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I.  Introduction
To describe the anisotropic hyvperelastic mechanical behavior of a mechanical
structure, it is still useful to use deformation energy functions in form poly-
nomial, exponential, power or logarithmic. These energy potentials have been
established as part of a phenomenological approach that describes the macro-
scopic nature of the material, This approach is basically used to find the pa-
rameters of the relations of behavior., However, modeling phenomenological is
not always able to establish a direct correlation between the mechanisms of
deformation and the physical characters of the structure which are known. Cer-
tain mathematical eriteria such as convexity, ellipticity and objectivity should
normally be satisfied when using the strain energy functions. These must take
into account the principle of material indifference |1, Once these criteria are
met, the results become relatively casy to develop, The energy funetion is then
a function of the transtformation gradient tensor Foand the various parameters
of the model. Elliptic equations govern stationary problems, of equilibrium,
generally defined on a bounded spatial domain of border on which the unknown
15 subject to boundary conditions. In fluid and solids mechanics, special at-
tention has been paid to ellipticity equations from the study of compressible
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or incompressible material systems |2]. In elastostatic for example, Knowles

and Sternberg 3] have shown that the loss of ellipticity in nonlinear systems
15 due to large local deformations whereas in acoustic, this loss 1s related to
the non-singularity of the acoustic tensor. In plasticity it has been established
that when elasto-viscoplastic behavior tends towards behavior elastoplastic, the
ellipticity criterion can be linked to the analysis of stability [4]. So. the absence
of a stability criterion may lead to the approximation of the condition of ellip-
ticity considered as a criterion of local stability to the local form of classical
stability analvsis by the Lyvapunov’s theorem. Furthermore, it has long been

known that compressible isotropic non-lincarly elastic materials admit a loss of
cllipticity at certain deformations. Knowles and Sternberg, in the context of
crack problems, have been the first to show the possible loss of ellipticity at
sufficiently severe deformations. The authors obtained ellipticity conditions on
the power-law exponent for generalized neo-Hookean strain energy functions.
Horgan proved a unified derivation of necessary and sufficients conditions for
cllipticity of the three dimensional displacement equations of equilibrinm for
the generalized Blatz-Ko material. Qin and Pence demonstrated some of the
possibilities for loss of ordinary cllipticity in the unidirectionally reinforced neo-
Hookean material.

I1.  Formulation of the problem

Consider a continuous material body. the whole of the particles of this body
oceupies, every moment, an open and connected domain or connected by arc
of the physical space. At every point of the contimous medium corresponds
one and only one particle. The initial undeformed configuration occupied by
the body is used to define the strain, the strain rate and the stress and also to
formulate the equilibrinum equation. The actual position of a material particle
X at time ¢ is given by the map y = y(x,1).

Let F = g% he the deformation gradient tensor, where x 1s the position vector of
a material particle in the undeformed configuration and vy is the corresponding
position vector 1n the deformed configuration.

The right Cauchy-Green material metrie tensor € = FTF is used as alternative
objective deformation descriptor.

Objective is used as synonym for material frame indifference. This concept
means that the strain measurement should not be influenced by rigid body mo-
tions. As illustration, the deformation gradient F is not objective as it includes
part of the rotation in its formulation or polar decomposition: ¥ = RU, R
rotational tensor, U stretch tensor.

The definition of the material metric tensor C makes it possible to eliminate
the rotational dependence for the strain descriptor:

C=FTF = UTRTRU = UTU, with RTR = 1. (1)

We consider an elastic homogeneous body having a density defined on all
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positive defined matrices and a homogeneous elastic body having a density:
W:M?*—R.

We hypothesize that the body occupies an open set © € R™ when it is not
subjected to any deformation.

The total energy of strain ¥ : Q2 — R™ is given by:

E(z) = [ W(grad(¥)(X))dX. (2)
Q

We will say that W is isotropic if, in addition to the definition of total energy,
we have:

W(F) = W(FQ),¥F € M*,¥Q & So(n) (3)

where So(n) is the orthogonal group of order n.
Similarly, Truesdell and Noll |5] demonstrate that W is isotropic if and only if
there exist a symmetric function ® such that:
. n
R} — R,
"={ce=(cr,ca,.cn) €R" e >0, <1 <i<n}
and W(F) = (A, Ao, ..., An), ¥F € M2

and where Ay, Ao, ..., Ay denote the eigenvalues of F.

For its part, Ball |6] notes that W e C’"(ﬂf_f) if and only if ¢ € C""(RT_;”_E)_.
r=1,2.

Many elastic materials studied in mechanies are isotropic. This isotropy in
addition to the objectivity of W implics:

W(FR) = W(QF) = W(F),¥F € R"> ¥Q,R € So(n) (4)

3 Ellipticity

In the case of the theory of elasticity, for transverse isotropic materials, some
ellipticity conditions associated with the energy function have been established
|7.8]:
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Wit +4Wia + 4Wao + 2Wis + 4Was + Wis = Evy /4,
Wo+ W3 = (E1s — Ev1)/4, (5)
Wi+ Wy =Ey/2,

W nd Wy = 20 (2,7 =1,2,3) are calculated in the reference
av; ¢ ij = Buov; \bJ T L 49)E ‘ ¢

configuration, the coefficients Eyg are the elastic constants in the linear elastic

where W; =
standard and correspond to a material symmetry.

In the absence of volume foree, the equilibrinm equations in the reference con-
ficuration, as a function of the Jean tensor, have the following simple form:

div(S) =0 (6)

and can be written in the form:

Apjliztig =0 (7)
As F and grad(F) being regular, let us denote by n the normal vector to the
surface of the elastic body in the reference configuration and by m the vector
such that m = Fn in the deformed configuration.
Using the theory of waves |7,9], we can define the tensor Q(m) such that:

Qji = Apjqimpmy (8)
where
- 1

Apjqi = jF

kaqI-'qkjhsj ZdEt(F) Hj)

The condition of elipticity is such

Apjginpngmim; # 0,Ym # 0,n # 0. (10)
Considering the previous equations, this condition of ellipticity can still be writ-
ten in the more general and explicit form:

"RW

— nynymmy > 0.¢ n,m e R"VF € (R")? (11)
laFmaFﬁ?jki_.i 2 : 'C( ] Ty

i,k =

also called Legendre-Hadamard ellipticity condition.

The function W is elliptical if it is elliptical in every point of its continuous
domain. It is first of all a necessary condition. Its field of application is wide
and varied. For n = 2 or n = 3, for a compressible or incompressible medium,
the field of wave propagation in acoustics is very well explored. For example,
the strong condition of implies a positive definite acoustic tensor and excludes
wave speeds equal to zero, i.e a strict inequality of (11).

In mathematics, there is a close link between ellipticity, coercivity and con-
vexity.
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3.1 Proposition

Let W= ®(x),x = (A1, Ao, ..., An) be a class function €2, Then W is elliptical
it and only if there exists e > 0 such as

<V2(I>(X)h, h) > al|h|?,¥x,h € R"
Proof

Suppose that ®(x) is elliptical.

Let h € R™ be fixed and denote by:

1 : R™ = R the function given by ¢ (x) = (V@(x), h).

We then have:

(V28(x)h, h) = (Vi(x),h) = 245 = Jiy,_,, V2O 0 (V20 b))

By using the bilinearity of the scalar product and then the fact that @ is elliptic,
we obtain:

(V2®(x)h, h) = lim,_,, (Y2 VOO o o [ — o |n||2.

Suppose now that the inequality of the proposition is true and show that $(x)
is elliptic.

Let x,¥ € R™arbitrarily be fixed and the application x : R™ — R given by:
x(z) = (V®(z),x —y),vz € R", then

(Vo(x) = Ve(y),x—y) = x(X)—x(y) = (Vx(y + (x —y)) = (VO(y),x — ¥),
f<]0,1].

On the other hand, we have
Vx(2) = V28 (z)(x - ).
Vx(2) = V28 (2)(x - ).
From this we deduce, given the inequality of the proposition:
(VO(x) = Ve(y).x—y) = (V’®(y +6(x - ¥)))(x = ¥)), X~ ¥)
> af|x - y|?

which completes the proof.
The following proposition, concerning the energy potential W, shows an equiv-
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alence between its convexity and its ellipticity.

3.2 Proposition
Let W = ®(x) be a class function CQ(R’_,‘_) and @ symmetrical,x = (A1, Ag, ..., An)
Then W is called. convex if and only if the two following conditions are satisfied:

Aihi— Ay

N
2. M*® = (mj;), is a symmetric positive definite matrix, 1 <i,7 <n
where
M = () bis if =g orifi<j,\=2X\
M-=(m;;) = ; Pi—eie;P; .p - .
ij eih 4 DiTEiEPs Y e
€605 + o if i <j,A # Ajoree; # 1
and for any choice of €; € {=1,1}. ¢, = 20 g = 20 with ¢ > 0.
- j ; Pp = B, Pra T Ex,00, Pii =

Proof:
For proof of this result, see Dacorogna [10].
In his proof of this result, the author shows that the condition translated
into equality 1 of the proposition is equivalent to the condition of Legendre-
Hadamard.

The previons set of conditions read as follows for A; # A; (if Ay = A, these
inequalities are still valid when properly interpreted, of. below)

3.3 Applications

In applications on the results on ellipticity and convexity,we will consider, in a
system of eylindrical coordinates, in a 3-dimensional Euclidean space, an clastic
body subjected to deformations. We define the kinematics of deformation as
follows:

r=r(R,0,2),0=(R,0,Z);z=2(R,0,2) (12)

where (R, 09, Z) and (r, 8, z) are respectively, the reference and the deformed
position of material particle in the eylindrical system.
The gradient tensor of the transformation, in its diagonal form can be written

by
Ar 00
F= 0 X O (13)
0 0 A

where Ay, Ag and A, are the cigenvalues of F'
It follows the right Cauchy-Green deformation tensor.
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Moo oo
C=| 0 A o (14)

0 0 A

The first three isotropic invariants becomes:

I =tr(C) = X + A + AZ; (15)
I3 = det(C) = N2A2\2; (16)
Iy =I3C71 = A202 + A0 + A2A2 (17)
The energy function depend on the invariants, so they depend on the eigenvalues

of F.

For the rest of our work, we will stand:
Gy =W /o)X, Gy = 52””/5/\@5/\3-, (i,j=r,0,2) (18)

3.3.1 Case of a polynomial isotropic compressible energy function

Let’s consider a polynomial energy function in [11,12] defined by:

Xm €
W=, (11—3)+Q3(13—3)+053(13—1) (lg}
Lemma 1
When we consider a material point M with the coordonates (R, ©, 2Z) in the un-
deformed configuration and (r, 6, z) in the deformed configuration whose move-
ment is deseribed by the following kinematic:

r=r(R),§=0,2=2. (20)

" 3 1 AT : ¥ H g 1 N al "_ ] - I, T "_ T
With the energy function of the relation (19}, we have

(Ar +Ag) (1 +a2A2) > 0

(/\r + A (Ctl + Ctzx\ﬁ) 0 (21}
()\g-—f—/\ (051 —f—ao/\ ) 0
and M€ is a copositive matrix difined positive.
Proof
From (15) to (18), W defined in (19) becames a function of A2, A2, A2 defined

by:

W =a; (AZ+ A+ A2 = 3) + g (ATA] + A7 + A2A2 = 3) 4+ a3 (AFAA2 — 1)
(22)
The relation (22) gives the first order derivatives of the enrgy function by:
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Gy = 2A, [0:1 + g ()\g + )\‘2‘) + 0-3)\3/\3}
Go = 2N [a1 + aa (A2 + A2) + azAiAZ] (23)
G. =2\, [ar +an (A2 + A2) + asA2A2]

When we use the condition of the Proposition 3.2 defined by:

MGy — MG,y

20N AN i< (24)

The relations of system (23) in (24) allow us to find after calculation and re-

duction

A:GeMeGo — (), + Ay) (a1 +a2)A2) > 0

Ar—Ag
ArGr — AG -
S W N = (Ar + Az) (051 + 02)%2;) =0 (25)
20C0-2:C: — (Mg + A2) (@1 +a2A2) >0

Now if we calculate the second derivatives of the energy function with respect
to the eigenvalues, we obtain

G =2 [Q'l + ()‘é +

242 93

(A7 + + asA AL (26)

and
Gro = Gor = 4\ Ag [a2 + a3)?]
Grz = Gar = 4N X; [0 + a3)]] (27)
G, = Grp = AN, [0 + a32]

The others components of the matrix M€ are:

R Gr—e152G
Myrg = c.lc.QGrﬂ + ﬁifi/\;

G.;- - <’_-".1<’_-".QGZ

(28)
/\.;- —{?1{?2/\2 !

My, = €162Gr; +

09—51526‘3

. L)
meg, = 162G, + Y

That give all the components of the matrix M€ as
t)

Grr mpg My,
M = Mgy Gag mez ( 29 }
My Mye G
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And according to the proposition 3.2, the matrix M€ is a copositive and defined
positive,
Whith the system (25) we have the proot of the Lemima 1.

Remarque: In incompressible, we have Is = 1, that give us a particulary
case of the lemma 1 given by the following lemmea:

Lemma 2
Let’s consider a material point M with the coordonates (R, 0, Z) in the unde-
formed configuration and (r, 4, z) in the deformed configuration whose movement
is described by the following kinemeatic:

r=r(R),0=0,z=7. (30)
With Ar > 0 and the energy function of the relation (19), we have
[a5] + g 2 0
a o .
A2 > sup (——1;——2) (31)
ko q

and M€ is a copositive matrix difined positive.

Proof
In incompressible, we obtain Is = 1 and the kinematic give Ay = 1, that allow
us to have:

1 .
Ar = o’ (32)
Since then, the use of the lemma 1 with (32) vield
(o + a2) (/\'r‘ + %) =0,
o9 oo
(1+Ar) (a-l + ﬁ) >0, (33)

1 2
(1 + }‘_r] (Ql + O'Q)\T] =0,

The first inequality and the two last inequalites of the system (33) give respec-
tively
3.3.2 Case of a exponential energy function
Let's consider the the exponential energy function in isotropic and incompress-
ibility |13] defined by:

W =alerp (B (I —3)) — 1] (34)

Lemma 3

When we consider a material point M with the coordonates (R, ©, Z) in the un-

deformed configuration and (r, 8, z) in the deformed configuration whose move-
ment is described by the following kinematic:

r=1(R),0=0,2="72. (35)
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With the energy function of difined in (34), we have
2ae3 (A + Ag) =0
23 (A + A2) =0 (36)
2a8 (Ao +A:) =0
and M€ is a copositive matrix difined positive.

Proof
When we use the expression (15) in the energy defined in (3<4), we find:

W=« [E;{Zp (.5’ ()\3 + A+ AZ— 3)) - 1] (37)

From (37), we can calculate the first order derivatives of the energy which be-

come:
G, = 208, [exp (B (A2 + A2 + A2 — 3))]
Go = 2aBXg [exp (B (A2 + A5 + A2 — 3))] (38)
G. = 2aB; [exp (B (A2 + A2 + A2 — 3))]
The propostion 3.2 and the relations of the system (38) yield

A=l — 908 (N, + Ag) [ex’p (;3 (/\;‘f + A2+ A2 — 3))] =0

Ar—Ag
\G, = \.G , _ . -
T =208 A [ (BN X2 -9)] =0 (39)
2eCe—2als — 208 (Ao + Az) [exp (B(AF + A3+ A2 —3))] =0

and as the exponential function is always positive, we fanally have
20 (Ar + Ag) 2 0
2a8 (A +A2) =0

208 (Mg +A;) =0
The components of M*© which are not in the main diagonal are:
My = 208 [L + e120aB8A ] [exp (B (A2 + A% + A2 — 3))]
My, = 208 [1+ 1220800, [exp (B (A2 + A2 + A2 = 3))] (40)
mg, = 2af [1 + £182a Mg \;] [ELCp (,5’ (}.E + A2+ A2 - 3))]

With the system (38) the calculation of the second order derivatives of the
encrgy function gives the others components of ME:

Grpr = 2af3 (1 + 2,-'5’)\;2,) [e;cp {;3 ()\E + A2+ 22— S)H
Goo = 203 (1+28)3) [exp (B (A2 + A2 + A2 - 3))] (41)
G.. =20 (1+28A2) [exp (B (A2 + A2 + A2 —3))]

with M*® a copositive matrix defined positive according the proprosition 3.2.

That give the proot of Lemimna 3.
We can also calenlate the others second order derivatives which are:

Grg = Gor = a2\ Ao [E'_L"p (3 ()\?2, + A2+ N2 — 3])]
Grz = Gar = 4B A, [exp (B (A2 + A3 + A2 —3))] (42)
Go» = Goo = 4aB? XX [exp (B (A2 + A} + A2 —3))]

It we also consider the hypotesis of the proposition 3.2 that said that ¢y = 0,
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we obtain:
203 (1 +28A2) = 0
203 (1+28A3) =0 (43)
203 (1+28A2) =0

3.3.3 Case of a rational energy function

In this part, we focus our study in order to know what is happening in the case
of an isotropic, compressible rational energy function.

As an example we use the energy function in [14], which is a particular case of
Blatz-Ko model discussed by Beatty and defined by

u (I \
w=E(2419/T;-5 (44)
2 (13 N ’ J) ‘

Lemma 4
Let’s consider a material point M with the coordonates (R, 09, Z) in the unde-
formed configuration and (7,6, z) in the deformed configuration whose movement
is deseribed by the following kinematic:

r=r(R),0=0,2=7. (45)

With Ar # 0, Ag # 0 and the energy function of the relation (44), we have
1 1
H ()\,.)\3 + AgAg) 20

1 1
(—+—) = (46)
u()\r)\g—k)\g/\z)_ﬂ (46)

1 1
# (AM: * AEA:) 20

and M€ is a copositive matrix difined positive.

Proof
The relations(16) and (17) in (44) give
. (1 1 1 . —
ﬂ’Z%(F-I—F—Fﬁ—I—Q)\f‘F/\g‘i‘)\g—S) (A7)
T a z

that allow us to find the first order derivatives of the energy function given by:

Gr =1 (ror. - %)

, 2
Go=p (A'r/\z - )\_3) (48)
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ArGr—23Gyp __ 1 1
vy (mg + A%Ao) =0
1 1
. + >0
8 ( A%A)

Ap A2
1
+ )\gxz) 20

The use of expressions of the system (48) in the proposition 3.2 allow us to have
19)
(19)

MGr — MG,
Ar — A
=H (,\91)\3

ApGeg—A:G
Ng—A-
which gives us the sought inequalites which are
1 4 _1 )=
K ()\,.)\5 + Ai;}\g) =
1 1 >
H (,\,.)@ + AZ;,\;) =0
1 1
H (onf + Ag;\;) 20
The second order derivatives of energy function from the system (48) become:
3 3 3
Grr = ffr;GﬁS‘ = )‘%;';Gzz = 3T
™ z
— — — — =
Gr@ = GS‘T = P[-/‘\z_n G?"z = Gzr = .U'/\S.‘ ('-JU;'
Go. = Gz = pAr.
To calculate the other components of the symmetric positive matrix M€, we
consider the two following conditions
First we assume that £169 = 1, which give us
My = - + = + —51
rf = R I TR TN
( ! + ! + L (51)
Mrz = 1 33 7)2 3 a21)
AN, OAZAZ AN
_ 1 1 1
Moz = pt ()\BAZ Txxet m?)
In the second condition, we assmme that 169 = —1, which give us
Myg = - + —51
8 = H\REN T N2 T NN
EEE—— -
Myy = L T 93 3 wey)
AZN, AZAZ AN
— 1 1 ., 1
Moz = H ()\3)\_3 aaz T Ag)\g)
The last three systems give us the components of the matrix M€ according to
the case where the product £129 1s equal to 1 or equal to -1.
The proposition 3.2 shows that M€ is copositive and defined positive, that gives
the complete proof of the Lemma 4.
25 | Page
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3.3.4 Blatz-ko energy function

We propose to study the energy function of Blatz-ko model studied by Diouf in
[15] and defined by:

sy |
(]
L

W= % [11 _348 (I;X-ﬁ _ 1)} (5:

Lemma 5
Let’s consider a material point M with the coordonates (R, 0, Z) in the unde-
formed configuration and (r,#, z) in the deformed configuration whose movement
is described by the following kinematic:

r=r(Rt).0=0,2=AZ+h(R.,t). (54)
With A, # 0, Ag # 0 and the energy function of the relation (18), we have
(A +2Xg) 20
i+ X)) =0 (53)
pAa+A) =0

Proof
The expressions (15) and (16) in the energy function defined in (53) vield

A ‘ . LY D/ LYK —
w="L 2403+ 22 =3+ 8 (/AN PA% —1)] (56)
From (56), we calculate first order derivatives of this energy function that are:

Gr=p [\ + (222302) 7]
Co=n [Ae + () Uﬁ] (57)

G. =X+ (A7)

And with the proposition 3.2 we obtain:
AeGe 2000 = p (A + Ag) 2 0
MG — ALG,

T =+ A) 20 (58)
A0Ga2Ce = (Mg + ) 2 0
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That finally give:
(A +Ag) =0
p(Ar+2A;) =0
pAa+A)=0

That prove the Lemma 5.
The caleulation of the second order derivatives also gives:

2-8 5. \2/P .
Gﬁ'ﬁ =l |:]_ + T (/\r/\é '3}\2) ] (-ﬁlgj

and
oo (y-sy26y2) 0
Gro = Gor = % (A272N3772)

Gr.=G., = %’“ (A2-5A2x2-5)*7 (60)

. 2/8
Go. = Gag = 2 (ANF2F)

3.3.5 Case of Diouf-Zidi model
Now we study a Diouf-Zidi energy function given in [16] with the conditions

p =2 and az = 0 so it becomes:

2
W= % (I —3) + a1 (I — 3) + as (\/E— 1) ] (61)

Lemma 6
Let’s consider a material point M with the coordonates (R, 0, Z) in the unde-
formed configuration and (r, 6, z) in the deformed configuration whose moverment
is described by the following kinematic:

r=r(R,t),0=0,z=AZ +h(R,1). (62)
With the energy tunction of the relation (24), we have
i (Ar + Ag) (L+a1A2) >0
O+ A) (14 aiA?) >0 (63)
t(Xe+A2) (1+a1A}) =0

Proof
Expressions (15}, (16) and (17) in (61) give
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W= % [AE A2+ A2 =3+ a1 (A2A2+ A2A2 + A2X2) + ag (Arhos — 1}2}
(64)
The expression (64) allows us to find the first order derivatives of the energy
which are:

G, = Hn [/\ + a1 (/\ /\2 + A /\2) + asAgA; (/\-r)\l‘?/\z — 1)]
=p [Ao+ a1 (A Ao + AoA7) + ashehz (ApdoA; — 1)) (65)
Az +ar (N2 + A202) + asdede (ArdeA. — 1)]

Using the system (65) in proposition 3.2, we have:
Aelegale — (A, + Xg) (1 +a1A2) > 0

MGy — A G
Ar — A

2efa—gale — (Mo +X2) (1 +a1A}) >0

O+ X)) (1+a122) >0 (66)

and so we obtain
(A +Xg) (L+a1A2) =0

p(Ar+A2) (1 + al)\g) >0

Hn ()\9 + /\z} (1 + al)\g) >0

that end the proof of lemma 6.
From (65), we can have the second order derivatives of the energy which are:

Grr=p [1 + ay (Ag + )\2) + ag)\gx\f]
Goo = p [1+a1 (A2 +22) + aaAlAZ] (67)
Goo =p[1+ar (A2 +A2) +a2A2AZ]
and

Gro = Gor = p1 [2a1A; g + a2\, (2A: A6\, — 1))]

Gr: = Gur = p[2a1 M A + ahg (2000, — 1)] (68)

Gy, = Gop = p2a1 M0 A, + a2\ (2X: 007, — 1)]

3.3.6 Remarks

We note in application that for each type of strain energy function characterizing
the behavior of a specific material, the ellipticity conditions allow to have sets of
inequalities that are in function of the eigenvalues and the material parameters
of this considered material.  Thus we observe that the ellipticity conditions
obtained for the polynomial form are equivalent to those obtained for the the
Diouf-Zidi model when we have ap = 1 and as = aq.

At the same time the ellipticity conditions of the exponential model are also
equivalent to those of the Blatz-ko model for p = 2a/3.

This study makes it possible to highlight a very important result which shows
that for a specified choice of material parameters, the ellipticity conditions can
be identical for two energy functions of different types and which reflect the
behavior of two different materials.
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4 Conclusion

In this research work, we have proposed a study of the ellipticity of deformation
energy functions in order to find inequalities defined through lemunas, Energy
functions like polynomial type, exponential type, rational type and two cases of
energy [unctions: the Blatz-ko model and the Diouf-Zidi model which are power
types were used for the realization of this work.

This study allowed us to show that although there are various types of poten-
tials modeling various materials, it is possible to obtain for a specific choice of
material parameters between two different types of potentials, the same condi-
tions of ellipticity. This proves that the criterion of ellipticity is not a particular
character to each material.

awple the exponatial and the rational case of energy functions have their special

ellipticity conditions.
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