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Abstract
Originally studied by Gohberg and Krein, the block projection operators admit a natural extension to the
setting of quasi-normed ideals and noncommutative integration. A. Bikchentaev and F. Sukochev [30] establish
several uniform submajorisation inequalities for block projection operators. We do an application on their
study and show that in the quasi-normed setting, for ZZ—¢-spaces with 0 < ¢ < 1, the reverse inequality holds
and valid.
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l. Introduction

Gohberg and Krein in their book, ([15]. Ch. 3, p. 82, Theorem 4.2) asserts that for any

. w , . .
sequence with small change {F}r} l(w < oo) of mutually orthogonal power projections and for any
j=

symmetrically-normed ideal Sg,_ in the algebra B(H) of all bounded operators on the infinite-
dimensional Hilbert space H we have

D HAnE| 22 NAnla, @

m,j=1 B m

for every 4, € g, . Here, @, is symmetrically-norming funetion in the sense of ([15], Ch. 3, p. 71])
and g, is the symmetrically-normed ideal generated by @®,,. The extension of this fundamental
inequality was presented in ([10]. Corollary 3.4) in the form of Hardy-Littlewood-Pdlya
submajorization inequality (denoted below by < <)

i
Z P_;‘(:Am)P;‘ == Z Am (2)
m,j=1 m

Equivalently. if (&, l|I-llg) is a Banach ideal in B(H) equipped with fully symmetric norm, then

w
rr T
> B4wp

m, =1

= z Il Ay, lle, VA, € E (3)

£ m

The estimate (3) properly extends (1) and suggests the following natural question, which we address
here:

Does (3) hold for an arbitrary symmetrically (quasi-)Jnormed ideal in B(H) ?

Recall, that an ideal (&, [I-llg) of B(H) is said to be a symmetrically (quasi)normed ideal if its (quasi)-
norm |||l satisfies the following estimates
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IXX+e)llesl X el X+ €l
(X +e)X el X el X+ €l
in [15] and fully symmetric ideals mentioned above are special subclasses of general symmetrically
(quasi)normed ideals in B(H). The results concern two main subclasses of quasi-normed ideals. For
convenience, we denote the classical trace-class ideal equipped with its natural norm as (&4, [I-ll,).

forall X € £,¢ > 0 and (X + ¢) € B(H). The ideals ©g, featured

(1) The class of symmetrically normed ideals (this class is properly larger than the class of all fully
symmetric ideals). Every such ideal is an intermediate ideal between (&4, ||I-ll;) and B(H).

(11) The class of quasi-normed ideals which do not admit a symmetric norm and which are proper
subsets of the ideal &, .

The following short paragraphs described the finishing by [30]. We recall that the class of all fully
symmetric ideals coineides with the class of all Banach ideals £ which are exact interpolation spaces
for the Banach pair (&, B(H)). For examples of symmetrically normed ideals which fail to be
interpolation spaces for the latter pair see [20] and [27]. The classical examples of quasi-normed ideals
from (ii) are given by Schatten-von Neumann ideals &, __. 0 < ¢ < 1.

The results here concern the question stated above and show the difference between (i) and (i1). We
present the main results in the more general setting of (semifinite) noncommutative integration theory
and A-normed symmetric spaces.

For the class (1) our methods are based on the concept of uniform majorization introduced in [20] (see
also [25]). This concept is a generalization of Hardy-Littlewood-Pélya submajorization and is an
important tool in the study of symmetric norms rather than merely fully symmetrie norms. The first
main result establishes a uniform submajorization version of inequality (2). As a consequence,
inequality (3) holds for any symmetric norm.

Surprisingly, for the class (ii) the inequality (3) is reversed (and this is the second main result). Even in
the setting of ideals of B{H), this is a completely new result, as before only normed ideals and Banach
spaces have been considered.

Perhaps even more surprising, if we consider infinite sequences of projections, then there are examples
where (2) and (3) completely fail for the class (i) of symmetric operator spaces. Furthermore, the
reverse inequality in the quasi-normed setting also does not extends to infinite sums (see Section 5
where we present such a counterexample for the A-normed space of all T-measurable operators).

We observing that (3) plays an important role in noncommutative analysis and has significant
applications in the study of extreme points [10], sets of uniformly absolutely continuous norm ([13],
Section 6), derivation problem [4, 5, 21], isometries [17, 29] and other topies.

2. Preliminaries

2.1. Singular value functions. Let (I, m) denote the measure space I = (0,00) (resp. [ = Z, ), where
(0,00) (resp. Z,) is the set of positive real (resp. of nonnegative integer) numbers, equipped with
Lebesgue measure (resp. counting measure) m. Let L(I,m) be the space of all measurable real-valued
functions (resp. sequences) on I equipped with Lebesgue measure (resp. counting measure) m i.e.
functions which comeide almost everywhere are considered identical. Define S,,, (I, m) to be the subset
of L(I,m) which consists of all functions (resp. sequences) (v + €) such that m({1 + e: [(v + €)(1 +
€)] = 1 + €}) 1s finite for some € = 0.

For (y + €) € Spp(I,m) (where I = (0, %) ), we denote by (v + €) the decreasing rearrangement of
the function |y + €|. That is,

Un(ltey+e)=nflez0m{|y+e|>1+e})=1+e€} e=0
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On the other hand, if ] = Z,, and m is the counting measure. then §,,,(I) = €, (I), where £_(I)
denotes the space of all bounded sequences on . In this case, for a sequence (Vv + €) = {{V + €)n}tn=0
m £,(Z,), we denote by p,,(v+€) the decreasing rearrangement of the sequence |y + €| =

{| (j‘r + E)n |}n3=0'

For (y + €),v € §;x (I, m), we say that y is submajorized by (v + €) in the sense of Hardy-Littlewood-
Pélya (written ¥ <<poq (v +€))if

1+e

1+e
J‘ Z Um(1+€,y)d(1+6€) = j Z Um(1+e,y+e)d(l+€),e>0
0 m 0 m

(or Z Um(k,v) = Z Um(k.y+€),nz= U)

m,k=0 m.k=0

A more standard notation for Hardy-Littlewood-Pdlya submajorization (or weak submajorization) is
V <y (v+€). We have chosen to use the notation y <<p.; (¥+€) to distinguish this
submajorization from its reverse version introduced below in subsection 4.2 (see [30]).

Let M be a semifinite von Neumann algebra on a separable Hilbert space H equipped with a faithful
normal semifinite trace 7.

Let Proj(M) denote the lattice of all projections in M,1 be the unit of M. A linear operator
X:D(X) — H, where the domain D(X) of X is a linear subspace of H, is said to be affiliated with M if
(X +6e)X S X(X +¢) forevery (X + €) € M, where M is the commutant of M (notation: XM ).
For any self-adjoint operator 4,,, on H, its spectral measure 1s denoted by E, . A self-adjoint operator
A 1s affiliated with M if and only if E, (B) € Proj(M) for any Borel set B € R. A closed and

densely defined operator AN M is called T-measurable if I(E anl(1+e D-O)) < oo for sufficiently

large (1+€). where |A4,,| = /(A)*(4,,). We denote the set of all T-measurable operators by
Sm(M, 7). Forevery A, € §,,(M, 1), we define its singular value function p,,,(4,,) by setting

fim (1 + € A4m) = Inf{ll (4)(1 — P™) llz ey PT € Proj(M), 1(PT) = 1+€}, e =0
Equivalently. for positive self-adjoint operators 4., € 5, (M, T). we have
N, (1+€) = T(Egm(l + €, 00)), fm(1+ € Ay,) =inf{l+emn, (1+e)<1+elez0
For more details on generalised singular value functions, see [14] and 25.

If (B+¢€),BeES,(M,T), then we say that B is submajorized by (B + €) (in the sense of Hardy-
Littlewood-Polya), denoted by i (B) <=<pead MUm(B + €).if

1+e l+e

f Z Um(1+ € B)d(l+¢) = j Z Um(l+e,B+e)d(l+e€),e=>0
o m 0 m

If M = B(H) and T 1s the standard trace Tr, then it 1s not difficult to see that §,,(M) = §,,(M.7) =
M (see [25]). In this case, for (B + €) € §,,,(M, T), we have

Um(M,B+€e)=pup(l+eB+e),een—1n)neZ,
The sequence {{t,,(1, B + €)},,ez, 15 just the sequence of singular values of the operator (B +¢€) €

B(H). If we consider L*(I,m) as an Abelian von Neumann algebra acting via multiplication on the
Hilbert space L2(I,m). with the trace given by integration with respect to m. then S,,, (1, m) consists of
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all measurable functions on I which are bounded except on a set of finite measure. In this case for
(g +€) € 5,u(I,m), the generalized singular value function W,,(g + €) is precisely the classical
decreasing rearrangement of the function |g + €| defined above (see [30]).

2.2. Symmetric (Quasi-)Banach Function and Operator Spaces. For the general theory of
symumetric spaces, see [3, 24, 25].

Definition 2.1. Let € be a linear subspace in S, (M, T) equipped with a complete (quasi-)norm |-[lz.
We say that £ is a symmetric operator space (on M, or in S, (M, T) ) if for (B + €) € &€ and for every
B € Spu(M, 1) with Uy (B) < (B +€), wehave BE€ Eand || B [lg=]| B + € llg-

A symmetric function (or sequence) space is the term reserved for a symmetric operator space when
M = L(I,m), where I = (0, ) (or M = £, (I) with counting measure, where I = Z,).

Recall the construction of a symmetric (quasi-)Banach operator space (or noncommutative symmetric

(quasi-)Banach space) E(M, 7). The following fundamental theorem was proved in [20] (see also [25],
Question 2.5.5, p. 58) and [28].

Theorem 2.2, Let (E, ||-l) be a symmetric function (or sequence) space on (0, e0) (or Z,) and let M
be a semifinite von Neumann algebra. Set

E(M,1)={(B+¢€)€S,(M,1): (B +€) €EE} || B+ € llgaroy =Nl Um(B +€) g
So defined (E (M, 1) ”E{J'rf.r]) is a symimetric operator space.
The main result of [20] (see also [25]. Section 3) shows that the correspondence
(E, Ilz) <= (E(M, D), Iz ae.0))

is a one-to-one correspondence between the set of all symmetric operator space in S, (M, T) and the
set of all symmetric function spaces in S,,(I/,m) whenever (M, T) does not contain any minimal
projections or is atomic and all minimal projections have equal trace. Of course, depending on (M, T)
the symmetric function space E < S,,,(1, m) is considered either on (0,1). or on (0,°) oron Z. .

3, Inequalities for Uniform Submajorizations

Throughout the sequel, let M be an arbitrary semifinite von Neumann algebra. with some
distinguished faithful normal semifinite trace 7. Let (B +€),B € 5,,(M, 7). We say that B 1s
uniformly submajorized by (B + ¢€) (written B < (B + €)) if there exists A € N such that

b b
f Z w, (1+6B)d(1+e) < f Z U, (1+eB+e)d(l+e), Aa<b
Aa ™ a T

The notion of uniform submajorization originally introduced in [20] (see also [25]). It has a wider area
of applicability than Hardy-Littlewood-Pélya submajorization (in particular, it makes sense for
arbitrary elements (B + €), B € S, (M, 1), whereas the latter submajorization is meaningful only for
(B+¢€),BeEL(M,T)+ M. On the other hand, uniform submajorization imposes stricter conditions
on the behavior of singular numbers of operators (B + €) and B than their classical counterpart. The
next theorem, the first main result. extends (2) to uniform submajorization (see [30]).

Theorem 3.1. If e, €;,...,e, € M are projections with e;e; = 0,1 # J, and if (v+¢€) €8,,(M, 1),
then

e(v+ele, te(yHe)e,++e,(v+ele, = (v+e)
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Proof. Firstly, we note that for any (B + €), B € S,,,(M, 7). the following inequality holds
(2B +€) = (B +€) + fim(B)

Indeed, the case when (B + €),B = 0 is established in [20. Lemma 8.4]. For arbitrary operators (B +
€) and B, it follows from the triangle mnequality observed in [23] (see also [11] or [25], Lemma 2.3.15)
that

|2(B +¢€)| = U|B+e|lU"+V|B|V*
where U and V are partial 1sometries in M. Again appealing to ([20], Lemma 8.4), we obtain

U (2(B +€)) < 11, (U]B + €|U” + VIB|V") < w, (U[B + €|U7) + i (VIBIVT)
< Um(B +€) + iim(B)

By induction, we have

D BrOt D (BN V(B + ) (B + )y € 5, (M, T) 4)

k=1 mk=1
For every subset Ay, = {1, ..., n}, define a partial isometry u 4, € M by setting

n

U= > (2han ) = e
mk=1

. C o . . e _
Indeed, since e;e; = 0,1 = J, it immediately follows that w4 uj = uj g, =€ +e;+ - +e,.
We have

n

22 2 (2rank) — Doy + ) (2tam(ke) — Do,

Z Upg,, (¥ + E)Ug,

Am m Ay kpke=1
= D e+ . D (2 (ke) = 1)t (k) — 1)
ko kp=1 m A

A direct computation yields that
0, ky#k
> 2 i) = D(2tantk) —1) = 1T
m oqm

Therefore, we have

1
Y+ eyt ex(y+E)e + ot eV HEen =22 ) D gy (¥ + Oy,
'-'H'N‘L

m

Hence, by (4), we have

) i ) 1
g, (y+ele, +e(y+ele,+ - +e (v+e)e, < E_HZ Z #m(uv-{m (v+e) u:qm)

m Ay

Z Z Hm (Y + €) = i (Y + €)

m  ofAm

<

1
21‘!
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The following corollary extends (3) to arbitrary symmetric operator spaces (see [30]).

Corollary 3.2, Let (E(M,T), ||-||E,:MJ:]) be a symmetric operator space on (M, T) defined in Theorem
2.2.Ifey, e, ..., 8, € M are projections with e;e; = 0,1 # j, and if (y + €) € E(M, 7). then

"81(:}, + E)el + ez(:}’ + E)E"Z +-t en{:}? + E)enllm}__f.ﬂ =l y+e ”E{M.rj

Proof. The assertion of Corollary 3.2 follows from that of Theorem 3.1 combined with ([25], Corollary
3.4.3) (see also [20], p. 84).

Now, we are ready to present the strengthened version of a triangle inequality for uniform
submajorizations. This improves the main result in [26] and complements the result of ([9], Lemma
Al

Theorem 3.3 (see [30]). Let T,,,, S,,, € S, (M, 7),5,, =5, Tip = 0. If =T, = S5,, = T,,, then S, =
Tin.

Proof. Set (1—¢€)=E;,(0,0). We have (Sp)s=(1—€)Sn(l—€)=(1—€)Tn(l—€) and
(Sp)_ = —(€)5,,(€) = (€)T,,(€). Thus, by Theorem 3.1

[Sm] = (Sp)s+ + (Sp)- = (L= €)T(1 —€) + (6)T(€) < Ty
1e. Sy ¢ T
Corollary 3.4 (see [30]). If (T,;); € S (M, 7). (T); = (Tyy) i I = 1,2, then

[(T)1 + (T2l < [(Trdal + [(T)2l
Proof. We need only to observe that
—((Tm)al + [(T)21) = (Twdr + (Tw)z < [(Tw) sl + 1(Ton)2
and apply Theorem 3.3.
It is quite remarkable that the result of Theorem 3.1 fails for infinite sequences of pairwise orthogonal

projections. That is, generally speaking, the implication

oo

Y ely+ee < (y+e) (y+e) €S, (M)
j=1

fails for the situation when ey, €;, ... € M are projections with e;e; = 0,1 # j. and the series on the left
hand side is understood convergent in measure topology (see e.g. [14] or [25]). We demonstrate this
failure m Theorem 3.5 below. To make the presentation smoother, we recall a few notions and
intorduce some notations.

Following [20], a symmetric (function or sequence) space E is called relatively fully symmetric if and

only if
(g+€)gEE g <=peg (+e)=lglg=llg+elg

The space E is relatively fully symmetric if and only if E is a closed subspace of a fully symmetric
space [20]. For clarity, we shall also address to those spaces as those whose norm is monotone with
respect to Hardy-Littlewood-Pélya submajorization. There exist symmetric sequence spaces E which
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do not admit an equivalent relatively fully symmetric norm (in particular, any such space is not a
closed subspace of any fully symmetric sequence space). We refer to [27] for such examples.

Let E = E(Z,)be a symmetric sequence space, let H = £; be a space of all square summable
sequences with standard basis (e,) and let € be the corresponding symmetrically normed ideal (see

Theorem 2.2). We shall use a standard notation for elements from &£. The matrix ({j-'+ €)i, j)
representing the elements (y +¢) € € is defined by (y +¢€);; = ((j}’ + E)ej,e[-), 1<1i,j<o We
shall use the matrix clements €;; € £ defined by

e (k1) =686, 1=1i,jkl<oo

Clearly, the sequence (€y; )r=g 15 @ sequence of pairwise orthogonal one-dimensional projections in

B(£,).

Theorem 3.5 (see [30]). Let (E,|Illz) be a symmetric Banach sequence space whose norm is not
monotone with respect to the Hardy-Littlewood submajorization. There exists a positive operator 4, €

& such that
DD e > Ny e

k=0 m £ m

Proof. Let us consider a closed subspace F of E generated by the closure in E of all finitely supported
sequences from E. It is well-known that (F, [|-llz) is a separable symmetric sequence space and hence
it is fully symmetric (see e.g. [24], Theorem I1.4.10). Taking into account that the space ¢, is a subset
of any symmetric sequence space (see e.g. [25], Example 2.6.7(c)), in particular £; = F, we infer that
for any elements (y + €), ¥ € £,, the assumption ¥ <=<yq (v +€) implies | ¥ = | v + € ll5.

By the assumption there exist elements (y+ €)= p,,(v+€),V = l,(v) €E such that y =
“heag (¥ + €)and | y lg>1l ¥ + € llz. The preceding argument shows, that it is not possible that both
elements (¥ + €) and y belong to €;: in particular, taking into account that £, is fully symmetric, we
must have (v + ¢€) & £1. Let us show that, there exists z = () & €1 such that z <<yq (y +€)
and | z g1l v + € llg. To this end, assume that y € €1,V <<pag (¥ +€)and || ¥ llg=1l ¥ + € [z and
set

fA)=Ay+e)+ (1 -y A€ (01)

Obviously, the mapping A — f(A) is continuous from (0,1) into (E,|I-llg) and therefore, there exists
Ag € (0,1) such that

If (Aol >y +€lig

Let us set z = f(Ap) and observe that, by the definition, z = pi,,(z) and that for every n = 0, we have

D (D) =1 D kY O+ A=D) D )= > (kv +e)
m.k=0 m, k=0 m k=0 mk=0

that is Z <<pq (Vv + €). Since (y +¢€) € £, we conclude that z & £4. Thus, until the end of the
proof, we may assume that (v 4 €) =y, (y + €), ¥ = p;n(¥) € E such that y <=y..4 (v + €), that ||
Vllg=ll v + € llg and that (y + €),y € £,.

By the fundamental Kaftal-Weiss theorem (see [22] and also [25]. Theorem 7.5.2), there exists a
positive compact operator 4, € B{{;) such that u,,A4,, = (¥ + €) and such that
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exxAmerr = (kg k= 0
In particular,

z Hin (Z ekkAmekk) =Yy

m k=0

Since || ¥ lg>1l ¥ + € lig. we obtain |¥ k=0 ekkAmekkHE =3 AR le.

4. Reverse Inequality for the Block Projection Operator

4.1. A-normed spaces. We recall the definition of A-norm, which extends and generalizes the notion
of quasi-norm. Let ( be a linear space over the field €. A function [|-|| from O to R is a A-norm [19], if
for all (y + €).y € Q the following properties hold:

Mly+elz0lly+tel=0=y=—¢

Q) lay+e)l<lly+elforall |af = 1:

(3)limg—o | &(y + €) II= 0:

D2y +e)ll=Cq-(ly+ell +1 vyl for a constant Cq = 1 independent of (y + €), y.
The couple (Q, [I-]I) 1s called a A-normed space.

Definition 4.1, [16. 18] Let a semifinite von Neumann algebra M be equipped with a faithful normal
semifinite trace 7. Let £ be a linear subspace in Sy, (M, T) equipped with a A-norm |[|-|lg. We say that £
is a symmetrically A-normed operator space if X € £ and every X + € € §,,,(M, 1) the assumption
U (X + €) = (X)) implies that (X +€) € Eand || X + € =1 X lle.

More information concerning symmetrically A-normed operator spaces may be found in ([7], pp. 1427-
1429).

Remark 4.2. By defining that
Iy +els,= in{l;{l +e+p,(1+ev+e)} (v +€) €S, (M)
£=

we obtain a symmetric A-norm ||-llg, on S, (M, 7). ([18]. Remark 3.4). Moreover, the topology

induced by |I-|l5,, is equivalent to the measure topology ([18], Proposition 4.1).

We end this subsection (see [30]) by discussing interpolation between L.(M,T) and L._;(M,T).
where L.(M, T) consists of elements in S, (M, T) whose supports have finite trace [8, 18]. We denote
Iy +e€ll,_,=t(supp(y +€)).(y +€) € L,y (M,7).For T, : L,y (M, 1) = Ly (M, 7). we write

T~ syp TCUPRCwS)
m st Y t(supp(f))

For the interpolation couple (L._, (M, 1), L.(M,T)) of A-normed spaces, the space (L,_; N L.)(M,T)
is equipped with a group-norm by setting

ly+ely, a,=max{ly+ely,  My+ely) (v+e) €Ll (M, 1)NL(IM,T)

and the space (L._; + L) (M, 7) is equipped with a A-norm by setting
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Iy + €l ar,= ool + W, 7+ €) € (Lmy + L)(M,T)

{y+e)=xp—y+apxr—1 ELp—y.xrELp
A space E(M, 1) is said to be intermediate for L,._; (M, 7) and L.(M, T) if the continuous embeddings
L (M, T)NL,(M,T) CE(M,7)C L_y(M,T)+ L.(M,T)

hold. Let E(M,T) be a symmetrically A-normed space intermediate between L._;(M,T) and
L.(M,T).

Definition 4.3. If every linear operator on L._; (M, T) + L.(M, T) whose reductions on L,_; (M, T)
and L.(M, T) are both contractions is also a bounded operator from E (M, 1) to E(M, T) and if

I T =< Ce

for some positive constant Cg, which depends only on E. then E(M, ) is called an interpolation space
between the spaces L._, (M, 1) and L.(M,1).

4.2. Reverse submajorization. We need below another partial orderings, which is defined for
functions from (L,_; + L.)(0,9), where L._, < §,,(0,9) is the collection of all functions whose
support has finite measure. For (g + €), g € (L,_; + L.)(0, ), we write g <=5y (g + €) if and only
if

fl Z Un(l+e,g)d(l+€) < f Z Un(l+€eg+e)d(l+e),e=0

+€ 1+e m

For the case (g+¢€),g € L:(0,),1 g+€ll1=Il g ll,. the notion of reverse submajorization is
equivalent to that of supermajorization. In other words, we have g <=y (g + €) is equivalent (under
the above conditions) to (g + €) <-<|eq - A classical notation for supermajorization is g <" (g +

€).

Proposition 4.4 (see [30]). Let E be a symmetrically A-normed space which is an interpolation space
between L,_; and L. If (v+e) e Eandy <<,y (v+e)thenyveFand | vIg=cg Il v+ € g

Proof. Let us fix such (¥ + €) and y. Setting ¢ = 1 in ([8]., Lemma 3.9) yields an operator T,,,: L., +
L. —= L,y + L, such that T, (v + €) = y and

| Ton oy ymrp =4 1 T s, = 6
Let 1+ € = 0y4¢, € = 0, be the action of multiplicative group R, by dilations. that is,

()1 +e)=f(1), e>0

Define an operator S,,: L,_; + L. = L., + L, by setting

Wt

Smf: JlfJfELr—l+Lr
T

so that
4. 3
(Sm) f = EJQ-fJ f € Lr—l + Lr
It i1s immediate that

I S e T Uy gy = 1 I S0 Ty gy g = 1
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Since E is an interpolation space between L._; and L. it follows that || S,,, @ T,,, lg_p= Cg. where Cg
is an interpolation constant from Definition 4.3. Since (S,,,)"1: E = E is a bounded mapping, it follows
that

Iy lg=1((Sm) ™ e Sm o T) ¥ + )l < 1(Spn) M lgog 1 S0 T lg—p-ll y + € llg

Let [ be either finite or infinite interval equipped with Lebesgue measure. If f, g € L, (I). then we say
8 =nead f ltg = <head JF and also || g =l f Il

Example 4.5 (see [30]). If 0= (y+e),yel,_(I) and y <<,y (y+€),0=¢e<1, then y €
Lie(Dand |y lh-e=Ny +€ ;-

Proof. Step 1: Suppose first that 0 < (v +€), v € (L, N Ly__)(I) are such that (y + €) <yq V. O
equivalently. that ¥ <y (v + €).

If 1=1(01), then the inequality || ¥ li—-<Il ¥ + €l 1is established in Lemma 25 in [2].
Alternatively, one can infer this inequality from Theorem 2.5 in [11] (applied to the convex function
1+e——(1+e)°).

Suppose that I = (0,a),0 < a < . Let 0,1 be the dilation action on S, (R,,m) given by

(0 2f)(1+€)=fla(l+e€)). It 15 immediate that 0 -1(V + €) <yeqq 0,-1y. Functions o -1(y +
€) and ¢ -1y live on the interval (0,1). By the preceding paragraph, we have

1 1
Iy lie= atl-clloyl, < at-—<lo,~(y+e)l,_ =ly+el, .
This proves the inequality || ¥ [l,_.=Il ¥ + € |l;_. for the functions on finite interval.

Consider now the case of the semiaxis. We may assume without loss of generality that (y +¢) =
Um(V + €) and v = pm ().

Let n be a positive integer. We have (¥ + €)X (o) <<head YX(om)- Let £(n) < n be selected so that

n t(n)
j (y+e)dm= J‘ ydm
0 0
By the preceding paragraph, we have
(v + E)xom ||1_E = "}rl'to.t{n]ﬁJ”l_E

Let us denote

1+ e = liminft(n)

n—+oo

We have

1y + € lhe= lim (v + )xomll,_, = lim [yxoeepl,_, = IVxoisall,_,

Choosing a sequence 1, T @ such that t(n;) = (1 + €) as k — co. We have

1+e t(ng) ng oo
[ ydm = lim J‘ ydm = lim f (y+e)dm = J‘ (v +e)dm
0 k—co 0 k—co 0 0

However, by the assumption, we have (V + €) <y..q ¥ and, m particular,
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f ydm = J‘ (v + e)dm
0 1]

This implies, V|14 w) = 0. So, the inequality above yields the assertion.

Step 2: Consider now the general case. Without loss of generality, (y + €) = i, (y +€) and v =
Uy (V). By Lemma 3.5 in [8], there exists a collection (A ). of pairwise disjoint sets such that

(D) (7 + €)lay <neas ¥|, forallk = 0:
N

(2) € = 0 on the complement of Uy.q4 A.

It follows from Step 1 that

||}’)Ca,-(||1_f = " (}’ + E)Xak”l_f

Obviously,
”.""'X(Uk:_sgﬁk]clll_f = (}P + E)Xl:uk:}EJﬂk]C”l—E
Thus,
— 1— 1—
1y 1ZE= ) Myxal, S+ IvXwmeanel,
k=0
. : : 1- : 1- _
< > N+ xal, S+ + Oxpmeapl, - =1y +e 112
k=0

4.3. Reverse inequality for A-normed spaces.

Lemma 4.6 (see [30]). Let ey, e;,..,e, € M be projections with e;e; = 0,i = j, and such that
vii,e,=1I0<x?€ (L_y +L)(M,T), then

x? <<y ex%e, + e,xte, + -+ e, x%e,
Proof. For x% € L.(M,T). it is proved in ([10], Corollary 3.4) (see also [13], Lemma 6.1) and [6] that
2 2 2, e 2
e, x%e; Fe,xte, + -+ e, x%e, <<y.nq4 X
In fact, for a positive x2, we obviously have
2 2 2 2
e, x%e, +e,x%e, + -+ e, x%e, <pag X
Thus,
x2 <y e1x2e; + exxles + -+ e x’le,
This proves the assertion for x% € L.(M,T).

Consider now the general case. We have min{x?,m} € L.(M, 1) for all m € Z,. By the preceding
paragraph, we have

min{x%,m} <y e;min{x%, mle, + e;min{x?, mle; + --- + e, min{x?, mle,
< e, x%e, + e,x%e, + -+ g, x%e,

Thus,
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J‘ E (1 +&xH)d(1+€)= lim J‘ E Uy (1 + e, min{m, xZ})d(1 + €)
1+e m=s Jite
m m

m=—=co

= lim J‘ Z (1 +€,e1x%e + exx’es + -+ exe,)d(1 + €)
1+e
m

j Z U (14 €, e,x%e; + e,xle, + -+ e,x%e,)d(1+ €)

1+e m

Theorem 4.7 (see [30]). Let €y, €3,..., €, € M be projections with e;e; = 0,1 < { # j < n, and such
that v, e; = 1. Let E be an interpolation space between L,_; and L. If 0 < x2 € E(M, 7). then

n

Z e;x’e;

i=1

- 2
=gl x” g

E

Proof. The assertion follows from Lemma 4.6 and Proposition 4.4.

Example 4.8 (see [30]). Let e, e;, ..., e, € M be projections with €;¢; = 0,1 = # j = n. and such
thatvii,e; =1.f0=x?>€ L, _(M,7),0 <e < 1, then

M

2
Z e x2e,

i=1 1-¢

20 %% -

Proof. The assertion follows from Lemma 4.6 and Example 4.5.

5. Appendix (see [30])

Let {H,, = €5}, be a sequence of finite dimensional Hilbert spaces and consider their Hilbertian
direct sum

2
H =By Hy

Let {(A,,) )iz, be a sequence of self-adjoint operators, with (4,,), € B,,(H,,). Let 4,, denote their
direct sum (notation A, =P;-,; (4,,),, ). Namely A4, is defined on the domain

rb(Am] = {{En};f;l € H: I [:Am)n(fn:)nz < o
=1

mn=

by setting A,,(&) = {(4,, ). (&) ey for any & = {&, )i, in D(4,,). Then A4,, is a selfadjoint
(possibly unbounded) operator on H.

Consider the von Neumann algebra
N =0, Bm(-‘}fn)
equipped with the trace

1

T =P, an'Tr,, where a)f) = ———7—
mEbm o " nlog?(1+n)
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and where Tr,, is the standard trace on the algebra B,,(H,,). which we shall below view as the algebra
- . n

of all complex n xn matrices ((_}’ + E)fj)t_jzl. Observe that Yoo, alt < oo whereas Y oo, nay

diverges. We shall define an unbounded operator

m =(‘sz1 (Am:)m {:Am)'n = (n(}’ + E)z'j) 1’ where (J' + E:)[’j =11= I'JJr =n

n
Lj=
Observe that we may also view the operator A, as @5, n?g, where g, is a selfadjoint one

n
dimensional projection from B,,(H,,) given by the matrix (quﬂ) where q[{?] =Lforalll < Ij<
ij=1 n

n,n = 1. Obviously, we have that 4, is a selfadjoint positive operator such that (4,,)nMNV. Let us
show that Ay, € 55, (N, 7). Indeed, let A = 1. Estimating the value of distribution function n4,, (1), we
have

Mo (D) = 7 (Eap (L)) = > afTrg) = ) af <o

mkz2 m,k=2

Now, let us consider the element

B, =Bi—, (B (B = (_‘u’fj) g wherey,; =nl<=i=j<n.andy; =01+].

n
1j=
Again, we obviously have that B, is a self-adjoint positive operator such that B,,n/V'. Let us show that
B, € S, (V, 7). Indeed, take 1 equal to an arbitrary positive integer say N. Denoting 1,, the umit
element of B,,,(H,,). we have

Mo (N) = T(Es,(N.)) = > @' Tre(1) = > kaff =0

m k=2 m.k=N

Observing that for every n =1, we have (B)n = Xg=1 Zm €k (Am)ney. where the sequence
(ej)¥=; is a sequence of one dimensional projections from B,,(H,,) given by
n o __ kA . . k _ Kk P k _
ep = (5!.1)!_,}_:1, where 65 = 1. wheni = j =k, and §;; = 0, otherwise,
we arrive at the situation when for a T-measurable operator A, there exists a sequence of pairwise
orthogonal projections (€, )p>1 © N such that ¥ o1 X €nAdmey 1s not T-measurable,

An argument above shows that the inequality established in Theorem 4.7 makes no sense for infinite
sequences of pairwise orthogonal projections. Indeed, in the setting of that theorem, if for example
E=1,__.0<e<1 and x* € L;__(M,7), one simply cannot speak about ||Zn:=13n-"'529n||1_f when
the operator ¥,,., e,x2e,, fails to be T-measurable.
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