
Quest Journals 

Journal of Research in  Mechanical Engineering 

Volume 9 ~ Issue 8 (2023) pp: 12-24 

ISSN(Online):2321-8185 

www.questjournals.org  

 
 

*Corresponding Authors: N. Satish and S. Gunabal                                                                                   12 | Page 

Department of Mechanical Engineering, Annamalai University 

Research Paper 

Nonlocal Thermo-Elastic Damping of a Longitudinally 

Vibrating Nanotube with Internal Fluid Flow based on 

DPL-HCM 
 

N. Satish1,2,*, S. Gunabal2,*, K. Brahma Raju1, S. Narendar3 
1Department of Mechanical Engineering, Sagi Rama Krishnam Raju Engineering College (SRKR) Engineering 

College, Bhimavaram, Andhra Pradesh-534 204, India. 
2Department of Mechanical Engineering, Faculty of Engineering and Technology, Annamalai University, 

Annamalai Nagar, Tamilnadu-608 002, India. 
3Defence Research and Development Laboratory, Hyderabad-500 058, India. 

 

ABSTRACT:Nanotubes that exhibit fluid flow possess a wide range of potential applications in various fields. 

This is primarily due to their distinct properties and the capability to manipulate and control fluids at the 

nanoscale. The resonance frequency of nanomechanical systems are adjusted by using thermoelastic damping. 

The damping effect and resonance frequency are fine-tuned for different uses by manipulating the temperature 

and flow conditions. By inspired with the applications of fluid carrying nanotubes, a thermo-elastic damping 

model is derived by using nonlocal elasticity theory and dual phase lag heat conduction model. First, the 

nonlocal elasticity theory is used to obtain the thermo-elastic governing equation of motion for the 

longitudinally vibrating nanotube with internal fluid effect and then a dual phase lag-heat conduction model 

(DPL-HCM) is derived for one-dimensional case to consider the heat conduction phenomenon at nanoscale. 

The thermo-elastic and heat conduction equations are solved by using axial displacement and temperature in 

spectral domain to obtain a polynomial eigenvalue problem (PEP) in frequency of longitudinal vibration. The 

resulting PEP is solved for longitudinal vibration frequency and then the thermo-elastic damping is calculated. 

The effects of local and nonlocal elasticity on the thermo-elastic damping of fluid carrying nanotubes is brought 

out exclusively for different fluid velocities, three heat conduction models, various fluids and modenumbers. The 

results presented in this manuscript are very useful for the design and development of future generation 

nanoscale fluidic devices. 
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I. INTRODUCTION 

Fluid-carrying nanotubes have become a subject of great interest and exploration in the field of 

nanotechnology in recent years. These ultra-small tube-like structures, usually made of materials like carbon or 

other materials at the nanoscale, provide a special and adaptable platform for manipulating fluids at the 

nanoscale. Fluid-carrying nanotubes offer a unique chance to utilize the exceptional properties of nanomaterials 

in order to control and manipulate the behavior of liquids and gases, unlike conventional macroscopic fluid 

conduits. This emerging field has applications in various disciplines, including nanofluidics, drug delivery, 

energy storage, and environmental remediation [1].  

In this article, we will explore the fascinating realm of fluid-carrying nanotubes with respect to thermo-

elastic damping.Thus far, numerous scholars in this particular domain have diligently explored a multitude of 

facets pertaining to the vibrational dynamics, employing the aforementioned theoretical frameworks. As 

demonstrated by the scholarly work of Yoon et al. [2], a comprehensive investigation was conducted to examine 

the impact of internal flowing fluid on the phenomenon of free vibration and the occurrence of flow-induced 

http://www.questjournals.org/
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structural instabilities, specifically divergence and flutter, in carbon nanotubes (CNTs). The authors have 

suggested that the presence of internal flowing fluid significantly impacts the vibrational frequencies, 

particularly for suspended carbon nanotubes (CNTs) with longer lengths and larger innermost radii, when 

subjected to higher flow velocities. Furthermore, they have observed that the rate of amplitude decay and the 

critical flow velocity for flutter instability may, in certain instances, have practical implications.In their study, 

Lee and Chang [3] employed the nonlocal elastic model to scrutinize the phenomenon of free transverse 

vibration in fluid-conveying single-walled carbon nanotubes (SWCNTs). The researchers discovered that 

augmenting the nonlocal phenomenon resulted in a reduction of the actual frequency component. Furthermore, 

they observed a substantial impact of the nonlocal parameter on the mode shape. Wang [4] conducted an 

investigation pertaining to the influence of surface characteristics on the vibration and stability of fluid-

conveying nanotubes and nanopipes, taking into consideration both the inner and outer surface layers. The 

author effectively showcased the profound impact of surface elasticity and residual surface tension on the 

inherent frequency and critical flow velocity of nanotubes responsible for fluid conveyance.Narendar and 

Gopalakrishnan [5-15] undertake a comprehensive exploration into the intricate realm of wave propagation, 

torsional vibration, and spectral finite element analysis pertaining to nanorods. This scholarly pursuit is 

conducted through the lens of nonlocal continuum mechanics, a theoretical framework that accounts for the 

influence of infinitesimal elements on the overall behavior of the nanorods. 

Teodor et al. [16] explores into the examination of the buckling and post-buckling phenomena 

exhibited by a rotating nanorod when subjected to axial compression. This investigation is grounded in the 

classical Euler-Bernoulli theory, which characterizes the behavior of slender structures, and Eringen's nonlocal 

elasticity model, which accounts for the influence of small-scale effects. The empirical findings indicate that a 

rise in the nonlocality parameter engenders a corresponding escalation in post-buckling deformation.Zheng et al 

[17] delves into the intricate realm of investigating the impact of uncertainty pertaining to material properties on 

the wave propagation characteristics of a nanorod that is embedded within an elastic medium. This investigation 

is carried out by meticulously constructing a nonlocal nanorod model that takes into account the inherent 

uncertainties associated with the system. The utilization of numerical outcomes not only facilitates a deeper 

comprehension of the intricate wave propagation characteristics exhibited by nanostructures possessing 

uncertain material properties, but also imparts invaluable guidance for ensuring the dependability and resilient 

design of forthcoming nanodevices.Uzun and Yayli [18] complete an inquiry into the intricacies of a nonlocal 

finite element formulation pertaining to the phenomenon of free longitudinal vibration. This formulation is 

specifically developed for functionally graded nano-sized rods, thereby delving into the realm of materials with 

varying properties at the nanoscale. The consideration of size dependency is accomplished by means of 

Eringen's nonlocal elasticity theory. The comparative findings indicate that the current model, which focuses on 

the thermal conductivity of nanorod-based nanofluids, exhibits superior predictive accuracy compared to models 

pertaining to nanotube-based nanofluids. Furthermore, the latter models outperform the conventional models 

designed for nanofluids consisting of spherical particles. 

Nazemnezhad and Kamali [19] discuss the intricate realm of nonlocal free longitudinal vibration in 

thick nanorods. Their study centers on the profound influence of lateral motion inertia and shear stiffness 

effects, ultimately revealing the pivotal role interlayer shear plays in the diverse mechanical behaviors 

observed.Mustafa [20] investigates longitudinal dynamic analysis of carbon nanotubes which has been modelled 

as an axially functionally graded Rayleigh-Bishop rod by using nonlocal stress gradient elasticity theory. 

In the present manuscript, a thermo-elastic damping model is constructed using nonlocal elasticity 

theory and a dual phase lag heat conduction model, both of which take inspiration from the uses of fluid-

carrying nanotubes. To account for the heat conduction phenomenon at the nanoscale, we first derive a dual 

phase lag-heat conduction model for the one-dimensional case. This model is used to obtain the thermo-elastic 

governing equation of motion for the longitudinally vibrating nanotube with internal fluid effect. The 

polynomial eigenvalue problem (PEP) in frequency of longitudinal vibration is obtained by solving the thermo-

elastic and heat conduction equations in the spectral domain using axial displacement and temperature. The 

thermo-elastic damping is determined by solving the resultant PEP for the frequency of the longitudinal 

vibrations. Thermo-elastic damping of fluid-carrying nanotubes is exhaustively studied over a wide range of 

parameters, including fluid velocity, heat conduction model, fluid type, and modenumber. The paper ends with 

important conclusions. 

 

II. MATHEMATICAL FORMULATION 

2.1 Nonlocal Elasticity Theory 

The nonlocal elasticity theory, as postulated by Eringen [21], posits that the stress state at a given point 

of interest, denoted as 𝒓 within the body, is not solely determined by the strain state at 𝒓 itself. Rather, it is also 

influenced by the strain states at all other points 𝒓′ within the entire domain. The constitutive relation in the 
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nonlocal elasticity type representation assumes its most comprehensive form when expressed as an integral 

spanning the entirety of the region under consideration. The integral encompasses a nonlocal kernel function, 

which elucidates the interplay between strains at different locations and their impact on the stress at a specific 

location. The constitutive equations pertaining to a linear, homogeneous, isotropic, non-local elastic solid with 

body forces can be written as 

 𝜎𝑖𝑗 ,𝑗 = 0 (1) 

 𝜎𝑖𝑗(𝑥) = ∫
Ω

𝛼(|𝒓 − 𝒓′|, 𝜉)𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙(𝒓′)𝑑Ω(𝒓′), ∀ 𝑥 ∈ Ω (2) 

 𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (3) 

The variable 𝐶𝑖𝑗𝑘𝑙  represents the elastic modulus tensor in the context of classical isotropic elasticity. 

Meanwhile, the symbols 𝜎𝑖𝑗 and 𝜀𝑖𝑗 denote the stress and strain tensors, respectively and𝑢𝑖 signifies the 

displacement vector. The symbol 𝛼 represents the nonlocal modulus or attenuation function, which serves to 

incorporate the influence of nonlocal effects into the constitutive equations. It is dependent on the distance 

between two points, denoted as 𝒓 and 𝒓’, as well as the parameter 𝜉. The determination of this nonlocal modulus 

is achieved through the process of aligning the curves of plane waves with those resulting from the dynamics of 

the atomic lattice. Multiple distinct variations of 𝛼(|𝒓 − 𝒓′|)have been documented in the esteemed reference 

[21]. The expression |𝒓 − 𝒓′| represents the Euclidean distance, a fundamental concept in mathematics. 

Additionally, the symbol 𝜉 is defined as 𝑒0 multiplied by 𝑎 divided by 𝑙. Here, 𝑎 represents an internal 

characteristic length, such as the length of a C-C bond (0.142 nm) in a carbon nanotube or a granular distance. 

On the other hand, 𝑙 represents an external characteristic length, for instance, the wavelength (𝜆), crack length, 

or size of the sample. The symbol 𝑒0 represents a nonlocal scaling parameter, which has been postulated as a 

constant that is deemed suitable for each material in the existing body of published literature. On the other hand, 

Ω denotes the spatial domain that is encompassed by the physical body under consideration. The selection of the 

parameter 𝑒0, denoting a length dimension, holds paramount importance in guaranteeing the integrity and 

soundness of nonlocal models. The determination of this parameter was achieved through the process of 

aligning the dispersion curves, which were derived from the atomic models, as stated in reference [21]. The 

estimation of the nonlocal parameter associated with a particular material can be achieved by employing a 

fitting procedure on the outcomes of atomic lattice dynamics or experimental observations. The kernel function 

𝛼(|𝒓 − 𝒓′|, 𝜉) that is commonly employed (as stated in Eq. (2)) can be expressed as per reference [21]. 

 𝛼(|𝒓|, 𝜉) =
1

2𝜋𝜉2ℓ2 𝐻0 (
√𝒓⋅𝒓

𝜉ℓ
) (4) 

 where 𝐻0 is the modified Bessel function. 

In the realm of one-dimensional nonlocal elasticity, a differential form has been established to describe 

the relationship between stress and strain. This form, derived from Equation (2) and supported by references [5-

15], can be expressed as follows: 

 (1 − 𝜉2ℓ2∇2)𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (5) 

Here, the operator ∇2 represents the Laplacian operator. It is worth noting that within the realm of nonlocal 

elasticity, the influence of minute length scales is taken into account by integrating the internal parameter length 

into the constitutive equation. It is worth noting that in the scenario where the internal characteristic length and 

is disregarded, implying that the particles within a medium are assumed to be continuously distributed; the value 

of 𝜉 becomes zero. Consequently, Eq. (5) can be simplified to the constitutive equation commonly associated 

with classical elasticity. 

 

2.2 Nonlocal Governing Equation for Nanotube with Internal Fluid Flow 

 

Figure 1 provides a schematic representation of a fluid carrying nanorod that is currently being discussed. It 

serves the purpose of introducing several key parameters, namely the axial coordinate 𝑥, the axial displacement 

𝑢 = 𝑢(𝑥, 𝑡), the length 𝐿, the Young's modulus 𝐸, coss sectional area 𝐴and the density 𝜌. For fluid, the density 

is 𝜌𝑓 and cross sectional area is 𝐴𝑓. The displacement field, elastic and thermal strains for this nanorod are 

explicitly provided within the given context.  

 𝑢 = 𝑢(𝑥, 𝑡) (6) 

 𝜀𝑥𝑥 =
∂𝑢

∂𝑥
, 𝜀𝑇 = −𝛼𝑇θ (7) 
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Figure 1:A Schematic of nanotube with internal fluid flow 

 

Here 𝛼𝑇 is coefficient of linear thermal expansion and 𝜃 = 𝑇 − 𝑇∞. For thin rods Eq. (5) can be written in the 

following one dimensional form  

 𝜎𝑥𝑥 − (𝑒0𝑎)2 ∂2𝜎𝑥𝑥

∂𝑥2 = 𝐸(𝜀𝑥𝑥 + 𝜀𝑇) = 𝐸 (
∂𝑢

∂𝑥
− 𝛼𝑇θ) (8) 

where 𝐸 is the modulus of elasticity, 𝜎𝑥𝑥 and 𝜀𝑥𝑥 are the local stress and strain components in the 𝑥 direction, 

respectively. The equation of motion for a rod under longitudinal vibration with external force (𝐹𝐸𝑋𝑇) can be 

obtained as  

 
∂𝑁

∂𝑥
+ FEXT = 𝜌𝐴

∂2𝑢

∂𝑡2  (9) 

 where 𝑁 is the axial force per unit length and is defined by  

 𝑁 = ∫
𝐴

𝜎𝑥𝑥𝑑𝐴 (10) 

 Using Eqs. (10) and (8), we have  

 𝑁 − (𝑒0𝑎)2 ∂2𝑁

∂𝑥2 = 𝐸 (
∂𝑢

∂𝑥
− 𝛼𝑇θ) (11) 

 Substitution of the derivative of 𝑁 with respect to 𝑥 from Eq. (9) into Eq. (11), we obtain  

 𝑁 = 𝐸𝐴 (
∂𝑢

∂𝑥
− 𝛼𝑇θ) − (𝑒0𝑎)2 ∂𝐹𝐸𝑋𝑇

∂𝑥
+ (𝑒0𝑎)2𝜌𝐴

∂3𝑢

∂𝑥 ∂𝑡2 (12) 

 Substituting 𝑁 from Eq. (12) into the equation of motion (9), we obtain  

 𝐸𝐴 (
∂2𝑢

∂𝑥2 − 𝛼𝑇
∂𝜃

∂𝑥
) + FEXT − (𝑒0𝑎)2 ∂2𝐹𝐸𝑋𝑇

∂𝑥2 = 𝜌𝐴
∂2𝑢

∂𝑡2 − (𝑒0𝑎)2𝜌𝐴
∂4𝑢

∂𝑥2 ∂𝑡2 (13) 

Equation (13) represents the fundamental governing equation of motion for the nonlocal rod model with 

longitudinal vibration. When 𝑒0𝑎 = 0, the equation is simplified to that of the classical rod model. The force 

applied by the internal flowing fluid on the nanotube is given by [22] 

      𝐹𝐸𝑋𝑇 = −𝜌𝑓𝐴𝑓 (
𝜕2𝑢

𝜕𝑡2 + 𝑉𝑓
2 𝜕2𝑢

𝜕𝑥2 + 2𝑉𝑓
𝜕2𝑢

𝜕𝑥𝜕𝑡
)(14) 

Substituting Eq. (14) in Eq. (13) results the following governing equation of motion 

𝐸𝐴
∂2𝑢

∂𝑥2 − 𝜌𝑓𝐴𝑓 (
𝜕2𝑢

𝜕𝑡2 + 𝑉𝑓
2 𝜕2𝑢

𝜕𝑥2 + 2𝑉𝑓
𝜕2𝑢

𝜕𝑥𝜕𝑡
) + 𝜌𝑓𝐴𝑓(𝑒0𝑎)2 (

𝜕4𝑢

𝜕𝑥2𝜕𝑡2 + 𝑉𝑓
2 𝜕4𝑢

𝜕𝑥4 + 2𝑉𝑓
𝜕4𝑢

𝜕𝑥3𝜕𝑡
) − EA𝛼𝑇

∂𝜃

∂𝑥
= 𝜌𝐴

∂2𝑢

∂𝑡2 −

𝜌𝐴(𝑒0𝑎)2 ∂4𝑢

∂𝑥2 ∂𝑡2  (15) 

If we set 𝑒0𝑎 = 0, in the above equations, it results in the classical governing equation for fluid carrying 

nanorod. 
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2.3 Dual Phase-lag Heat Conduction Model for Nanotube 

The Dual-Phase-Lag Heat Conduction Model (DPLHCM) serves as a mathematical construct 

employed to elucidate the intricate phenomenon of heat conduction in various materials, encompassing the 

realm of nanotubes. The proposed methodology exhibits a heightened level of sophistication and refinement in 

contrast to conventional heat conduction models, such as the renowned Fourier heat conduction equation. In the 

context of the classical Fourier heat conduction model, it is postulated that the phenomenon of heat conduction 

transpires with instantaneous effect, whereby a thermal perturbation imposed upon one extremity of a material 

promptly propagates throughout said material at an infinitely swift pace. Nevertheless, it is imperative to 

acknowledge that the phenomenon of heat conduction, particularly when observed at the nanoscale, is subject to 

temporal constraints. Furthermore, it is crucial to recognize that the velocity at which this process transpires is 

contingent upon the distinctive characteristics inherent to the material in question. The DPLHCM introduces 

two time scales to account for the finite thermal relaxation time of materials i.e., hyperbolic heat conduction and 

wave-like behavior. The general governing equation of DPLHCM in 1D is given as [23] 

𝒒(𝒓, 𝑡 + 𝜏𝑇) = −𝑘∇𝑇(𝒓, 𝑡 + 𝜏𝑇),                                                                 (16)   

where 𝒒 is the heat flux, 𝑇 is temperature,𝒓 is the position vector, 𝑘 is thermal conductivity of the 

material,𝜏𝑇and 𝜏𝑞 are the phase lags of the temperature gradient and the heat flux vector, respectively. The first 

order Taylor series expansion of Eq. (16) gives 

 

𝒒(𝒓, 𝑡) + 𝜏𝑞
𝜕𝒒(𝒓,𝑡)

𝜕𝑡
= −𝑘 {∇𝑇(𝒓, 𝑡) + 𝜏𝑇

𝜕[∇𝑇(𝒓,𝑡)]

𝜕𝑡
},                                                   (17) 

The heat flux, temperature and volumetric strain for a thermoelastic isotropic body have the following relation  

−∇. 𝒒 = 𝜌𝐶𝑣
𝜕𝑇

𝜕𝑡
+

𝐸𝛼𝑇𝑇

(1−2𝜈)

𝜕𝒆

𝜕𝑡
                                                                       (18) 

where 𝒆 is the volumetric strain, 𝛼𝑇is thermal expansion coefficient and 𝐶𝑣 is specific heat at constant volume. 

The coupled heat conduction equation for a thermoelastic isotropic body in the context of DPLHCM can be 

derived from Eqs. (17) and (18) as 

𝑘 (
𝜕2𝜃

𝜕𝑥2 + 𝜏𝑇
𝜕3𝜃

𝜕𝑥2𝜕𝑡
) = 𝜌𝐶𝑣 (

𝜕𝜃

𝜕𝑡
+ 𝜏𝑞

𝜕2𝜃

𝜕𝑡2) −
𝐸𝛼𝑇0

1−2𝜈
(

𝜕𝑒

𝜕𝑡
+ 𝜏𝑞

𝜕2𝑒

𝜕𝑡2)                                  (19) 

The volumetric strain for the present case of nanotube is given in Eq. (2), so substituting 𝑒 = 𝜕𝑢/𝜕𝑥 in the Eq. 

(19) gives the final governing equation of the heat conduction model for the present nanotube as  

𝑘 [
𝜕2𝜃

𝜕𝑥2 + 𝜏𝑇
𝜕3𝜃

𝜕𝑥2𝜕𝑡
] = 𝜌𝐶𝑣 [

𝜕𝜃

𝜕𝑡
+ 𝜏𝑞

𝜕2𝜃

𝜕𝑡2] −
𝐸𝛼𝑇0

1−2𝜈
(

𝜕2𝑢

𝜕𝑥𝜕𝑡
+ 𝜏𝑞

𝜕3𝑢

𝜕𝑥𝜕𝑡2)                                  (20) 

If we substitute 𝜏𝑇 = 0 in the above equation, it results in a single-phase lag heat conduction (SPLHC) equation 

based 1D thermoelasticity. If we substitute 𝜏𝑞 = 0 and 𝜏𝑇 = 0 in the above equation, it results in classical 

Fourier heat conduction equation based thermoelasticity in 1D. 

 

III. SOLUTION OF THERMO-ELASTIC EQUATIONS 

The solution of the thermo-elastic governing equations given in Eqs. (15) and (20) is derivedby assuming a 

harmonic form of displacement field and temperature as 

𝑢(𝑥, 𝑡) = �̂�𝑒−𝑖𝜆𝑥𝑒𝑖𝜔𝑡, 𝜃(𝑥, 𝑡) = �̂�𝑒−𝑖𝜆𝑥𝑒𝑖𝜔𝑡(21)                    

where 𝜔 is the circular frequency, 𝜆 is the axial wavenumber, Û and Θ̂ are the amplitudes of elastic and thermal 

deformations, respectively and 𝑖 = √−1. Substituting 𝑢(𝑥, 𝑡) and 𝜃(𝑥, 𝑡)given in above equation into Eqs. (15) 

and (20) leads to the following algebraic equations: 

[−𝐸𝐴𝜆2 − 𝜌𝑓𝐴𝑓(−𝜔2 − 𝑉𝑓
2𝜆2 + 2𝑉𝑓𝜆𝜔) + 𝜌𝑓𝐴𝑓(𝑒0𝑎)2(𝜔2𝜆2 + 𝑉𝑓

2𝜆4 − 2𝑉𝑓𝜆3𝜔) + 𝜌𝐴𝜔2 +

                𝜌𝐴(𝑒0𝑎)2𝜔2𝜆2]�̂� + [𝐸𝐴𝛼𝑇𝑖𝜆]Θ̂ = 0                                                                                                    (22) 

[
𝐸𝐴𝛼𝑇∞

1−2𝜈
(𝜆𝜔 + 𝜏𝑞𝑖𝜆𝜔2)] �̂� + [𝑘(−𝜆2 − 𝜏𝑇𝑖𝜆2𝜔) − 𝜌𝐶𝑣(𝑖𝜔 − 𝜏𝑞𝜔2)]Θ̂ = 0                                 (23) 
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Rewriting Eqs. (22) and (23) as 

[
𝑍11 𝑍12

𝑍21 𝑍22
] {�̂�

Θ̂
} = {

0
0

}                                                         (24) 

where 

𝑍11 = 𝑅211𝜔2 + 𝑅111𝜔 + 𝑅011 

𝑍12 = 𝑅012 

𝑍21 = 𝑅221𝜔2 + 𝑅121𝜔 

𝑍22 = 𝑅222𝜔2 + 𝑅122𝜔 + 𝑅022                                                     (25) 

Here the coefficients are givens as 

𝑅211 = 𝜌𝑓𝐴𝑓 + 𝜌𝑓𝐴𝑓(𝑒0𝑎)2𝜆2 + 𝜌𝐴 + 𝜌𝐴(𝑒0𝑎)2𝜆2 

𝑅111 = −2𝜌𝑓𝐴𝑓𝑉𝑓𝜆 − 2𝜌𝑓𝐴𝑓(𝑒0𝑎)2𝑉𝑓𝜆3 

𝑅011 = −𝐸𝐴𝜆2 + 𝜌𝑓𝐴𝑓𝑉𝑓
2𝜆2 + 𝜌𝑓𝐴𝑓(𝑒0𝑎)2𝑉𝑓

2𝜆4 

𝑅012 = 𝑖𝐸𝐴𝛼𝑇𝜆 

𝑅221 =
𝐸𝐴𝛼𝑇∞

(1 − 2𝜈)
𝑖𝜏𝑞𝜆 

𝑅121 =
𝐸𝐴𝛼𝑇∞

(1 − 2𝜈)
𝜆 

𝑅222 = −𝜌𝐶𝑣𝜏𝑞 

𝑅122 = 𝑖𝜌𝐶𝑣 − 𝑖𝑘𝜏𝑇𝜆2 

𝑅022 = 𝑘𝜆2 
(26) 

Equation (24) can be written in Polynomial Eigenvalue Problem (PEP) form as  

[
𝑅211 0
𝑅221 𝑅222

] 𝜔2 + [
𝑅111 0
𝑅121 𝑅122

] 𝜔 + [
𝑅011 𝑅012

0 𝑅022
] = 0(27) 

The above equation is solved numerically using “polyeig” command of MATLAB [24]. The part of the code is 

given below: 

 
    R211=rhof*Af+rhof*Af*S^2*lam^2+rho*A+rho*A*S^2*lam^2; 

    R111=-2*rhof*Af*V*lam-2*rhof*Af*S^2*V*lam^3; 

    R011=-E*A*lam^2+rhof*Af*V^2*lam^2+rhof*Af*S^2*V*lam^4; 

    R012=j*E*A*at*lam; 

    R221=E*A*at*T0*j*tq*lam/(1-2*nu); 

    R121=E*A*at*T0*lam/(1-2*nu); 

    R222=-rho*Cv*tq; 

    R122=j*rho*Cv-j*k*tt*lam^2; 

    R022=k*lam^2; 

G2 = [R211 0;R221 R222];  

G1 = [R111 0; R121 R122]; 

G0 = [R011 R012; 0 R022]; 

w_j=polyeig(G0,G1,G2); 

[wj,I]=sort(w_j); 

m=1; 

for n=1:4 

        Q(m,i)=2*abs(imag(wj(n))/real(wj(n))); 

        m=m+1; 

end (28) 

 

The PEP is solved to obtain the frequency of the fluid carrying nanotube in the form as 𝜔 = 𝜔𝑅 + 𝑖𝜔𝐼 . The 

thermo-elastic damping is defined as 

𝑄−1 = 2 |
𝜔𝐼

𝜔𝑅
|                                                                                 (29) 

In the next section, the results are analyzed for various cases. 
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IV. NUMERICAL RESULTS AND DISCUSSION 

For the present analysis, a nanorod composed of silicon materialis considered with the following material 

properties:  

Young’s modulus 𝐸= 169 GPa,  

density 𝜌 = 2330 kg/m3,  

thermal conductivity 𝑘 = 160 W/m-K,  

specific heat at constant volume 𝐶𝑣= 715 J/kg-K,  

coefficient of thermal expansion 𝛼𝑇= 2.6010-6K-1 and  

initial temperature 𝑇∞= 290 K. 

Fluid is considered as water with density of 𝜌𝑓 = 1000 kg/m3.  

 The phenomenon of thermoelastic damping in nanotubes and its dependence on the length of the 

nanorod is an intriguing aspect of nanoscale heat transfer and mechanical vibrations. Thermoelastic damping 

arises due to the interaction between mechanical deformation and the associated temperature changes in a 

material. When considering nanotubes with fluid flow, the effects of length become particularly relevant. Let's 

explore the relationship between thermoelastic damping, nanotube length, and fluid flow: Thermo-elastic 

damping variation of a nanotube with respect to its length is shown in Fig. 2 for both the local and nonlocal 

elasticity cases. The effect of the fluid on the thermo-elastic damping is also shown in the graph.As the nanotube 

undergoes stress and strain, it generates thermal energy owing to the thermoelastic characteristics inherent in the 

material. The thermal energy, in its essence, causes temperature gradients within the nanotube.It can be seen that 

the thermo-elastic damping under predicted by the classical elasticity (𝜖 = 𝑒0𝑎 = 0 𝑛𝑚) as compare to nonlocal 

elasticity (𝜖 = 1 𝑛𝑚). This is clearly understood that why nonlocal elastic model is needed for ultra-small scale 

structures like nanotubes. The magnitude of a nanotube or nanorod's length is a pivotal determinant that exerts a 

profound impact on its thermoelastic characteristics. As the longitudinal dimension of the nanotube is extended, 

the thermal energy arising from thermoelastic phenomena is afforded a greater expanse for dissipation along the 

tubular axis. 

 

 
Figure2:Effect of internal fluid on thermo-elastic damping of nanotube with length of nanorod based on local 

(𝜖 = 0 𝑛𝑚) and nonlocal (𝜖 = 1 𝑛𝑚) elasticity theories and classical heat conduction model 

 

In the case of nanotubes with reduced length, it is observed that the resonance frequencies pertaining to 

mechanical vibrations exhibit an elevation, thereby rendering them higher in magnitude. Furthermore, it is 

noteworthy that these vibrations are subject to intensified thermoelastic damping phenomena. The resonance 

frequencies of elongated nanotubes may exhibit a reduction, potentially influencing the magnitude and attributes 

of thermoelastic damping. 
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When fluid is present either within or around the nanotube, the temperature gradients have the potential 

to engage in interactions with the fluid. The fluid present in nanotube can also influence on thermoelastic 

damping as seen in Fig. 2.When fluid is filled in nanotube (𝑉𝑓 = 0), the thermo-elastic damping is enhanced for 

lengths less than 40 nm. For longer lengths, the phenomenon is negligible as clearly seen in Fig. 2.   

 
Figure3:Effect of velocity of internal fluid on thermo-elastic damping of nanotube with length of nanorod 

nonlocal (𝜖 = 1 𝑛𝑚) elasticity theory and classical heat conduction model 

 

The phenomenon of fluid flow (𝑉𝑓) occurring within or in the vicinity of the nanotube has the potential 

to augment thermoelastic damping by facilitating the more effective convection of heat away from the surface of 

said nanotube. The dissipation of heat can be contingent upon the velocity of fluid flow and the thermal 

characteristics of said fluid.The influence of fluid velocity in nanotube on thermo-elastic damping is shown in 

Fig. 3. The results are presented for nonlocal elasticity case. It can be clearly observed that as the fluid velocity 

increases, the thermo-elastic damping also increase.Boundary conditions also play a pivotal role in determining 

the behavior of a system, particularly when considering the interplay between fluid flow patterns and 

thermoelastic damping. Factors such as whether a nanotube is clamped at its ends or allowed to move freely can 

significantly affect these dynamics.So, a clamped-free nanotube is considered in the complete analysis 

withwavenumber 𝜆 = 𝑚𝜋/𝐿, where 𝑚 is the modenumber and 𝐿 is the length of the nanotube. 

Classical, single-phaselag, and dual-phase lag heat conduction models are different mathematical 

approaches used to describe heat transfer or heat conduction in materials. The effects of these three heat 

conduction models on thermo-elastic damping of fluid carrying nanotube are shown in Fig. 4 for classical and 

nonlocal elasticity models too.The classical heat conduction model (CHCM) assumes that heat conduction 

occurs instantaneously and at an infinite speed throughout the material. This means that any change in 

temperature at one point in the material immediately affects all other points.While the classical model can 

adequately represent heat transmission on a macroscopic scale, it may fail to do so on a nanoscale or in 

materials subject to fast temperature variations. Due to its fundamental assumption, the CHCM along with 

classical elasticity model predicts lower thermo-elastic damping for the fluid carrying nanotubes as shown in 

Fig. 4. The incorporation of the single-phase lag heat conduction model (SPL-HCM) introduces a finite thermal 

relaxation time for materials. It is duly recognized that the process of heat conduction necessitates a finite 

duration to transpire, rather than manifesting instantaneously. The utilization of the single-phase lag model is 

employed as a means to elucidate the intricate phenomenon of heat conduction in substances that possess finite 

thermal relaxation durations. Notably, this model finds relevance in the analysis of various materials, including 

but not limited to polymers, nanomaterials, and thin films.The SPL-HCM predicts the correct thermo-elastic 

damping for the fluid filled nanotubes as it is directly applicable for nanoscale structures. The predictions of 

SPL-HCM are higher than the classical ones as shown in Fig. 4.  The dual-phase lag heat conduction model 
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(DPL-HCM) expands upon the notion of thermal relaxation by incorporating the temporal delays in both 

temperature gradient and heat flux. It elucidates the presence of distinct temporal scales of relaxation, one 

pertaining to the thermal gradient and the other to the thermal flux. The utilization of the dual-phase lag model 

is imperative in scenarios wherein the process of heat conduction is substantially influenced by the finite 

relaxation times of both temperature and heat flux. The examination of heat transfer at the nanoscale and in 

materials exhibiting expeditious heat transfer dynamics holds significant pertinence.The predictions of DPL-

HCM are higher than that of the SPL-HCM and classical ones as shown in Fig. 4.Due to the additional thermal 

relaxation parameter, the DPL-HCM predicts the accurate thermo-elastic damping of the fluid carrying 

nanotubes. 

 
Figure 4:Variation of thermo-elastic damping of nanotube with internal fluid versus length of nanorod based on 

classical, single-phase-lag and dual-phase-lag heat conduction models and local (𝜖 = 0 𝑛𝑚) and nonlocal (𝜖 =
1 𝑛𝑚) elasticity theories 

 

The thermo-elastic damping phenomenon exhibited by a fluid-filled nanotube is subject to the 

influence of various factors, one of which pertains to the inherent characteristics of the fluid involved. The 

property in question, known as fluid density, holds considerable influence over the thermo-elastic damping 

behavior. Let us embark upon an investigation into the intricate interplay between fluid density and thermo-

elastic damping within the confines of a nanotube that is replete with fluid as shown in Fig. 5.Application-

specific thermo-elastic damping may be achieved by selecting a fluid density in addition to other fluid 

parameters like thermal conductivity and specific heat capacity. Designers may choose fluids for resonant 

sensors or energy harvesting systems based on their damping properties. For the present graph, the fluid velocity 

is assumed as 𝑉𝑓 = 0. 

The heat capacity of the fluid within the nanotube is often greater when the fluid has a higher density 

(such as Trichlor Ethylene). This implies that there will be less temperature differences between different parts 

of the nanotube due to the increased ability to absorb and release heat.However, fluids with a lower density 

(such as Propane R-290) might undergo larger temperature shifts for the same mechanical deformation because 

their heat capacities are smaller. The nanotube's internal temperature gradient may increase as a consequence. 

These effects are clearly observed in Fig. 5. The amount of thermo-elastic damping is often reduced in fluids 

with higher densities. This is because they are better at dampening vibrations by absorbing and spreading the 

heat produced by mechanical deformation.Thermo-elastic damping may be improved with fluids of lower 

density due to the lower heat capacity and perhaps more noticeable temperature gradients inside the nanotube 

that these fluids may display. The dampening effects may intensify as a result. 

Fluid movement (𝑉𝑓 = 10 𝑛𝑚/𝑠) inside the nanotube is also modify the impact of fluid density on 

thermo-elastic damping. The temperature distribution and the subsequent damping behavior of nanotubes is 
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affected by the convection of heat away from the surface by the flow of fluid. Such effects are shown in Fig. 6 

from nonlocal elasticity (𝜖 = 1 𝑛𝑚). 

 
Figure 5: Variation of thermo-elastic damping of nanotube with different internal fluids having zero velocity 

versus length of nanorod based on dual-phase-lag heat conduction model and nonlocal (𝜖 = 1 𝑛𝑚) elasticity 

theory 

 
Figure 6: Variation of thermo-elastic damping of nanotube with different internal fluids having velocity of 10 

nm/s versus length of nanorod based on dual-phase-lag heat conduction model and nonlocal (𝜖 = 1 𝑛𝑚) 

elasticity theory 
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 With fluid velocity and higher the density of the fluid a vibrational disturbance is seen in the thermo-

elastic damping response of the nanotube in Fig. 6. As the density of the fluid reduces, these disturbances are 

vanished for the longer lengths of the nanotube. For shorter lengths i.e., less than 20 nm, such disturbance is not 

observed even for higher density fluid flow.  

 In a nanotube filled with fluid, the thermo-elastic damping is significantly affected by the number of 

vibration modes (𝑚). The effect of vibrational modenumber on thermo-elastic damping of nanotube with fluid 

flow is shown in Fig. 7. The amplitude and frequency of mechanical vibrations, which in turn influence the 

amount of thermo-elastic damping, are both affected by the mode number of the vibrations. Every distinct 

vibration mode possesses a singular frequency and mode shape, thereby delineating the specific manner in 

which the nanotube undergoes deformation during the process of vibration. When the nanotube is undergoing 

vibrational oscillations in low mode numbers or low-frequency modes, the mechanical vibrations are generally 

characterized by reduced velocity and increased temporal duration. Vibrations at lower frequencies cause the 

nanotube to retain heat from thermo-elastic effects for longer. In the realm of high modes or modes 

characterized by high frequencies, mechanical vibrations manifest themselves through oscillations occurring at 

elevated frequencies and correspondingly reduced periods. The occurrence of vibrations with higher frequencies 

induces expeditious and repetitive deformations as well as alterations in temperature within the nanotube. Such 

effects are clearly observed in Fig. 7.  

 When building fluid-filled nanotube-based devices like resonators or sensors, engineers and researchers 

may take the vibration mode number into account. Thermo-elastic damping may be optimized or controlled by 

selecting the appropriate vibration mode.Other aspects, such as fluid properties, fluid flow conditions, and 

nanotube shape, must be taken into account in addition to thermo-elastic damping in order to produce the 

necessary damping characteristics and device performance. 

 

 
Figure 6: Variation of thermo-elastic damping of nanotube with propane R-290 with a velocity of 10 nm/s 

versus length of nanorod based on dual-phase-lag heat conduction model and nonlocal (𝜖 = 1 𝑛𝑚) elasticity 

theory for first three modes of vibration in longitudinal direction 

 

V. CONCLUSIONS 

The design of nanomechanical sensors and resonators relies heavily on an appreciation of the 

interaction between nanotube length, fluid flow, and thermoelastic damping. To attain the appropriate resonance 

characteristics, engineers may try to optimize the length and fluid environment. To understand these 

phenomenon with respect to thermo-elastic damping of fluid filled nanotubes, a nonlocal elasticity theory and 

nonclassical heat conduction models are utilized. These nonlocal thermo-elastic governing equations are solved 
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for the thermo-elastic damping of nanotubes with fluid flow and the following major outcomes are observed in 

this manuscript: 

 The thermo-elastic damping under predicted by the classical elasticity as compare to nonlocal 

elasticity. 

 As the longitudinal dimension of the nanotube is extended, the thermal energy arising from 

thermoelastic phenomena is  

 When fluid is filled in nanotube with zero velocity, the thermo-elastic damping is enhanced for lengths 

less than 40 nm. For longer lengths, the phenomenon is negligible afforded a greater expanse for 

dissipation along the tubular axis. 

 As the fluid velocity increases, the thermo-elastic damping also increase. 

 The predictions of thermo-elastic damping of fluid filled nanotubes by DPL-HCM are higher than that 

of the SPL-HCM and C-HCM. 

 Due to the additional thermal relaxation parameter over SPL-HCM, the DPL-HCM predicts the 

accurate thermo-elastic damping of the fluid carrying nanotubes. 

 The amount of thermo-elastic damping is often reduced in fluids with higher densities. This is because 

they are better at dampening vibrations by absorbing and spreading the heat produced by mechanical 

deformation. 

 Vibrations at lower frequencies cause the nanotube to retain heat from thermo-elastic effects for longer.  

 In the realm of high modes or modes characterized by high frequencies, mechanical vibrations manifest 

themselves through oscillations occurring at elevated frequencies and correspondingly reduced periods. 

 Thermoelastic damping may be used to increase the efficiency of energy harvesting systems by 

increasing the rate at which energy is converted.  

 The balance between damping and energy conversion may be modified by adjusting the length of the 

nanotubes and the fluid conditions. 
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