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Abstract: This study focused on interleukin-1β (IL-1β), a cytokine involved in inflammatory response. Chronic 

forms of inflammation due to IL-1β promote an environment conducive to metastasis and cancer growth, as well 

as other inflammatory and autoimmune diseases. There are currently monoclonal antibodies, such as 

canakinumab, that act as IL-1β blockers to be used in immunotherapy. However, small molecule inhibitors, which 

exhibit properties much more favorable to druggability, have been difficult to identify. Past studies have attempted 

to identify small molecules to inhibit Interleukin-1β through fragment-based screening and nuclear magnetic 

resonance studies. Moreover, these studies have mostly employed much smaller databases of molecules, allowing 

fewer possibilities for effective drug design. Through a unique combination of pharmacophore-based screening 

and molecular docking techniques, this study focused on discovering several promising IL-1β inhibitors for future 

testing and drug design. The study identified candidate molecules from an online database of over 18 million 

compounds using pharmacophore maps showing favorable interactions with binding sites on Interleukin-1β. The 

top candidates were then narrowed down through a combination of tests based on molecular docking and physical 

properties relating to druggability. The resulting small molecules identified by the screening provide a very 

promising starting point for future research in developing inhibitors of Interleukin-1β to be used in 

immunotherapy. Further development of these small molecules requires additional verification through 

biophysical screening techniques in a laboratory setting. 
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I. Introduction 
Cancer 

Cancer is a common disease leading to millions of deaths each year and is the second leading cause of 

death globally1. As a result, it has been the subject of extensive study. The National Cancer Institute provides 

general information about cancer2. It can begin in many different types of cells as genetic changes, which can 

originate from errors during cell replication, damage to DNA by harmful substances, or genes inherited from 

parents. Many types of unusual tissues, called tumors, can occur in the body, but most are benign and will not 

spread to other parts of the body through metastasis. However, some tumors that contain cells with certain genetic 

mutations become “cancerous,” growing rapidly and ultimately negatively impacting health. Most mutations that 

lead to cancer can be classified under three general classes of genes responsible for regulating the cell cycle: proto-

oncogenes, tumor suppressor genes, and DNA repair genes. Although the general mechanisms behind cancer are 

understood, cures for cancer are limited by the huge diversity in types of cancer and different cells within 

cancerous tumors. 

 

Immunotherapy 

There are a number of modern approaches to treating cancer, but it has mostly been dominated by three 

traditional approaches: surgery, chemotherapy, and radiotherapy. A review of tumor treatment strategies by 

researchers at the University of Hong Kong notes that patients treated with the three traditional approaches face 

“onerous physical and psychological challenges”3, as they often have many adverse effects that are not limited to 

cancer cells. As a result, significant progress has been made in a number of alternative treatments4. 

Immunotherapy in particular has been the subject of recent research and attention due to the way that it takes 

advantage of the body’s natural dynamic system to fight cancer—it has the potential to improve existing treatment 

regimens significantly. In their natural state, immune cells can effectively hunt down and fight foreign substances, 
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but face challenges in identifying cancer cells. Immunotherapy boosts the immune response and offers more 

precise targeting than traditional treatments. Several different types of immunotherapy are used, including 

monoclonal antibodies, which mimic normal antibodies and direct immune cells toward specific antigens on 

cancer cells, cytokines, proteins that are injected into the body to stimulate immune response, and immune system 

modulators, which improve the immune response against cancer5. While there are clear advantages to 

immunotherapy, it is still a field under development and has “obvious complexity and uncertainty,” as a result of 

factors such as drug resistance, overstimulation of the immune system, and high costs6.  

 

Interleukin-1β 

The specific target of this paper is interleukin-1β (IL-1β), a cytokine involved in inflammatory response. 

IL-1β is an alarm cytokine that initiates and promotes local inflammation in response to pathogens and other signs 

of danger7. In high concentrations, however, it can cause chronic inflammation and the production of carcinogenic 

nitric oxide and reactive oxygen species, supporting a tumor microenvironment. Attempts have been made to find 

immune system modulators that inhibit IL-1β, thus reducing tumor likelihood. A research paper published in 

Cancer Immunology Research by Diwanji et al.8 targeted this protein using the monoclonal antibodies 

canakinumab and gevokizumab, which have specifically been designed to inhibit IL-1β. These treatments were 

tested on mouse samples both alone and in combination with existing cancer treatments. Tumors were then 

analyzed with flow cytometry, IHC, and RNA sequencing techniques after the treatment. Although reductions in 

tumor size were observed with canakinumab and gevokizumab individually and in combination with other 

treatments, none of these results were significant. The treatments were also found to impact populations of 

immune cells around the tumor, and the researchers suggest that IL-1β inhibition results in a “less 

immunosuppressive” cancer phenotype. Based on results from the experiment, the report concluded that 

canakinumab and gevokizumab are not useful as individual treatments, but have much potential in tandem with 

other cancer therapies due to the significant effects of IL-1β inhibition on the tumor microenvironment. Another 

paper published in Nature Communications by Hommel et al. noted that no effective low-weight inhibitors 

(discussed in the next section) of IL-1β existed; as such, they attempted to create one9. The researchers first used 

fragment-based screening and Nuclear Magnetic Resonance (NMR) to identify one compound out of a library 

with 3,452 compounds that could bind to IL-1β. Next, the researchers tested derivatives of the compound with 

1H–1C–HMQC NMR, changing different substituents and eventually finding a compound they labeled (S)-2. (S)-

2 was then tested with cells, and the researchers found that it could selectively bind and inhibit IL-1β and not IL-

1α, making it useful as a potential drug candidate. X-ray crystallography was then used to investigate the three-

dimensional binding structure, leading to the discovery of a new binding site resulting from an excited 

conformation of the interleukin, which offers potential for future targeting and inhibition. The results of these 

studies highlight the importance of IL-1β as a therapeutic target in reducing cancer and offer promise for the 

development of novel small-molecule inhibitors. 

 

Small Molecules 

Hommel et al. noted the importance of small molecule inhibitors, which are a major focus of 

immunotherapy9. Many current treatments in immunotherapy are not very effective, and this is often due to poor 

pharmacokinetic properties. Small-molecule treatments have unique chemical properties that allow for greater 

membrane permeability to reach targets, oral bioavailability, low costs, and access to a diverse range of targets10. 

Therefore, these treatments have shown increasing promise either working in tandem with other therapies or 

individually11. As a result, small-molecule treatments have been developed for a wide variety of targets, including 

immune response pathways, immune checkpoints, and metabolic pathways12. While Liu et al. noted that there are 

still challenges, such as identifying patient-specific dosages for small molecule drugs, their study also recognizes 

the great potential, aided by computational modeling techniques discussed in the next section10. 

 

Virtual Screening 

The process of drug discovery features several key steps, beginning with the identification of a target and 

ending with clinical development of a drug. In between, large numbers of candidates must be meticulously 

evaluated and tested to ensure that the final drug is effective and safe, creating a multi-billion dollar process that 

often takes over 10 years13. Computational modeling has revolutionized modern drug discovery, streamlining the 

early stages of finding therapeutic candidates. The utility of computer-aided drug discovery is highlighted by three 

developments: the availability of 3D structures, the explosion of digital libraries, and new computing approaches 

and processing to take advantage of available information14. One advantage that computing-based techniques have 

over traditional ones lies in the screening process, in which numerous compounds are tested to find “hits” for 

further testing. Virtual screening techniques draw from libraries several orders of magnitude larger than traditional 

high-throughput screening, which increases both the number of hits and the possibility of hits with more 

advantageous physical properties.  
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Pharmacophore Screening 

Pharmacophore-based virtual screening is a specific technique that has been successfully used in virtual 

screening. It relies on pharmacophoric features (Figure 1.1), which represent specific parts of a molecule with 

certain properties (e.g., hydrogen bond donors, hydrophobic, aromatic features). Because these features are what 

make interactions between two molecules possible, “similar biological events can be triggered by chemically 

divergent molecules.”15 This makes pharmacophore mapping extremely useful in searching for small molecules. 

Several recent studies have used pharmacophore mapping for protein inhibition for a variety of targets, such as 

Glycogen Synthase Kinase-316,  Estrogen Receptor Beta17, and Glutaminyl Cyclase18. However, none have 

targeted IL-1β. 

 

Figure 1.1 shows seven main pharmacophoric feature types represented by geometric spheres15. 

 
Figure 1.1 Pharmacophoric Features 

Research Gap 

The gap in current research that this study addresses has been pointed out in other studies, but has not 

been filled yet, and the methods to do so have also been explored, but not in relation to the target of this study. 

Although several studies have targeted the IL-1β protein, none has successfully found a small molecule inhibitor, 

which is in high demand and is growing in popularity as a therapeutic. Although other studies have applied 

pharmacophore screening to identify small molecule inhibitors, pharmacophore-based techniques have not been 

applied to IL-1β before. This methodology may be advantageous to past studies due to the versatility of 

pharmacophore features and the large chemical libraries that these techniques use. By addressing this gap, more 

effective cancer therapeutics could be created, and a greater understanding of the range of uses for pharmacophore 

mapping could be obtained. Thus, this research project aimed to answer the question: How might pharmacophore-

based virtual screening methods be used to identify novel small-molecule inhibitors of the carcinogenic 

Interleukin-1β protein? 

 

II. Methods 
There are a number of different techniques used in virtual screening. Pharmacophore mapping, in 

particular, was selected for its past use in small-molecule protein inhibition. The expert advisor for this project 

contributed by introducing some of the specific applications used, which are all web-based and free. Each of these 

methods and the research papers behind them is cited in references. 

 

Binding Site Verification 

 The first step in finding small molecule inhibitors to bind to IL-1β was checking for possible binding 

sites. Three methods were used to verify the existence of binding sites in the molecule: a geometric method, an 

energetic method, and a machine-learning method. The tools used for these methods were DoGSiteScorer19,20,21,22, 

FTSite23,24,25,26, and PRankWeb27,28,29,30, respectively. A major part of this project was structures from the Protein 

Data Bank (PDB)31,32,33. The three-dimensional crystal structures of a protein or protein complex, containing all 

of the amino acids in the protein, are described by a PDB code that is widely recognized. For these experiments, 
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the four-character code 1IOB was used for the structure of IL-1β. This represents a crystal structure of the free 

IL-1β protein so that binding sites can be identified. 

DoGSiteScorer 

The geometric method, using DoGSiteScorer, is based primarily on binding site size and searches for possible 

binding pockets based on the three-dimensional structure of the proteins, calculates their physical properties, then 

assigns a druggability factor based on each pocket’s volume, hydrophobicity, and enclosure. At the website 

proteins.plus, the geometric method with DoGSiteScorer was used by entering the PDB code and pressing “Go,” 

then selecting the DoGSiteScorer tool and pressing “Calculate.” DoGSiteScorer also has the option to add a ligand, 

but it is not necessary for binding site identification. Each of the binding sites identified by the tool was recorded. 

FTSite 

Next, the energetic method, using FTSite, searches each protein for ligand binding spots based on interaction 

energies. These binding sites are likely targets for small molecules. FTSite is based on FTMap, a server that 

utilizes 16 different probes with different chemical properties in billions of different positions to identify regions 

most likely to bind to other macromolecules. At the website ftsite.bu.edu, the FTSite tool was used by entering 

the PDB code and waiting for the tool to compute possible bonding sites. All of the results were recorded. 

PrankWeb 

Finally, the machine-learning method is based on a combination of previous factors, using the PrankWeb tool at 

prankweb.cz to find binding sites. At the website, the PDB code was entered, and the resulting information about 

possible binding sites and amino acid residues located at each site was recorded. 

 

Pharmacophore Map Creation 

 After verifying the existence of promising binding sites in the protein target, the next step was identifying 

pharmacophore maps that fit the binding. The PDB code used for pharmacophore map identification was 4G6J, a 

structure based on the interactions of IL-1β with the drug Canakinumab. The tool PocketQuery34 creates 

pharmacophore maps from the binding sites of Canakinumab with IL-1β. These pharmacophore maps can then be 

used with ZINCPharmer35,36 to identify small molecules that match the pharmacophore maps and can likely bind 

to IL-1β, mimicking the interactions with Canakinumab.  

At the PocketQuery website http://pocketquery.csb.pitt.edu/, the PDB code for the protein complex was 

entered. Next, the resulting pharmacophore maps were ranked by selecting “Score” on the top-right of the page 

so that the scores closest to 1 are at the top. Small molecules were then identified for the top pharmacophore maps 

by clicking on each pharmacophore map and selecting “Export” and “Send to ZINCPharmer.” The ZINCPharmer 

tool requires at least three features on the pharmacophore map to search for small molecules that can bind 

effectively. If a pharmacophore map had too many features and no molecule was identified, some of them were 

deselected. The three top pharmacophore maps were then selected, and they were used to search for small 

molecules with the “Submit Query” button. For each of the three pharmacophore maps, ZINCPharmer searched 

for matching small molecules, providing a Root Mean Square Deviation (RMSD) value for each one. The names 

of the molecules with the lowest RMSD values were recorded. In this experiment, twenty-one small molecules, 

seven from each of the three pharmacophore maps, were selected. 

 

Energetic Analysis 

After identifying small molecules, energetic analyses of interactions with IL-1β through molecular 

docking were performed using the SwissDock tool at the website swissdock.ch. First, the SwissDock tool requires 

a SMILES ID for each small molecule. This was obtained through the ZINCPharmer website by clicking on a 

small molecule’s name, and then copying the SMILES ID into SwissDock. In particular, this experiment used the 

Attracting Cavities docking engine, which allows the small molecule and the protein target to interact freely. After 

pressing the “Prepare ligand” button, a protein ID was entered. This experiment used the protein ID 1IOB, a 

crystal structure of free IL-1β that can bind with potential small molecules in any way. In this case, there was only 

one option for both “chains to keep” and “heteroatoms to keep”, so these options were selected, and “Prepare 

target” was pressed. Next, it is necessary to specify a Search Space for the molecular docking. This experiment 

used the Center settings of 12, 15, 2 and Size settings of 33, 26, 29 to maximize the features of the protein in the 

Search Space. 

 

Figure 2.1 shows the Search Space window of the protein IL-1β using the tool SwissDock37,38,39 and the PDB 

code 1IOB.  
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Figure 2.1 SwissDock Search Space 

  

After specifying the Search Space, no extra parameters were needed. After clicking “Check parameters” 

and then “Start Docking,” the docking process began. SwissDock tests the interaction of the target protein and 

each small molecule by probing binding sites across the protein with multiple different orientations. Once the 

docking finished, SwissDock showed a new page with a viewer and a table with the top orientations. The table 

was ordered by the highest (i.e., most negative) SwissParam Score (equivalent to Gibbs Free Energy), and the top 

interaction energy for each small molecule was recorded. 

 

Druglike Properties 

 In order to verify that the top small molecules were druggable and followed Lipinski’s rule, 

SwissADME40, a tool for drug design, was used. SwissADME is at the website swissadme.ch, and also requires a 

SMILES ID for each small molecule. These were already obtained in the previous experiment. The five small 

molecules with the most negative Gibbs Free Energy were selected as the most promising candidates for drug 

design. Each SMILES ID was inputted so that SwissADME could calculate the four druggability-related 

properties of each drug to verify if they followed Lipinski’s rule. The final results were recorded. 

 

III. Results 
Binding Site Verification 

Potential binding sites in the protein were identified through 3 different methods: a geometric method, an energetic 

method, and a machine-learning method. 

DoGSiteScorer 

The DoGSiteScorer tool from proteins.plus was used, and seven binding sites were identified. 

 

Table 3.1 shows the volume, surface area, and drug score of the 7 binding sites identified by DoGSiteScorer on 

IL-1β.  

 

 

Table 3.1 DoGSiteScorer Results 

Name Volume (Å3) Surface Area (Å2) Drug Score 

Site 1 343.94 348.52 0.76 

Site 2 248.51 287.05 0.51 

Site 3 273.15 473.85 0.5 

Site 4 190.34 362.33 0.43 

Site 5 198.59 453.2 0.4 

Site 6 122.69 296.96 0.25 

Site 7 112.38 280.63 0.16 
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Figure 3.1 shows the binding sites identified on IL-1β with PDB code 1IOB by DoGSiteScorer. (Key: Site 1: 

Orange, Site 2: Green, Site 3: Purple, Site 4: Blue, Site 5: Reddish-orange, Site 6: Lime, Site 7: Magenta) 

 
Figure 3.1 DoGSiteScorer Binding Sites 

FTSite 

The FTSite method identified three possible binding sites on the protein. 

 

Figure 3.2 shows the FTSite energy-based binding sites identified on the IL-1β structure with PDB code 1IOB. 

 
Figure 3.2 FTSite Binding Sites 

 

PrankWeb 

The final method was the machine-based PrankWeb. One binding site, with 4 residues (LEU10, LEU18, 

LEU69, and LEU122) was identified using the prankweb.cz tool. 
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Figure 3.3 shows one binding site with four leucine residues identified by Prankweb on IL-1β.

 
Figure 3.3 PrankWeb Binding Sites 

 

Pharmacophore Map Creation 

The three highest-scoring maps that met the criteria were selected from PocketQuery, two from the heavy chain 

of Canakinumab, and one from the light chain. Seven small molecules were selected from each map. 

 

Table 3.2 shows the three maps collected from the interaction of IL-1β with Canakinumab, the number of 

residues each map was based on, and a score. 

Table 3.2 Pharmacophore Maps 

Map Number Chain Number of 

Residues 

Score Image 

Map #1 (kept 2nd hydrogen) Heavy 2 0.983362 

 

Map #2 (kept 1st hydrogen) Heavy 3 0.976374 
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Map #3 Light 3 0.974554 

 

 

Figure 3.4 shows the pharmacophore maps and residues of the three maps identified from PocketQuery on 

ZINCPharmer in order from Map #1 to Map #3 (left to right). These maps are based on the interactions of IL-1β 

with the monoclonal antibody Canakinumab, with the PDB code 4G6J. 

 
Figure 3.4 Pharmacophore Map Structures 

 

Table 3.3 shows the RMSD of the top seven small molecules resulting from Map #1, the names of the 

molecules, their molecular masses, and chemical structures. 

Table 3.3 Map #1 Small Molecules 

Name RMSD Molecular Mass 

(daltons) 

Image 

ZINC04533954 0.105 606 

 

ZINC73507050 0.170 321 

 

ZINC73486367 0.170 335 
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ZINC72625042 0.170 321 

 

ZINC73316448 0.170 350 

 

ZINC72613293 0.170 335 

 

ZINC73507052 0.172 321 

 

 

Table 3.4 shows the RMSD of the top seven small molecules resulting from Map #2, the names of the 

molecules, their molecular masses, and chemical structures. 

 

Table 3.4 Map #2 Small Molecules 

Name RMSD Molecular Mass 

(daltons) 

Image 

ZINC09714530 0.100 484 
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ZINC94052025 0.193 309 

 

ZINC94561077 0.193 309 

 

ZINC09714528 0.203 484 

 

ZINC73423551 0.218 380 

 

ZINC80720409 0.221 376 

 

ZINC84634631 0.225 351 

 

 

Table 3.5 shows the RMSD of the top seven small molecules resulting from Map #3, the names of the 

molecules, their molecular masses, and chemical structures. 
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Table 3.5 Map #3 Small Molecules 

Name RMSD  Molecular Mass 

(daltons) 

Image 

ZINC29101302 0.137 458 

 

ZINC92855724 0.155 381 

 

ZINC72365797 0.155 338 

 

ZINC12302607 0.171 395 

 

ZINC21663767 0.177 485 

 

ZINC40484421 0.177 455 
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ZINC21663769 0.177 489 

 

 

Energetic Analysis 

The energies of the top 21 small molecules were analyzed using molecular docking and the SwissDock tool. 

 

Table 3.6 shows the SwissDock results for each molecule, including the name of the small molecule, the 

pharmacophore map it was identified from, the Gibbs Free Energy, and an image of the small molecule binding 

to IL-1β. 

Table 3.6 Molecular Docking Results 

Name Pharmacophore Map Gibbs Free Energy 

(kcal/mol) 

Image 

ZINC04533954 Map 1 -7.4258 

 

ZINC73507050 Map 1 -6.9300 

 

ZINC73486367 Map 1 -6.9701 

 

ZINC72625042 Map 1 -7.1456 
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ZINC73316448 Map 1 -6.8828 

 

ZINC72613293 Map 1 -7.1022 

 

ZINC73507052 Map 1 -6.9513 

 

ZINC09714530 Map 2 -6.4430 

 

ZINC94052025 Map 2 -7.5875 

 

ZINC94561077 Map 2 -6.6235 
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ZINC09714528 Map 2 -7.5970 

 

ZINC73423551 Map 2 -6.9708 

 

ZINC80720409 Map 2 -7.5970 

 

ZINC84634631 Map 2 -6.9119 

 

ZINC29101302 Map 3 -7.5857 

 

ZINC92855724 Map 3 -7.0775 
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ZINC72365797 Map 3 -6.9693 

 

ZINC12302607 Map 3 -7.0976 

 

ZINC21663767 Map 3 -7.4437 

 

ZINC40484421 Map 3 -7.3192 

 

ZINC21663769 Map 3 -7.7568 

 

 

Druglike Properties 

A final verification of the top five small molecules from the 21 identified by the SwissDock tool is 

Lipinski’s rule, which is often used to ensure that a drug will have good absorption and permeation in the body. 

Lipinski’s rule examines four properties of the small molecule: the number of hydrogen bond donors, the number 

of hydrogen bond acceptors, molecular mass, and CLogP. The number of hydrogen bond donors must be less than 

five, and the number of hydrogen bond acceptors must be less than ten. This check prevents the molecule from 

having an excess of hydrogen bond interactions in the body, allowing it to travel more easily. Next, the molecular 

mass must be less than 500 daltons. This checks to make sure that the molecule is not too big in order to pass 

through different systems in the body. Finally, CLogP, which must be less than five, examines the lipophilicity of 

the small molecule. A value larger than zero means that the drug is lipophilic, but if CLogP is too large, the small 
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molecule will be unable to permeate different systems of the body effectively, getting stuck in hydrophobic 

regions. 

 

Table 3.7 shows the Gibbs Free Energy and four criteria for each small molecule important for druggability 

according to Lipinski’s rule: number of hydrogen bond donors, number of hydrogen bond acceptors, molecular 

mass, and CLogP. 

Table 3.7 Final Small Molecule Druglike Properties 

Name Gibbs Free Energy 

(kcal/mol) 

H-bond 

Donors 

H-bond 

Acceptors 

Mass 

(daltons) 

CLogP Druglike? 

ZINC21663769 -7.7568 1 5 488.92 3.64 Yes 

ZINC09714528 -7.5970 2 5 482.60 2.78 Yes 

ZINC80720409 -7.5970 4 2 375.51 2.51 Yes 

ZINC94052025 -7.5875 2 3 308.76 1.77 Yes 

ZINC29101302 -7.5857 1 5 457.52 3.49 Yes 

 

IV. Discussion 
Data Analysis and Discussion 

 Table 4.1 shows the average RMSD, average molecular mass, and molecular mass standard deviation 

values for each map. 

Table 4.1 Map Molecules Data 

Map Average RMSD Average Molecular Mass 

(daltons) 

Molecular Mass Standard 

Deviation (daltons) 

Map #1 0.161 369.85 104.68 

Map #2 0.193 384.71 73.50 

Map #3 0.164 428.71 57.73 

 

 Table 4.2 shows the average Gibbs Free Energy, Gibbs Free Energy Standard Deviation, and amino 

acid residues for each map. 

Table 4.2 Map Interactions 

Map Average Gibbs Free Energy 

(kcal/mol) 

Gibbs Free Energy Standard 

Deviation (kcal/mol) 

Amino Acid Residues 

Map #1 -7.058 0.186 Arginine, Proline 

Map #2 -7.104 0.490 Arginine, Leucine, Proline 

Map #3 -7.3214 0.291 Leucine, Proline, Serine 

 

 The top five molecules in terms of Gibbs Free Energy interaction with Interleukin-1β all came from Maps 

#2 and #3, with three molecules from Map #2 and two from Map #3. Map #3 overall had the highest average 

Gibbs Free Energy but a lower standard deviation in Gibbs Free Energy than Map #2, so larger values for the few 

top molecules from Map #2 likely accounted for this discrepancy. All three of these maps, which were the top 

pharmacophore maps, included a proline residue. Maps #1 and #2 shared an arginine residue, and Map #2 and 

Map #3 shared a leucine residue, which is consistent with the leucine residues identified in the possible binding 

sites in the free protein. The average molecular mass of the inhibitors increases monotonically from Map #1 to 

Map #3, while the standard deviation decreases monotonically. This may be notable because several of the top 

molecules were close to 500 daltons in mass, although they did not surpass this limit for Lipinski’s rules for 

druggability. However, one of these molecules from Map #2 had a significantly lower molecular weight, around 

300 daltons. This molecule also had a CLogP value of 1.77, which was less than all of the other molecules. This 

means that although this molecule is lipophilic, its hydrophobic interactions are not as strong as the other 

molecules. Values of CLogP that are too high could lead to decreased druggability as a result of reduced 

permeability in hydrophilic regions of the body. All five of the molecules with the highest Gibbs Free Energy of 
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interaction passed Lipinski’s rules, meaning that they could potentially be effectively adapted as drugs to inhibit 

Interleukin-1β. 

 

Implications, Limitations, and Future Considerations 

Interleukin-1β plays a central role in promoting tumor development through inflammation, and the 

identification of five small-molecule inhibitors in this project (ZINC21663769, ZINC09714528, ZINC80720409, 

ZINC94052025, and ZINC29101302) demonstrates the potential for expanding immunotherapy treatments 

outside monoclonal antibodies. In particular, the top small molecule with the ZINC ID: ZINC21663769 and a 

Gibbs Free Energy of interaction with Interleukin-1β of -7.7568 kcal/mol is particularly promising. These small 

molecules, all passing Lipinski’s test and exhibiting favorable Gibbs Free Energies (-7.7568 to -7.5857 kcal/mol), 

offer an encouraging basis for oral or low-cost alternatives to antibodies that may target tumors more effectively. 

The results of this project also demonstrate the potential of an in silico pipeline for small molecule drug 

discovery—combining DoGSiteScorer, FTSite, PrankWeb pocket identification, PocketQuery pharmacophore 

mapping, ZINCPharmer screening, SwissDock docking, and SwissADME drug-likeness evaluation—that could 

be used to target other proteins in the future. 

For future work, also attempting to target Interleukin-1β, there are a few important lessons from this 

project to consider. More in silico methods, such as molecular dynamics, could be used to further test the 

effectiveness of each small molecule. Most importantly, however, a major limitation of computational modeling 

is that it cannot be the sole method behind drug creation. Before any of these five molecules can be used to create 

inhibitory drugs, all of them must still be verified in a laboratory. Physical interactions, such as the binding affinity 

and kinetics, can be evaluated through techniques such as surface plasmon resonance (SPR) and microscale 

thermophoresis (MST). Eventually, the ability of these small molecules to modulate the immune system can be 

evaluated in animal testing, using established mouse models of immuno-oncology.  

Despite the positive results of this study, there are several limitations to computational modeling that 

must be acknowledged. First, the binding energies from molecular docking may not reliably correlate with in vitro 

or in vivo affinities, requiring further testing discussed earlier. Second, although pharmacophore mapping uses a 

large database, there are many potential small molecules not considered. Additionally, the binding of these small 

molecules through pharmacophore mapping might overlook potential cryptic binding sites, which are 

unpredictable and only exist due to conformational changes while binding to the protein. Moreover, the absence 

of a control re-docking experiment (benchmarking against a known IL-1β inhibitor) limits understanding of the 

accuracy of this technique. Finally, docking and ADME filters do not account for complex biological factors such 

as cellular uptake, metabolic stability, or immunogenicity, which must also be tested. 
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