note here that the tensor C makes it possible to measure the deformation in Lagrangian configuration and
the tensor B makes it possible to measure

this same deformation in Eulerian configuration. These two configurations are
equivalent and remain confused in the case of an infinitesimal deformation.

In our study we will limit ourselves to isotropic materials ie in the absence of
fibers. So the energy W becomes a function of elementary invariants I, [, or
I, 15, I3, what yields in compressible:

W =W(l, I3, I3); ©

and in incompressible:
W =W (I, I2). (6)

The Cauchy stress tensor T is nothing more than the response of the material to
the constraints in which it is submit and derived from the strain energy function,
so in the case of an incompressible and isotropie material, we have:

o oW\ _p oW oW

Here, the arbitrary parameter p represents the internal pressure.
In an other hand if we restrict our study to a hollow cylindrical tube, the stress
state of this tube is represented by the Cauchy stress Tensor in [3] defined by:

T=—fl+/B+5_,B; (8)
where 3;(i = 1, 2; 3) are function of elementary isotropic invariants so that:
Bo = 2013 " [LLWs + IsWa);
By = 2I; 'PWy; (9)
By = —20*Wo:
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with W; = oW /al;, (i = 1,2, 3).
The condition of incompressibility means that I; = 1, so system (9) becomes

8o = 21, Wa;
By = 2Wy; (10)
B = —2Ws,.
By identification between (7) and (10),we obtain
p=2[,W5. (11)
The equation of equilibrinum with no body force are given in [10] by
div T = 0. (12)

let’s consider a continuous cylindrical hyperelastic tube where a material point
occupies the position (R, ©, Z) before the deformation and the position (r, #,2)
after deformation in [11] and which is represented by the following kinematic

r=r(R); #=0; z=AZ (13)

here A represente the elongation of the tube.
The gradient tensor of deformation is difined by:

A 00
0 0 A\

where A = dr/0R, Ao = 90/00 and A, = A.
It’s follows the symmetrical right and left Cauchy-Green tensors which are

A2 0 0
c=B=| 0 A2 0 |. (15)
0 0 A

We can then calculate the first three isotropic elementary invariants of defor-
mation:

I} =tr(C) = tr(B) = A2 4+ A2 4+ A\2;
I3 = det(C) = A2A2)2; (16)
I, = I;C~! = [B=1 = A2)2 4 A2X2 + A2)2,

In the absence of volume forces, the no null components of the Cauchy stress
tensor defined in (8) with the condition of incompressibility are:

Tor =2[— (A2N3 + A3AZ + A202) Wy + AZW, + A72W5];
Too = 2 [— (A2AZ + A2A2Z 4+ N202) Wy 4+ A2W) + 0,215 (17)

T.. =2 [— (N2AZ 4+ NAZ + A2A2) Wo + A2W + A2
And the relation (11) becomes

p= (A2 + A3AZ + A2A2) W, (18)

I1l.  Application to an artery affected by stenosis
In this part, we consider an artery affected by stenosis.
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IV.  Application to an undeformed or deformed hyperelastic cylindrical tube

In this paragraph we will make an application on two cases. In the first part we will consider a normal
hyperelastic cylindrical tube, ie with a constant radius and secondly a deformed hyperelastic cylindrical tube, ie
with a variable radius. We will focus on the study of elementary invariants, non-zero components of the Cauchy
stress tensor and the internal pressure.

4.1 Case of an undeformed hyperelastic cylindrical tube

Let’s consider a material supposed to be a continnous hyperelastic eylindrical
tube which is represented by the following kinematic

r=R, #=0, z2=727. (19)

The gradient tensor of deformation becomes equivalent to the identity tensor:
1 0 0
F=[0 10 ]. (20)
0o 0 1

It’s follows the right and left Cauchy-Green tensors which are equivalent to the
gradient tensor
C=B=F. (21)

We ecan then calculate the three isotrapic elementary invariants of deformation
by others expressions in [12]:

I, =tr(C)=1tr(B) = 3;
I3 = det(C) = det(C) = 1: (22)
I = tr(C*) = tr(B*) = 3.

In the absence of volume forces, the no null components of the Cauchy stress
tensor defined in (17) become all null because of the invariants which are con-
stant:

Ty =0, Tpo=0, T.,=0. (23)

And so no extra pressure (p = 0).

Remark:
For an underformed hyperelactic cylindrical tube, we find that the fact that
the elementary invariants are constant renders null all the components of the
Cauchy stress tensor and the extra pressure.

4.2 Case of a deformed hyperelastic cylindrical tube

Here we consider a material supposed to be a continuous hyperelastic eylindri-
cal tube, in which we have a radial deformation illustrated with a disturbance
parameter £ [13] by the following kinematic

r=c=zsR, #=0, z=42. (24)
where = which is positive as ¢ << 1 or £ = 1 depending to case of decreasing

or increasing radius. This variation of the radius implies the variation of the
circumference, so the loecal variation of volume which automatically places us in
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a situation of compressibility for the rest of the study.
The gradient tensor of deformation becomes:

0 0
F— =0 |. (25)
00 1

We can see from here that the rest of our study becomes independent of the
initial radius K, the only remaining variable is the disturbance parameter =.
It's follows the right and left Cauchy-Green tensors given by:

2 0 0
C=B= 0 =2 0 . (26)
o 0 1

From relation (26), the first three isotropic elementary invariants of deformation
become:

o m

I =ir(C) =tr(B) = 22 + 1;
I3 = det(C) = det(C) = =*; (27)
L=0LC'=LB! =:£2(2 4 2).
In the compressible case, the relations (27) in (9) gives:
Bo = 2 [(£2 + 2) Wy + £2W3];
3y = 2=72W; (28)
B = —22Wo.
The absence of volume forces yields the non null ecomponents of the Cauchy
stress tensor:
T =Top=T., =2 [H-"l — (2 + 3) Wy — 521’1’3] . (29)

For a reason to be able to simulate our biological environment in order to better
understand what is happening in the reality, let’s consider the strain energy
function of Diouf-Zidi [14] defined by:

. . t 2
W =W =5 (1 -3)+a: (I~ 3) +as (12 1) } . (30)
This previous relation (30) allows us to calculate expressions of W, which gives:
- K 1 pay 17 Hag —
lea, II‘QZT, ];I‘_;ZT(I—: 2). (31}
Using expressions (31) in (30), we find:
T =Too=T..=p[l—ay(g2+1) —az (s* —1)]. (32)
And with all the hypothesis enumerate in this section the pressure expression
becomes:
p=ular (e +2) +az(e? —1)]. (33)

4.2.1 With decreasing radius

Here we consider a progressive decreasing radius, ie the relation (24) with an
£ € [0;1] and the following material parameters in [15]

w(kPa) | ai(kPa) | a2(kPa)
3.0544 1.45 0.1239

A simulation of elementary invariants, non-zero components of the Cauchy stress
tensor in (mmH g) and the pressure with these given parameters yields the fol-
lowing graphs
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The three previous figures show us that in the case of progressive decreasing
radius:

-The elementary invariants decrease with I, larger than I, and I, larger than
I;. At the beginning of the radius deerease, we have I} and I» which are close
to each other and more the radins progresses in decreasing, more I, decreases
faster than I; and when = is close to zero, we can clearly see that I, is getting
closer to I3 with an average variation of local volume. All the invariants show an
exponential decreasing with I, which has a faster decreasing progresse between
the maximum value of 7; and the minimum value of 5.

-The three non-zero components of the Cauchy stress tensor remain identical
and negative and it decrease exponentially. The negative components show us
that the tube remains compressed when the radius decreases.

-The pressure gradually decreases following an exponential pace when the tube
is progressively invaded by the radius decrease.

4.2.2 With increasing radius

In this subsection we consider a progressive increasing radius, ie the relation
(24) with an = € [1; 2] this same material parameters in [15]

p(kPa) | ai(kPa) | as(kPa)
3.0544 1.4539 0.1239

The simulation of elementary invariants, non-zero components of the Cauchy
stress tensor in (mmHg) and the pressure with these following given parame-
ters yields this following graphs
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These figures show us that in the case of progressive increasing radius:

-We have the elementary invariants which increases with 12 larger than 11 and 13. At the beginning of the radius
increase, we have 11 which is greater than 13 which remains valid until radius reaches a size exceeding 1.55
times its initial size. once this size exceeds, 11 becomes smaller than 13 with a large variation in local volume. It
should be noted that 12 and 13 grow exponentially while 11 remains close to logarithmic growth.

-The three non-zero components of the Cauchy stress tensor remain also identical and negative. It decreases
exponentially but faster than in the case of the decreasing radius. The negative components also show us that the
tube is more compressed when the radius increases.

-The pressure increases exponentially when the radius progresse in decreasing.

V.  Conclusion

In this paper we have proposed a modelization of the elementary invariants, components of the Cauchy
stress tensor and the internal pressure in a hollow cylindrical tube of constant or variable radius. We used a
disturbance parameter to illustrate the variations of the tube radius in our study. The Diouf-Zidi strain enrgy
functions model which is a power type were used for the realization of this work. this study allowed us to
highlight the similarities and differences that can be observed at the level of the isotropic elementary invariants,
to see the resemblance at the level of the components of the Cauchy stress tensor, according to whether we are
in compressible or incompressible deformation on the one hand, but also to show on the other hand that for each
type of variation of the tube circumference, there is a dysfunction which in turn gives rise to other anormalities.
We finally prove through simulations, how a tube malformation can cause perturbation within it and how these
disturbances can be destructive if they are not stoped on time.

VI.  Outlooks

As perpectives of our learning in biomechanic, a thorough study of cases of decreasing and increasing
radius of the tubular hyperelastic tube can allow us to better understand how pathological artery perturb our
cardiovascular system. -The result of decreasing radius can represent a stenosis artery in the reality. As a
consequence of this imbalance, we attend to a compressed artery, a blood pressure that gradually decreases (low
blood pressure), what will lead a malnitrution of the organs nourished by this artery and once the artery is
obstruct, it follows a loss of sensitivity and then a death of this concerned organs. -The result of the increasing
radius can represent an artery with aneurysm. As a consequence of these variations, we have a compressed
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artery, a blood pressure that gradually increases (high blood pressure), which end by a rupture of the artery,
followed by an internal haemorrhage which can be fatal in certain cases.
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