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ABSTRACT: The contemporary research studies suggest that the missense variants of ribosomes are the main 

cause of ribosomopathies. In specific, the conflict interpretation of the clinical significance of missense variants 

associated with ribosomopathies remains an unsolved issue. To solve such issue, the known information related 

to each missense variant like allelic score, selective sweep score, GERP score, grantham score, and 

pathogenicity predictive score is used to reclassify the variants tagged as ‘Conflicting Interpretations’. Initially, 

the correlation between the aforementioned scores and the known effect of variants is identified. Based on the 

correlation study, the feature selection is done to generate various machine learning models such as support 

vector machine, logistic regression, KNN, random forest, XG Boost, and Decision Tree to identify the 

pathogenicity of variants. In this study, the random forest model is proposed as the best model based on 

performance metrics. The pathogenic variants predicted by the newly generated model can be used as a 

prognostic factor for further clinical study of ribosomopathies. 

KEYWORDS: Missense variants, Machine learning Techniques, Ribosomopathy, Allele frequency, Clinical 

Significance. 

 

Received 12 May, 2022; Revised 24 May, 2022; Accepted 26 May, 2022 © The author(s) 2022. 

Published with open access at www.questjournals.org 
 

I. INTRODUCTION 
Due to the advent of next genome sequencing techniques, the numbers of genetic variants associated 

with ribosomopathies are very high. So there is a need of in silico approach to sort out the pathogenic variants 

from the prevailing list. Even though various pathogenicity prediction tools are proposed to analyze the variants, 

each tool has its own merits and drawbacks as they work on different properties. This is the point where the 

conflict of interpretation arises, as the different tool works on a unique property there is a difference in opinion. 

This problem is solved by the entry of the coincidence rule [1] this rule states that if the variant is identified as 

pathogenic by most of the available tools then that variant is nominated for a further clinical test. This rule is 

significantly added to the regulations of the Association for molecular pathology as well as the American 

college of medical genetics and genomics to interpret the causative variant for the diseased condition of the 

patients. To successfully apply this rule, integration techniques are applied whereby the decision of all the tools 

can be combined to a single score that represents the consolidated decision of all the available tools. As a recent 

trend machine learning techniques are used to practically solve the diagnosis of diseased conditions based on 

appropriate feature selection [2]. Likewise, such ensemble techniques are employed to train the new model to 

calculate the integrated score, thereby the deleterious variant can be identified [3]. As of now various integrated 

tools were launched successfully such as metaSVM, CONDEL, CoVEC, IMHOTEP [4] which are available as 

webservers for small query and in executable form for large queries which runs locally.  

Mostly, pathogenicity prediction tools work on the concept of sequence conservation information at specific 

functional sites. One such successful tool is SNP Effect Predictor which is launched by the ENSEMBLE project 

[5] to access the conservative information from all the species instantly [6]. Likewise, CONDEL predictors 

calculate their integrated score using four different methods such as SVS, SAS, WVS, WAS, and finally 

concluded that WAS method shows significant results compared to that of other available predictive scores [7]. 

Similarly CAROL calculates the integrated score by combining the probabilistic score of SIFT and POLYPHEN 
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and proves that ensemble method shows the better performance than the individual method [8]. Subsequently, a 

new model is developed using Support Vector Machine and Linear Regression method with linear, radial and 

polynomial kernel and finally proved that ensemble methods are better predictors than the individual predictor 

[9]. Besides, the Mutation Assessor-2 tool is capable of processing the VCF files automatically and they apply 

ensemble Bayes classifiers to predict the pathogenicity of the query variant [10]. In the same way, CADD 

includes the ensemble notations of several genomic features to calculate the pathogenicity score for all the 

single nucleotide polymorphism found in the reference assembly and this score is proved to be highly correlated 

with Mendelian diseases [11]. As a successful implementation in 2017, CADD score is employed to pick up 11 

patients from 238 breast and ovarian cancer patients for further clinical studies. In addition to the CADD score, 

the population frequency range also plays an important role in picking up the susceptible variants of cancer 

patients [12]. FATHMM is capable of calculating the pathogenicity score for snp derived from non-human and 

human sequencing projects [13]. As an update, FATHMM-V.2.3 is designed based on a weight scoring scheme 

in such a way it doesn‘t require prior information regarding the protein function [14].  PredictSNP released in 

2014 is designed to predict deleterious snp from the curated training dataset by excluding the duplicate and other 

discrepancy data sets, thereby it fills the gap between the benchmark data sets and training data sets [15].  In 

2020, the study of family-specific variants reveals that the sensitivity of particular variant is correlated with their 

occurrence in a unique protein domain [16]. Additionally, the tumorogenesis role of snp (rs1800371 and 

rs1042522) on p53 protein encoded by TP53 gene is examined and confirmed as pathogenic by the ensemble 

approach [17]. Even though different algorithm works with different score, the phylogenetic and conservative 

scores are proved to play a major role in pathogenicity prediction [18]. Finally, this study highly recommends 

the combination analysis of scores from different pathogenicity predictor tools in Healthcare Applications. It is 

noteworthy that certain information like allele frequency (Minor Allele Frequency), GERP (Genomic 

Evolutionary Rate Profilling), and grantham score also play an important role in deciding the pathogenicity of 

variants [19]. The susceptible variants associated with specific disease can be identified by prioritizing the 

scores predicted by insilico pathogenic predictors [20]. In particular, NSS score stands for the negative selective 

sweep score that tells us the information about the presence and absence of ancestral alleles of a variant in a 

particular gene. As negative sweep score is closely linked to pathogenicity and disease like schizophrenia, they 

are prioritized in the study of genetic disorders [21]. All the above research works show the power of ensemble 

techniques and their success stories in the medical field. To this end, all the aforementioned scores are utilized 

as a key factor in the present study to resolve the conflicting interpretations associated with ribosomopathies. 

 

II. MATERIALS AND METHODS 
The main objective of the present study is to reclassify the effect of variants tagged as ‗conflicting 

interpretations‘ by utilizing the known information associated with benign and pathogenic variants of 

ribosomopathies. As 80s ribosomes are mostly associated with ribosomopathies, the corresponding 8703 genes 

were retrieved from the GeneCards database which acts as a repository for all the data related to human genes 

[22]. The retrieved lists of genes were submitted to the Clinvar database, which contains information related to 

the clinical significance of all variants of a specific gene [23]. Thus the lists of missense variants of each gene 

and their corresponding clinical significance were retrieved. Among all the categories the missense variants 

were alone chosen as it plays a vital role in NGS data more than 60%. The missense variants with benign and 

pathogenic effects were filtered out from other variants and the complete workflow is shown in Figure. 1.  As 

the number of genes involved in ribosomopathies are high, the data collection and curation are done by writing 

the python scripts. Eventually, after removing the redundant data, 6081 benign and 7960 pathogenic variants 

were alone sorted along with the details of the chromosomal position and their corresponding rs-ID. The 

corresponding scores of each variant such as minor allele frequencies, GERP, grantham score, NSS score, and 

pathogenicity scores are retrieved using python scripts. The threshold of each score is used as a key criterion to 

interpret the effect of variants. Accordingly, such threshold of each score differs as they are related to different 

attributes of variant. In the case of NSS score, their negative values are substantiated to be closely related to 

disease-causing variants. Such selective sweep scores of the variants were sorted out from the UCSC-data 

integration pool [24]. Post that, to filter out the negative sweep score NSSscore script is written in python and 

deposited in the github repository for ease of use. It is capable of analyzing more than 1000 data sets and thus it 

breaks the limitation of the number of query data and its final results are represented in graphical format. 

Similarly, variants with less than 0.1% minor allele frequency are considered as significant as they are deployed 

in the study of linkage disequilibrium in most cases. The variants with higher grantham scores are targeted as 

they are reported as non-tolerable substitutions. Similarly, as the Genomic Evolutionary Rate Profiling score 

indicates the level of conservation in each species, the variants with a high GERP score are specifically targeted.  

The pathogenicity scores predicted by various tools such as SIFT[25], POLYPHEN[26], CADD, REVEL[27], 

METALR, METAL ASSESSOR[28] are included as they are highly recommended by the ensemble genome 
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project. Further, all the above statistical scores related to each variant were retrieved and analyzed using python 

script. All the above information was used for a correlation study between the effects of variants and their 

corresponding statistical scores. To perform the correlation study, initially, the effects of variants are converted 

to numerical binary output. Then the correlation between the clinical significance of the variant and their 

statistical scores was studied by identifying Pearson‘s correlation coefficient value using Equation. (1). 

 
Based on the correlation studies, scores that are positively correlated with the effect of variants are 

identified. Remarkably, such scores are utilized as input datasets to generate various machine learning models 

using logistic regression, support vector machine, KNN, XG Boost, Decision Tree, and random forest. In each 

approach, a standard machine learning pipeline is followed to solve the binary classification problem and it is 

successfully executed using python as the development environment. It is noteworthy that the pathogenic scores 

and the effect of variants are considered as attributes and label sets respectively in the present study. As the 

range of the score differs, initially standardscalar class is applied to perform the feature scaling task before 

training the machine learning models. Further, the data is divided into training and test data sets in 80% and 

20% ratios respectively. To evaluate each model various metrics such as precision (Equation. (2)), recall 

(Equation. (3)), F1-Score (Equation. (4)), MCC value (Equation. (5)) and their corresponding 

accuracy(Equation. (6)) are calculated. Finally, ROC and AUC curves were also plotted to identify the best 

model. 

 

 
 

III. RESULTS AND DISCUSSION 
The Pearson's coefficient value between the effect of the variant and its corresponding scores such as 

minor allele frequency, GERP, grantham, NSS, and pathogenicity score for all the missense variants have been 

calculated and analyzed to find the strength of association between the variables. However, NSS score data is 

not available for most of such variants and therefore no correlation is identified. But NSS scores for available 

benign and pathogenic variants associated with ribosomopathies are plotted and shown in Figure. 2. Likewise 

among all the scores, the pathogenicity score is identified to have a strong positive correlation with the effect of 

the variant as it has a higher Pearson‘s correlation coefficient (r=0.80) whereas the remaining scores show a 

weak correlation (r<0.5) as shown in Figure. 3. Eventually, based on the pathogenicity scores, new statistical 

models are generated using various machine learning approaches such as KNN, XG Boost, Decision Tree, 

support vector machine, and random forest. To sort out the best model, all the statistical metrics of each model 

are calculated and shown in Figure. 4.  

Based on the combination of accuracy and ROC/AUC curve (Figure. 5), the random forest model is 

identified as the best model as it has consolidated higher performance metrics compared to other models. Even 

though the bagging or bootstrap aggregation method is implemented in the random forest model, tunning of 

hyperparameters is done additionally to avoid the overfitting and underfitting problems. During such 

optimization process, various hyperparameters like criterion, depth of the tree, number of samples to split 
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internal node, number of samples at a leaf node, a weighted fraction at a leaf node, number of features, and 

number of leaf nodes are fine tunned by applying the grid search algorithm. Especially ―Gini‖ criterion is 

applied to measure the Gini impurity by using Equation. (7) as it is more vivid than the entropy measurements 

(Equation. (8)) in terms of computational complexity.  In this way, the Gini impurity is confirmed to be zero at 

the leaf node and subsequently, the same process is iterated to all decision trees to navigate the fine tunned 

classification algorithm. The remaining optimum hyperparameters are also derived by executing the grid search 

algorithm and in addition cross-checking is also done by identifying the optimized value of the individual 

hyperparameter at which the tree overfits the training data as shown in Figure. 6. However, to avoid the 

overfitting and underfitting problems, the accuracy of both the training set and the test sets are predicted and 

their difference is calculated as 1%. 

 

 
Furthermore, to validate the random forest model, the K-fold cross-validation method is adopted. 

Consequently, the input data is split into 10 folds (K=10), such that we have 10 different sets of training and test 

data to build the classification model. To assess the efficiency of the model, the combination of training and test 

data set differs in each iteration thereby the usage of all the data is confirmed. Such a combination confirms that 

the model eradicates the underfitting and overfitting problems with low bias and low variance. Further, as the 

experiment is iterated with 10 different holdout sets, ten different accuracies are calculated as follows 

0.96352313, 0.96441281,  0.96081923, 0.97506679,  0.95636687,  0.96438112, 0.97061443 0.96794301, 

0.96794301, and 0.96616207. Finally, the mean of all accuracy is calculated as 96.5% and thus the model is 

fine-tuned to classify the unknown data. The following Figure. 7 represents the confusion matrix of the random 

forest model. 

 

3.1 Ribosomopathy Variants 

The list of 58 Genes related to ribosomopathies was retrieved from gene cards and their corresponding 

variants tagged as ‗conflicting interpretations‘ were retrieved from the clinvar database. In this study, a newly 

generated random forest model is deployed to resolve the conflicting interpretations. Among all the genes, TP53 

contains more number of variants (139) tagged as ‗conflicting interpretations‘ where 39% and 61% of variants 

are reclassified as benign and pathogenic respectively using a novel random forest model. Eventually, the 

variants of TP53 gene that are identified as pathogenic can be further used as a target in drug designing process 

as it have major role in ribosomopathies and cancer. Furthermore, in RPL5, DDX41, POLR1A genes 100% of 

variants tagged as ‗conflicting interpretations‘ are reclassified as pathogenic. The predicted classes of remaining 

genes are shown in the supplementary material. 

 

IV. CONCLUSION 
To reclassify the ribosomopathy variants tagged as ‗conflicting interpretations‘, various machine 

learning models are generated, and finally based on the performance metrics random forest model is identified 

as the best model. As this study includes different information of variants like computational and predictive 

data, allelic data, and population data, their individual drawbacks are eradicated by the ensemble approach. This 

study aids clinical genomist to resolve the conflict interpretations raised by the clinvar submitters in predicting 

their clinical significance. Furthermore, the present work helps to overcome the caveats of study of the 

polygenic disease. Also, this study acts as supportive evidence in fixing the genomic medicine, thereby it avails 

the clinicians to identify the exact drug target that ultimately leads to the effective treatment for 

ribosomopathies. 
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Figure. 1 Representation of the work flow. 
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Figure. 2 a) Representation of NSS Score for Pathogenic variants b) Representation of NSS Score for Benign 

variants. 
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Figure. 3 Violin plot of the Pearson‘s Correlation between the effect of variants and statistical scores. 
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Figure. 4 Screenshot of the performance metrics calculated by machine learning models. 
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Figure. 5 Representation of Receiver Operating Characteristics. 
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Figure. 6  Hyperparameter tuning for Random Forest model. 
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Figure. 7 Representation of the confusion matrix 

 

 

 


