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Abstract 
Constraint-based fracture mechanics is a specialized field within the broader realm of fracture mechanics that 

focuses on understanding and predicting the behavior of cracks and defects in materials under various loading 

conditions. Unlike traditional fracture mechanics, which often relies on a single stress intensity factor to assess 

the criticality of a crack, constraint-based fracture mechanics takes into account the influence of constraint, or 

the stress field around the crack tip. This approach recognizes that the severity of a crack is not solely 

determined by its size and the applied load but also by the local stress state. Constraint-based fracture 

mechanics employs parameters like T-stress, Q-stress, and the stress triaxiality to provide a more 

comprehensive assessment of crack behavior. It considers factors such as crack tip plasticity, residual stresses, 

and material properties, making it a powerful tool for predicting crack growth and failure in real-world 

engineering applications. Researchers and engineers use constraint-based fracture mechanics to improve the 

safety and reliability of structures and components, particularly in industries like aerospace, automotive, and 

civil engineering. By considering the effect of constraint, they can make more accurate predictions about when 

and how cracks will propagate, enabling the development of better materials and design practices. 
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I. Introduction 
Fracture mechanics is a pivotal field of study within materials science and engineering, essential for 

understanding the behavior of materials when subjected to external forces and stresses. It plays a critical role in 

various industries, from aerospace and civil engineering to the automotive and energy sectors. In the quest for 

safer and more reliable structures and components, researchers and engineers continually strive to enhance their 

grasp of fracture mechanics, seeking innovative ways to predict, prevent, and control fractures. 

One compelling and evolving facet of fracture mechanics is "constraint-based fracture mechanics." 

This approach represents a paradigm shift in our understanding of how materials respond to stress 

concentrations, addressing not only the magnitude of applied loads but also the effects of geometric and material 

constraints. In essence, it recognizes that the mere assessment of stress intensity factors is insufficient to predict 

crack growth accurately. 

This exploration delves into the core concepts, methodologies, and applications of constraint-based 

fracture mechanics. This research will embark on a journey to uncover how this approach augments our 

comprehension of fracture behavior in diverse materials and structures. By examining the principles of 

constraint, its theoretical underpinnings, and its practical implications, we aim to shed light on the innovative 

solutions it offers for safer and more resilient designs across various industries. Constraint-based fracture 

mechanics, with its ability to provide a more comprehensive view of crack growth and failure, stands as a 

promising frontier in the pursuit of engineering excellence and materials innovation 
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II. Theory of Constraint-based Fracture Mechanics 

(Rice, 1968) proposed the J integral theory, which marks the beginning of the elastic-plastic fracture mechanics 

(EPFM) theory and method. Now, the J integral is regarded as a major parameter to characterize the fracture 

behavior of nonlinear materials. The J-integral theory and testing techniques have been widely applied to derive 

crack tip stresses of ductile material under plastic deformation,is crucial in structural integrity assessment of 

engineering structures, flaw evaluation, evaluation of the mechanical performance of materials, and the nuclear 

pressure vessel and piping, oil, and gas pipeline assessment. In fracture mechanics, the conservative approach is 

via a two-parameter conservative plain strain solution reported by (Hutchinson, 1968 and Rice & Rosengren, 

1968), commonly referred to as the HRR Singularity. The HRR solutionwasdeveloped for materials with power-

law stress-strain relation, given in Equation (1) 
𝜀

𝜀Y
=

𝜎

𝜎𝑌
+ 𝛼 (

𝜎

𝜎Y
)

𝑛

……………………………Equation 1 

Where (𝜎𝑌) is usually the yield stress, 𝜀𝑌= 
𝜎𝑌

𝐸
 represents the yield strain, and E is Young’smodulus, 

α and nrepresentmaterial constants; hardening coefficient and hardening exponent, respectively. (n>1). HRR 

stress field around the crack tip is given by Equation (2). 

𝜎𝑖𝑗 = 𝜎0 (
𝐽

𝛼𝜎0𝜀0𝐼𝑛𝑟
)

1

(𝑛+1)
𝜎𝑖�̃� (𝑛, 𝜃)     ………………………Equation 2 

𝜎𝑖�̃� is the universal function that changes with the angle of strain hardening exponent tabulated by(Shih, 

1983)and 𝐼𝑛 is a dimensionless constant that depends on strain hardening exponent n, while 𝐽apart from being 

the strain energy release rate, it can also be viewed as a stress intensity parameter. (Rice, 1968)exploited a 

supposition based nonlinear material on proposing the 𝐽 contour integral parameter that defines the vicinity of a 

crack. However, before publishing his findings, Rice found out that(Eshelby, 1968)(Cherepanov, 1967)had 

independentlypreviously published a sequenceof conservative integrals, some identical to the J integral of Rice. 

Nevertheless,it was Rice who established the relevance of his findings to solving crack related problems.  

The 𝐽 integral is found by integrating equation (3), an expression along an arbitrary path around the crack tip.  

𝐽 = ∫
𝛤

(𝑊𝑑𝑦 − 𝑇
𝛿𝑢

𝛿𝑥
𝑑𝑠) …………………………Equation 3 

Where Γ is the path of integration, Tand u are the traction and displacement vector, ds is an increment along 

Γand W is the strain energy density or work of deformation per unit volume.W is mathematically expressed as 

shown in Equation (4) 

𝑊 = ∫ 𝜎𝑖𝑗 𝑑𝜀𝑖𝑗
𝜀𝑖𝑗

0
 ……………………………………Equation 4 

Where 𝜎𝑖𝑗  𝑎𝑛𝑑 𝜀𝑖𝑗 are the stress and strain tensors, respectively.  

The J integral as a nonlinear elastic release rate can also be defined accordingly as in the equation (5) below. 

𝐽 = −
1

𝐵
(

𝛿𝑈

𝛿𝑎
) …………………………………………Equation 5 

Where U is the strain energy per thickness or referred to as potential energy in a plate of thickness B.  

In beginning of 1970s, (Begley & Landes, 1972) and (Landes & Begley, 1972) were the pioneers that 

successfully measured the J integral and it critical value JIcexperimentally for standard laboratory test 

specimens. They used a sequence of test specimens of same material, size, and geometry but of cracks of 

different length and a+δa introduced by fatigue pre-cracking method, using the energy release rate definition of 

J as given in equa. (5). This testing method has the weakness of complicated experimental procedures and 

multiple specimen test are needed to achieve a single experimental result of J, that is also expensive. 

Nevertheless, their early contribution encouraged anextensivedevelopment in the J integral fracture mechanics. 

The first main achievement of this work is the development of a simple analysis for computing J as a function of 

crack length at a point on the load–displacement curve from a single specimen test. A further advancement of 

practical experimental test technique for the J integral was the contribution by(Rice et al., 1973)that proved the 

possibility of a single specimen method, to estimate J resistance curve (J-R curve) directly from single load P 

against load line displacement (LLD) record for a compact tension specimen. Since strain energy U can be 

obtained from the area under of the P against LLD curve, further expressions for J integral in term of 

displacement control conditions and load control conditions can be obtained from equations(6) and (7)as 

follows: 

𝐽 = −
1

𝐵
∫ (

𝛿𝑃

𝛿𝑎
)

∆

∆

0
𝑑∆ ……………………………..Equation 6 

 

𝐽 = −
1

𝐵
∫ (

𝛿𝛥

𝛿𝑎
)

𝑃

∆

0
𝑑𝑃 …………………………….Equation 7 

For compact tension specimen, (Merkle & Corten, 1974)suggested additional modification to consider tensile 

component of the applied load on the test specimen for accurate valuation of J. Since the total displacement ∆  

can be expressed separately as elastic and plastic component, as in ∆= 𝛥𝑒𝑙 + 𝛥𝑝𝑙 , the total J-integral was also 

correspondingly written as two separate parts:  
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𝐽 = 𝐽𝑒𝑙 + 𝐽𝑝𝑙  …………………………………Equation 8 

The elastic component 𝐽𝑒𝑙  can be regarded as elastic strain energy rate, G and is most simply calculated from the 

stress intensity factor KI 

𝐽𝑒𝑙 =
𝐾𝐼

2

𝐸′
 ………………………………Equation 9 

Where 𝐸′ = 𝐸/1 − 𝑣2 for plain strain while K is obtained from the load relation specified in (E399-09e2, 

2011).Stress intensity factor solutions for various fracture specimens were documented in the work of (Tada et 

al., 2000) 

Meanwhile, the plastic component,𝐽𝑝𝑙 ,was stated similarly to equations (6) and (7)as follows: 

𝐽𝑝𝑙 = −
1

𝐵
∫ (

𝛿𝑃

𝛿𝑎
)

∆𝑝𝑙

∆𝑝𝑙

0
𝑑∆𝑝𝑙=

1

𝐵
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𝛿∆𝑝𝑙

𝛿𝑎
)

𝑃

𝑝

0
𝑑𝑃 ……………………..Equation 10 

(Merkle & Corten, 1974) applied plastic analysis to provide a more reliable J estimate for C(T) specimens:  

𝐽𝑝𝑙 = −
2(1+𝛼)

𝑏(1+𝛼2)
∫ (

𝑃

𝐵
)
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0
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2

𝑏
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(1+𝛼2)2 ∫ ∆𝑝𝑙𝑑 (
𝑃

𝐵
)

𝑃

𝐵
0

 ……………………Equation 11 

Where the parameter αin equation 11 is defined as:  

𝛼 = 2√(
𝑎

𝑏
)

2

+
𝑎

𝑏
+

1

2
− 2 (

𝑎

𝑏
+

1

2
) …………………………………….Equation 12 

It has been shown that equation (11) can accurately compute J-integral, based on the total displacement for a 

linear or nonlinear load-deflection curve provided 
𝑎

𝑊
≥ 0.5. Otherwise, the elastic and plastic component of J 

should be calculated separately using equation(9), (11), (8).  

It is a well-established phenomenon that the stress field around the crack tip solidly depends on the so-called 

constraint effect, (Chao & Lam, 1996)which is interrelated to geometries, loading mode, and the properties of 

material, and the magnitude of constraint is closely related to the material’s fracture toughness. It is essential to 

note that the study of the constraint effects at fracture is linked to the basis and the restriction of the HRR-

solution (Hutchinson, 1968)(Rice & Rosengren, 1968)Over the past few years, various two parameter 

approaches explaining elastic-plastic fracture mechanics were presented by researchers to highlight some of the 

limitations associated tothe single-parameter approach based on the J-integral. Some of the notable approaches 

been developed to describe crack tip fields and characterize the in-plane constraint effects which are mainly 

influenced by specimen geometry, crack size etc. are as follows: (Betegón & Hancock, 1991)(Al-Ani & 

Hancock, 1991)extended the K-T approach earlier suggested by (Williams, 1957)that described elastic materials 

to elastic-plastic by proposing J-T approach,J-Q approach proposed by(O’dowd & Shih, 1991)(O’dowd & Shih, 

1992), later J-A2 approach was proposed by (S. Yang et al., 1993b)(Chao et al., 1994) in which J integral and the 

second fracture parameter A2 are both included in a three-term expansion of crack tip field. The A2 constraint 

parameter is defined as the dimensionless amplitude of the second order term of that expansion. Based on the 

this, a similar two parameter approach J-A was proposed by (Nikishkov, 1995)(Nikishkov et al., 1995) where 

the magnitude of the second term in the expansion is represented by A, and it is a different normalizing form of 

the parameter A2. The initial parameters K or J measures the level of crack tip deformation whereas the second 

parameter T/Q/A(A2) measures triaxiality or magnitude ofconstraint at the crack tip. Some renown structural 

integrity standards such as the (R6, 2001) and the (BS7910, 2005) are still based the conservative two 

dimensional plain strain techniques looking at the capacity of materials to demonstrate improve toughness with 

reduced thickness which is caused by the out of plane effect. Similarly, the out of plane constraint is largely due 

to the influence of specimen thickness, the parameter Tzwas proposed by(Guo, 1993a)(Guo, 1993b)(Guo, 1995) 

in a series of publications to characterize the out of plane constraint effect accurately, which is important 

foundation for three parameter dominant stress field, and permits the tendency to characterize the stress state in 

a three dimensional cracked structures. Citing the J-TZ approach, (Graba, 2017) suggested that an elastic-plastic 

crack tip constraint in 3D can be computed through:  

𝑄∗ =
𝜎22

3𝐷(𝐹𝐸)
−𝜎22

(𝐽−𝑇𝑧)

𝜎0
 ; 𝑟 =  

2𝐽

𝜎0
 𝑎𝑡 𝜃 = 0𝑜 ………………………………….Equation 13 

Where 𝑄∗ represent the stress difference between the opening stress 𝜎22 (3DFE) result and J-Tz deduced 

opening stress. (Zhao et al., 2008) observed the inherent drawback of the HRR field to measure the in plane 

constraint effect which was apparent in J-Tz approach and suggested a correction through a solution of the 

form:- J − Tz − 𝑄2𝐷. Nevertheless, the insensitivity of this solution  J − Tz − 𝑄2𝐷 in characterizing highly 

compressive  T or 𝑄2𝐷 geometries was reported in the work of (Hebel et al., 2007)(Shlyannikov et al., 

2014)(Yusof & Leong, 2019). A solution that combines the advantages of both J-Tz and J-A2 approaches was 

developed, a high order J-Tz-AT solution was suggested by (Cui & Guo, 2019)Some of the other similar out-of–

plane constraint parameter were suggested such as the crack tip stress normalized area of a zone defined by 
𝜎1

𝜎𝑦
(Anderson & Dodds, 1991)(Dodds et al., 1991)but was later disputed by (Theiss & Bryson, 1993) as limited 

in it application, while the h parameter which was reported to be an equivalent of the Q stress parameter was 

proposed by(Henry & Luxmoore, 1997). In another angle of contribution to measure crack tip constraint effect 
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fracture resistance, a partially empirical approach was offered to characterized the transitional toughness of 

crack test specimen that moves from a relatively thick size specimen to thin size specimen, (Mostafavi et al., 

2010) proposed  J-ϕbased on the crack tip plastic deformation zone earlier suggested (Anderson & Dodds, 

1991). Then recently, J-APan equivalent plastic strain parameter was introduced by (Yang et al., 2013)based on 

some modification to the parameter  J-ϕ approach. It has been reported that this parameter has the ability to 

measure both in-plane and out-of–plane constraints in many test specimens of different crack depths and 

thickness.Forsimplicity of computation and engineering applications, another unified constraint parameter Ad 

was proposed by (Xu et al., 2018) which was based on crack tip opening displacement (CTOD) with 

modifications to AP. The parameters Adand AP has reported to have same capability to concurrently characterize 

in plane and out of plane constraints. (Y. H. Wang et al., 2019) applied the crack driving force principle for 

envisaging ductile fracture based on two parameter J–Ap and J–Ad with exhaustive investigation and 

development of this parameters.  In a similar development (Yusof, 2019)developed J-Δσ where it was 

demonstrated that three dimensional constraint field differs hydrostatically however, similar in terms of 

maximum stress deviator which remain independent of length, r and position along the crack front, z, 

 

2.1 K -T Approach  

(Rice, 1967)(Rice, 1968) proposed Boundary Layer Formulation (BLF) to study crack tip plasticity in 

controlled  yielding without having to model geometry of the entire cracked part. When crack tip plasticity is 

minimal in relation to the dimension of the finite model, small scale yielding occurs, allowing for asymptotic 

elastic behavior. Traction equivalent to the K field are applied on the outer boundary of the crack tip region. 

(Rice & Tracey, 1973) maintainedthat the BLF remain valid as per as the plasticity is limited to less than one 

tenth of the mesh radius.   

The BLF estimation has been observed to have limited range of validity, and there were inconsistencies 

found between BLF and a number of specimen geometries for crack tip plastic zones even when they were 

within the ASTM standard limit for fracture toughness measurement.(Larsson & Carlsson, 1973)discovered that 

the second term in William's expansion influences the shape and size of the plastic zone that forms at the crack 

tip. As denoted by (Rice, 1974), the T-stress is the second term in the Williams expansion, was claimed to be 

reason for the inconsistency mentioned above. The BLF solution and full field solutions from different 

geometries are compared to calculates for T-stress based on the discrepancies.The addition of the calculated 

non-singular T-stress to the remote K field in the boundary condition is referred to as the Modified Boundary 

Layer Formulation (MBLF) approach. The load in MBLF can be added using the superposition principle since 

the T-stress is directly proportional to the load applied in an isotropic linear elastic body. The MBLF approach 

or corresponding K-T characterization was also applied by (Bilby et al., 1986) where effect of non-singular T- 

stress on large geometry change deformation in void growth mechanism was examined. The hydrostatic stress 

ahead of the crack tip was described to be lowered by the compressive T- stress. 

(Bilby et al., 1986) applied displacement field as boundary condition for modified boundary layer 

formulation instead of the applying the K-T field in a mode of stress on the outermost traction as suggested by  

Larsson & Carlsson, (1973) 

The plane strain displacement  𝑢𝑖
𝑚𝑏𝑙𝑓

under the load due to parameter K and T is given by: 

𝑢𝑖
𝑚𝑏𝑙𝑓

= 𝑢𝑖
𝐾1 + 𝑢𝑖

𝑇  ……………………………..Equation 14 

Where 𝑢𝑖
𝐾1𝑎𝑛𝑑 𝑢𝑖

𝑇  are displacement due to K and T-stress respectively.  

The MBLF approach can be run by the finite element method under plain strain deformation, 𝜀𝑧𝑧 = 0 

𝜎11 = 𝑇 , 𝜎22 = 0,  𝜎𝑧𝑧 = 𝑉𝑇 ………………….Equation 15 

Thus, the remote displacements field for a mode I plain strain MBLF in terms of cylindrical coordinate (r, θ)are 

represented as: 

𝑢1
𝑚𝑏𝑙𝑓

(𝑟, 𝜃) = 𝐾𝐼
1−𝑣

𝐸
√

𝑟

2𝜋
𝑐𝑜𝑠

𝜃

2
(3 − 4𝑣 − 𝑐𝑜𝑠𝜃) + 𝑇

1−𝑣2

𝐸
𝑟𝑐𝑜𝑠𝜃 ………..Equation 16 

𝑢2
𝑚𝑏𝑙𝑓

(𝑟, 𝜃) = 𝐾𝐼
1−𝑣

𝐸
√

𝑟

2𝜋
𝑠𝑖𝑛

𝜃

2
(3 − 4𝑣 − 𝑐𝑜𝑠𝜃) − 𝑇

𝑣(1−𝑣2)

𝐸
𝑟𝑠𝑖𝑛𝜃 ………Equation 17 

Where 𝑢1
𝑚𝑏𝑙𝑓

and 𝑢2
𝑚𝑏𝑙𝑓

 are the remote displacement field with respect to the 𝑥1 and 𝑥2axes, 𝑣 is the poisson’s 

ratio and 𝐸 is the Young’s modulus.  

The remote displacement field for plane stress MBLF can also be obtained for a state of remote plane stress. 

Under plane stress, 𝜎𝑧𝑧 = 0: 
𝜎11 = 𝑇 , 𝜎22 = 0,   

The mode I remote displacement field for plane stress in term of cylindrical coordinates (r, θ) is given as:  

𝑢1
𝑚𝑏𝑙𝑓

(𝑟, 𝜃) = 𝐾𝐼
1−𝑣

𝐸
√

𝑟

2𝜋
𝑐𝑜𝑠

𝜃

2
(3 − 4𝑣 − 𝑐𝑜𝑠𝜃) +

𝑇

𝐸
𝑟𝑐𝑜𝑠𝜃 …………..Equation 18 



An Overview of Recent Trends in Constraint-Based Fracture Mechanics 

*Corresponding Authors: Ali Mustapha Alibe                                                                                            68 | Page 

𝑢2
𝑚𝑏𝑙𝑓

(𝑟, 𝜃) = 𝐾𝐼
1−𝑣

𝐸
√

𝑟

2𝜋
𝑠𝑖𝑛

𝜃

2
(3 − 4𝑣 − 𝑐𝑜𝑠𝜃) −

𝑣𝑇

𝐸
𝑟𝑠𝑖𝑛𝜃 …………Equation 19 

 

 

2.2 J-T Approach 

(Rice, 1974) had admittedthat T-stress has no much influence on the J-integral. This means that the T-

stress can be safely used in conjunction with other parameters to measure the crack tip field where the single 

parameter application fails.   

(Bilby et al., 1986) in their contribution proved the consequence of the second-order term on the large 

geometry change (LGC) within the ratio 
2𝐽

𝜎0
of the crack tip vicinity. Most importantly, negative T-stresses were 

found to substantially minimize triaxial stress value ahead of the crack. Conversely, the influence of T on the 

crack tip field was detailed through the systematic contributions of Hancock and his team in (Al-Ani & 

Hancock, (1991)(Betegón & Hancock, 1991)Du & Hancock, (1991)) they observed the importance of T-stress 

in the application as a constraint parameter in measuring the deviation between stress field and HRR fields, and 

thus developed the K/J-T crack tip quantification approach. 

(Betegón & Hancock, 1991) analyze plane-strain elastic-plastic crack tip field by applying modified 

boundary layer formulation and a strain hardening material response. Their findings specifythat the 

configuration characterized by zero and positive T stress makes the stress field to approach HRR field, while 

configurations with Negative T stress make the opening stress ahead of the crack tip to reduce significantly. The 

influence of T stresses lower direct stresses ahead of the tip of the crack by an amount that is proportional to T 

and independent of the distance 
𝑟𝜎0

𝐽
. Bategon and Hancock with reference to this result suggested a stress field 

familydiffering only by a distance independent higher order term which depends on T: 

(
𝜎𝜃𝜃

𝜎0
)

(𝑟,𝑇)
= (

𝜎00

𝜎
)

(𝑟,𝑇=0)
+ 𝐴𝑛 (

𝑇

𝜎0
) + 𝐵𝑛 (

𝑇

𝜎0
)

2

 ………………………………..Equation 20 

𝐴𝑛and 𝐵𝑛are constants that depends on the strain hardening exponent, n of the material. The first term 

of equation (20)(
𝜎00

𝜎
)

(𝑟,𝑇=0)
denotes the opening stress estimated by using the J-based plain strain HRR solution 

where T = 0. While the second and the third term in the equation (20) estimates the deviation from the HRR 

field due to negative T-stress. The sign of T-stress related to the cracked body governs the J-dominance, 

therefore the requirement of specimen size and loading criteria is no longer applicable to establish J-dominance 

in a typical J-T approach.  

Al-Ani & Hancock, (1991) reported that J-dominance in shallow crack geometries could be lost or 

retained according to the sign of  T-stress. Submitting that sign of T-stress changes from positive to negative as 

the cracked bend bar transition from a deep crack to a shallow crack. An unconstrained flow field with plasticity 

covering the area of cracked and un-cracked ligament was revealed in a shallow crack with negative T-stress. 

While a completely constrained flow field was linked with a deeply crack bars that shows positive T-stress. This 

observation served as the basis for stress field to be measured by two parameters, J and T respectively. The 

fracture mechanics approach uses the latter parameter to quantify constraint while the former is used to scaled 

applied load. (Parks, 1992) 

The effect of T on structure of the crack tip field in plane strain conditions has been reported in (Du & 

Hancock, 1991) using modified boundary layer formulations. Crack tip deformations was depicted by slip line 

fields within small-strain theory. It was proved that tensile T-stresses increases the magnitude of crack tip stress 

triaxiliaty towards the Prandtl field though the plastic zone reduces and rotates towards the crack flank. 

Compressive T-stresses decrease the level of stress traixiality and makes plastic zone to swing forward.  They 

observed that tensile positive T-stress results plasticity to envelope the crack tip and displays a Prandtl field, 

equaling to the limiting HRR solution for non-hardening material. This leads to a loss of J-dominance, and 

stress distributions represented by an incomplete Prandtl field   

The progress demonstrated in the work of Hancock and co-workers (Du & Hancock, 1991)(Betegón & 

Hancock, 1991)on the parameterization of J-T indicated that J-T approach can characterize stresses around the 

crack tip field irrespective of the geometry and loading. Even though T-stress was an elastic parameter, J-T 

approach based characterization can be applied to beyond the limit of contained yielding as reported by 

(Karstensen et al., 1997). But, other researchers in the field (O’dowd & Shih, 1991, 1992)challenged the 

argument intensely by claiming that T-stress was achieved from an asymptotic expansion series of elastic crack, 

therefore it application should be limited to only small scale yielding conditions.  

 

2.3 J-Q Approach 

The K/J-T approach has shortcomings, limited to small scale yielding conditions, essentially due to the 

T-stress been an elastic parameter, and tends to be less meaningful in characterizing crack tip fields as the 
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plastic zone enlarges around the crack tip. To address this shortcomings, a different second parameter Q was 

examined for an elastic-plastic crack under small and large scale yielding conditions. (O’dowd & Shih, 

1991)proposed a new two parameter approach termed J-Q approach. The second parameter Q wasconsidered as 

a dimensionless amplitude to designate the non-singular second order term in the crack tip expansion in 

(Williams, 1957). Based on the work of (Y. Li & Wang, 1986), (Sharma & Aravas, 1991) where two term 

asymptotic expansions of crack tip deformations was detailed. (O’dowd & Shih, 1991, 1992) assuming that FEA 

result are exact and calculated the difference between numerical and HRR. They suggested that the crack tip 

stress field can be shown in the form of the two term expansion by following equation (21) 

𝜎𝑖𝑗 = 𝜎0 (
𝐽

𝛼𝜎0𝜀0𝐼𝑛𝑟
)

1

(𝑛+1)
𝜎𝑖�̃�(𝑛, 𝜃) + 𝑄 (

𝑟

𝐽/𝜎0
)

𝑞

𝜎𝜎𝑖𝑗̃ (𝑛, 𝜃) ………………..Equation 21 

where 𝜎𝑖�̃�(𝑛, 𝜃) are functions computed numerically, q denotes power exponent ranging from (0 to 0.071) and Q 

as defined earlier is the parameter an amplitude of second term asymptotic solution. (O’dowd & Shih, 1991, 

1992)experimented the Q parameter within the range of 𝐽/𝜎0 < 𝑟 < 5𝐽/𝜎0 near the crack tip. They reported that 

the parameter Qdimly defends on the distance of crack tip within the range of angle|𝜃|≤ 𝜋/2.O’Dowd & Shih 

suggested only two terms to define the crack tip deformations in the vicinity of the crack.  

𝜎𝑖𝑗 = (𝜎𝑖𝑗)HRR +  𝑄𝜎0𝜎 ҇𝑖𝑗(θ) ………………………………………………….Equation 22 

Where (𝜎ij)HRR is the HRR field, 𝜎0is the yield stress and Q is the stress triaxiality parameter to represent the 

hydrostatic stress level at the crack tip. It was observed that from FEA result of crack tip opening stress (𝜎𝜃𝜃)FEA 

the Q-stress may be evaluated from the following formulae:  

𝑄 =
(𝜎𝜃𝜃)𝐹𝐸𝐴−(𝜎𝜃𝜃)𝐻𝑅𝑅

𝜎0
 at 

𝑟𝜎0

𝐽
= 2  and θ = 0…………………………….Equation 23 

 

Where (𝜎𝜃𝜃)FEA is the stress value evaluated from FEA and(𝜎θθ)HRR is the stress value obtained from HRR 

solution.  

The distance 𝑟 =
2𝐽

𝜎0
from crack tip lies outside the finite strain blunting zone, this makes the values of Q 

obtained from small or finite strain analysis nearly the same(McMeeking, 1977). Furthermore, (O’dowd & Shih, 

1991) and (O’dowd, 1995) proposed anotherreference stress field to substitute the HRR solution in equation 

(22) using the small scale yielding stress field (𝜎ij)SSY with T=0 and where (𝜎ij)SSY is to be define by FEA 

applying the modified boundary layer formulation. Consequently, two reference stress field emanate in two 

forms of Q definition. The difference in Q due to these two reference stress field were analyzed by (O’dowd, 

1995)Generally, the theoretical HRR field is recommended to be applied as the reference field as used in 

equation (22) and (23) to decrease the FE computations required by the SSY reference stress field.  

(O’dowd, 1995; O’dowd & Shih, 1991, 1992, 1994)used several FEA results to demonstrate that the J-Q 

approach holds nearly in the area of interest (1≤r/(J/𝜎0)≤5)for most laboratory fracture test specimens up to 

some realistic deformation level. Under the small scale yielding conditions, the MBL analysis indicated that J-Q 

approach and J-T approach are found to be equivalent under the state where both approaches apply. However, 

this equivalence condition does not apply under large scale yielding or fully yielding conditions. This parameter 

is not suitableto describe the constraint effecton the crack growth J-R curve, based on the observation of 

(Faleskog, 1995) that indicated the Q parameter fluctuates on the J-R curve while in ductile crack growth. 

Generally, the Q parameter can efficiently define the constraint effect atthevicinity of crack tip for diverse 

geometries under a range of deformation stages. J-Q approach has got recognition for application in structural 

integrity assessment standard by European Engineering Programs such as (SINTAP, 1999) and (FITNET, 

2006). The Q-stress is used to construct the fracture toughness criterion and also for the fracture toughness 

assessment in structural parts. Hence, several fracture criterions based on O’Dowd’s theory has emerged and has 

practical applications in engineering problems.  

(O’dowd, 1995)  suggested a fracture criterion based on the J-Q theory as shown in the Equation (24) 

𝐽𝐶 = 𝐽𝐼𝐶 (1 −
𝑄

𝜎𝑐
𝜎0⁄

)
𝑛+1

……………………………………………..Equation 24 

Where Jc represents the real fracture toughness for structural part measured by geometrical constraint described 

by Q stress (of smaller value usually < 0), Jic denotes plain strain fracture toughness (Q=0) while 𝜎𝑐represents 

the critical stress according to the Richie-Knott-Rice hypothesis proposed in(Ritchie et al., 1973). This criterion 

was further studied by(Neimitz et al., 2007) where they suggested another criterion by modification of equation 

(24) by simply replacing the critical stress 𝜎𝑐 by 𝜎𝑚𝑎𝑥 representing maximum opening stress, which is 

numerically calculated using large strain formulation. The modified fracture criterion as suggested by (Neimitz 

et al.,)  is of the form: 

𝐽𝐶 = 𝐽𝐼𝐶 (1 −
𝑄

𝜎𝑚𝑎𝑥
𝜎0⁄

)
𝑛+1

…………………………………………………..Equation 25  
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Accordingly, Q stress has been widely applied to characterized the constraint effect on fracture toughness 

parameters Jc and JIcas reported in the work of (O’dowd & Shih, 1994)(Nevalainen & Dodds, 1995)(Joyce & 

Link, 1997, 1995)(Gao & Dodds Jr, 2001) 

 

2.4 J-A2 Approach  

As described above, the weakness of J-Q approach is that it was actually a typical numerical solution that was 

built based on FEA results. As load increases, the stresses around the crack tip in low constraint geometry 

slowly diverge from the HRR solution. An in-depth theoretical analysis was conducted by (Yang et al., 

1993)(Chao et al., 1994)working from the University of South Carolina, they developed the higher order crack 

tip field for materials that are elastic-plastic and power –law hardening compliance. Applying the theory of 

deformation plasticity under plain strain condition, these researchers revealed that the first three terms of the 

stress asymptotic expansion can be defined by only two parameters, where J-integral is the crack driving force 

and a second parameter termed as A2.This three term asymptotic stress solution is given as: 
𝜎𝑖𝑗

𝜎0
= 𝐴1 [(

𝑟

𝐿
)

𝑠1
𝜎 ҇𝑖𝑗

(1)
(𝜃, 𝑛) + 𝐴2 (

𝑟

𝐿
)

𝑠2
𝜎 ҇𝑖𝑗

(2)
(𝜃, 𝑛) + 𝐴2

2 (
𝑟

𝐿
)

𝑠3
𝜎 ҇𝑖𝑗

(3)
(𝜃, 𝑛)]…….Equation 26 

Where the stress power exponent 𝑠k(𝑠1 < 𝑠2 < 𝑠3 = 2𝑠2 − 𝑠1)and stress angular function 𝜎 ҇ij
(𝑘)

(θ, ) (𝑘 = 1,2,3) 

depends only on the strain hardening exponent n(S. Yang et al., 1993a) L is the characteristic length parameter 

and mostly taken as 1mm. the 𝐴1 𝑎𝑛𝑑 𝑠1 parameter are related to the HRR field given by:  

𝐴1 =  (
𝐽

𝛼𝜎0𝜀0𝐼𝑛𝑟
)

−𝑠1
……………………………………………………Equation 27 

𝑠1 =  −1/(1 + 𝑛)…………………………………………………….Equation 28 

From equation (26) above, the first termis a singular HRR field, while the other two terms are higher order 

terms, with amplitudes specified in terms of A2constraint parameter. (Chao et al., 1994; S. Yang et al., 

1993b)determined the A2 parameter applying a simple point matching technique at r=2J/𝜎0and θ = 0 as applied 

in equation (23) in the definition of Q. other more accurate techniques applied in the determination of A2 are the 

least square fitting reported in  (Nikishkov et al., 1995)or a simple weight average method by (Chao & Zhu, 

2000) 

(S. Yang, 1993) demonstrated numerically that the parameter A2changes to constant under LSY or fully plastic 

state when the load applied is greater than 1.2 times the limit load for three point bending (3PB) specimen or 

SENT specimens. A study by (Chao & Zhu, 2000)later provided  a hard theoretical evidence that the A2 

parameter is independent of the applied J-integral under LSY or fully plastic deformation. This finding of been 

load independent makes A2 more importantsince its value determined at a ductile crack initiation load measured 

by Jimay remain constant for an applied J larger than Ji. Therefore, A2 is a suitable parameter to define the 

constraint effect on both Jc orJIcfracture toughness parameters and J-R curve during ductile crack tearing. The Q 

parameter in contrast is almost independent of the applied J  

 

2.5 J-A Approach  

The J-A2  two parameter approach combining J and A2 parameters, was first suggested by (S. Yang et al., 1993b) 

which is centered on a three term asymptotic expansion.  

(Nikishkov, 1995; Nikishkov et al., 1995) developed a similar series expansion. They applied the term A to 

represent the second constraint parameter, which is actually a different normalized method of A2 in the J-A2 

approach. Hence, the term J-A approach is applied instead of J-A2 approach.  

The deformation for the material of the cracked part is in conformity with the Ramberg-Osgood power-law 

strain hardening curve Equation (1). (Hutchinson, 1968) and (Rice & Rosengren, 1968) unraveled an asymptotic 

problem for elastic-plastic crack and revealed that within the framework of small strains, the stresses in the 

vicinity of the crack tip referred to as HRR field are singular. From Equation (2) the stress can be expressed in 

the form  

𝜎𝑖𝑗

𝜎𝑌
= (

𝐽

𝛼𝜎0𝜀0𝐼𝑛𝑟
)

1

(𝑛+1)
𝜎𝑖�̃�

(0)(𝜃) ………………………………………….Equation 29 

From the above expression r is the distance from the crack tip, and J is as specified in Equation (3). The yield 

criterion is written in the form given in equation (30) this HRR field does not properly define stresses in the 

region 1 < 𝑟
σY

𝐽
< 5 that is important for fracture process.   

(𝜎𝑥𝑥 − 𝜎𝑦𝑦)
2

+ (𝜎𝑦𝑦 − 𝜎𝑧𝑧)
2

+ (𝜎𝑧𝑧 − 𝜎𝑥𝑥)2 + (𝜏𝑥𝑦
2𝜏𝑦𝑧

2𝜏𝑧𝑥
2) = 2𝜎𝑌

2…………Equation 30 

More descriptive stress field in this region can be obtained with three term asymptotic expansion suggested by 

(S. Yang et al., 1993b) and improved further by (Nikishkov et al., 1995) 
𝜎𝑖𝑗

𝜎𝑌
= 𝐴0𝜌𝑠𝜎 ҇𝑖𝑗

(0)
(𝜃) − 𝐴𝜌𝑡𝜎 ҇𝑖𝑗

1
(𝜃) +

𝐴2

𝐴0
𝜌2𝑡−𝑠𝜎 ҇𝑖𝑗

(2)
(𝜃)…………………………………Equation 31 
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In this equation (31), the second fracture parameter is denoted by 𝐴, whileσij are components of stress 𝜎𝑟 , 𝜎𝜃and 

𝜎𝑟𝜃 in the polar coordinate system 𝑟𝜃 with origin at the crack tip, dimensionless angular stress functions denoted 

by 𝜎 ҇𝑖𝑗
(𝑘)

 gained from solution of asymptotic problem of order 0,1 and 2. Angular stress functions 𝜎 ҇𝑖𝑗
(0)

 and 𝜎 ҇𝑖𝑗
(1)

 

are gauged to achieved a unity equivalent Mises stress, expressed as maxθ𝜎 ҇𝑒
(0)

= maxθ𝜎 ҇𝑒
(1)

= 1. Amplitude of 

stress angular functions for the order 2 problem are determined by on the solutions of the order 0 and 1 

problems. While s is an exponent that has a closed form expression given in equation (28). Exponent 𝑡 is a 

numerically calculated eigenvalue that relies on the strain hardening exponent 𝑛. 𝐴0 is a coefficient expressed 

mathematically as in equation (32) 

𝐴0 =  (𝛼𝜀0𝐼𝑛 )
𝑠…………………………………………………………………..Equation 32 

ρ is a dimensionless radius given by the following expression, equation (33) 

𝜌 =
𝑟

𝐽/𝜎0
…………………………………………………………………………………Equation 33 

comparing equation (29) and (31) it can simply be seen that the first term of the asymptotic expansion in (31) is 

precisely the HRR field in (29). The three term of the expansion in equation (31) are governed by two 

parameters, J and A respectively. The parameter A is a degree of stress field deviation from the HRR field.  

(Matvienko, 2020)(Matvienko & Nikishkov, 2017)discussed the theoretical and numerical features of the two 

parameter J-A theory in elastic plastic fracture mechanics in relation to crack tip constraint, where the parameter 

A was reported to be capable of been introduced as a fracture criterion as a constraint parameter. The two 

parameter J-A fracture criterion permits approximating whether elastic approach is conservative or otherwise.   

 

2.6 J- TZ Approach  

To assess the effect of out of plane stress constraint on the elastic-plastic crack tip fields, (Guo, 1993a, 1993b, 

1995) has proposed an out of plane stress constraint factor TZ. Neglecting the out of plane component of shear, 

the constraint parameter TZ can be defined as the ratio of the out of plane stress 𝜎33to the sum of in-plane stress 

(𝜎11 + 𝜎22) it is expressed as: 

𝑇𝑧 =
𝜎33

𝜎11+𝜎22
 …………………………………….…………………………………………Equation 34 

where subscripts 1, 2 and 3 represent x, y and z in the Cartesian coordinate or r, θ and z in the polar coordinate, 

respectively, with z axis along the direction tangential to the crack front line. Tz= 0 in plane stress state. While, 

in plane strain state Tz equals to Poisson’s ratio 𝜗 for elastic materials and 0.5 for incompressible plastic 

materials, and may change from 𝜗 to 0.5 for elastic-plastic material. Tz normally ranges from 0 - 0.5, in the 

vicinity of the crack in a given finite parts. (Guo,) has extended the HRR solution from 2D solution with Tz = 0 

for plane stress or Tz = 0.5 for plane strain to a modified HRR solution referred to as J − Tz approach covering 

the range of Tz from 0 - 0.5 completely. (Neimitz, 2000, 2004)(Guo, 1993a) 

𝜎𝑖𝑗 = (
𝐽

𝛼𝜎0𝜀0𝐼𝑛(𝑇𝑧,𝑛)𝑟
)

1

(𝑛+1)
𝜎𝑖�̃�(𝑇𝑧 , 𝑛, 𝜃) ……………………………………………Equation 35 

The three dimensionaleffect can be introduced into equation (35) through In 𝑎𝑛𝑑σij̃ that are functions of (Tz). 

The values of the function Inandσij̃ can computed numerically as studied by (Galkiewicz & Graba, 2006). The 

application of J-Tz approach in measuring the stress distribution along the crack front was studied by (Guo, 

1995). Hoop stress were computed applying Tz values from (Narasimhan & Rosakis, 1990) used in equation 

(35). (Guo, 1995) observed that the hoop stress, σ33 projected from the J − Tz approach agreed with the findings 

from (Narasimhan & Rosakis, 1990) 

To obtain the three dimensional crack tip stress field according to the J − Tz approach, the exact value of Tz is 

usually obtained through a 3D finite element formulation. But, the values of Tz along the crack front tip are 

crack configurations dependent.Procedures to achieve an exact Tz distribution were studied and fitting equation 

were formulated for ease of Tz distribution along a 3D crack front configurations.(Zhao & Guo, 2012) derived 

fitting empirical solutions for Tz distribution for mixed mode elastic compact tension shear specimen. A double 

edged notched specimen in tension with numerous notch shape was studied in(Li et al., 2000)while a single edge 

cracked specimen under tension in creep was reported in (Xiang & Guo, 2013) and a three dimensional 

modified boundary layer formulation by(She et al., 2008). However, the usage of these empirical fitting solution 

were narrowed since they were proposedonly for specific crack configuration. 

Three dimensional elastic –plastic crack according to (Guo, 1995),showed that the Tz distribution at an angle 

θ=0o along the crack front can be described by: 

𝑇𝑧 =
1

2
[1 − (1 − 2𝑣)(

𝑟

𝑟𝑝
)

𝑛−1

2.3𝑛+1] [1 − 1.218(
𝑟

𝐵
)

1
2⁄ − 0.395 (

𝑟

𝐵
) + 0.361(

𝑟

𝐵
)3/2] 𝑋 [1 −

|
𝑥3

ℎ
|

0.94(
𝑟

𝐵
)−0.58

]

2

………………………………………………Equation 36 
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where 𝑣, 𝑟𝑝 , ℎ, 𝑧 𝑎𝑛𝑑 𝑛 are Poisson’s ratio, plastic zone size, half thickness of specimen, distance measured from 

the mid-plane of the specimen, and strain hardening exponent respectively. Equation (36) is limited for a 

through thickness crack with a/W=0.5 under SSY condition only with loading level, 𝐽/𝜎0𝜀0𝐵 ≤ 10.The Tz 

distribution along a crack front projected from equation (36) was compared with the findings from (Nakamura 

& Parks, 1990). Conversely, it is imperative to note equation (36) does not distinguish between the effect of 

positive and negative T-stresses on the configuration of the plastic deformation at the crack tip fields as 

observed in (Du & Hancock, 1991) 

An approach that combines Tz with the existing two parameter approaches was proposed  in measuring 

the three dimensional crack tip field.  𝐾 − Tz approach was proposed for elastic three dimensional crack (She et 

al., 2008) and that was followed by 𝐾 − 𝑇 − Tz approach as reported in (Zhao & Guo, 2012). An effort to 

link𝐽 − 𝑄 approach with Tz was studied by (Neimitz & Graba, 2008)where it was shown that numerical effort is 

required to compute the modified Q parameter denoted by Q* function, which was found to be dependent of 

several variables, it represent the difference between actual stress field and the reference field given from Guo’s  

general asymptotic stress field at crack tip in a power law material.  

The applicability of 𝑇𝑍in defining the out of plane constraint effect was studied by several scholars. 

(Shlyannikov et al., 2011) discussed the through thickness distribution of  Tzin a biaxial loaded plate. Tz was 

found not sensitive to the change in load biaxiality due to applied T-stress. Evaluation of the influence of crack 

length andtest specimen thickness on the Tz through thickness distribution using compact tension (CT) and a 

single edge notched bend (SENB) specimens were conducted by (Shlyannikov et al., 2014) it was observed that 

despite Tz been an out of plane constraint parameter, it was delicate to changes in crack length in the CT 

specimen. This means that the Tz distribution along the crack front could be affected by both in plane and out of 

plane constraint loss. However, (Yusof & Leong, 2019) suggested that the measurement of the 3D crack tip 

stress in power law hardening material is still an unanswered problem thus requires other suitable ideas to 

resolve the problem.  

(Wang et al., 2014a, 2014b)carried out a detailed study on the Tz distribution along the crack frontusing 

a single edge notched tensile (SENT) specimen. Diverse crack configurations were utilized in the FEA by 

altering the thickness to width ratio (B/W) crack length to width ratio (a/W) and strain hardening rate (n). It was 

observed that the through thickness distribution of Tz in SENT specimen was independent of the n anda/W . The 

through thickness distribution of  Tz tends to exhibit more uniformity with increase in specimen thickness, this 

implied consistent value of  Tz along the crack front and it value reduces at the area near the free surface. 

 

III. Conclusion 
Constraint-based fracture mechanics has emerged as a crucial advancement in the field of fracture 

mechanics, offering a more nuanced and accurate understanding of crack behavior. By considering factors 

beyond just crack size and applied load, such as stress fields and material properties, this approach has proven 

invaluable in assessing the criticality of cracks in various engineering applications. 

The incorporation of parameters like T-stress and Q-stress has expanded the analytical toolbox 

available to researchers and engineers, enabling them to make more informed decisions about structural integrity 

and safety. This, in turn, has led to improved designs, reduced maintenance costs, and enhanced overall 

reliability in critical industries. 

As technology continues to advance, and materials and structures become increasingly complex, the 

principles of constraint-based fracture mechanics will likely play an even more significant role in ensuring the 

safety and longevity of engineering systems. Researchers will continue to refine and expand upon these 

principles, ultimately contributing to safer and more efficient designs in the future. 
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