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Introduction

For ZC(C™) be the set of convex bodies (that is, non-empty compact convex subsets) of C". A convex
body K € K(C") 1s uniquely determined by its support function hg:C" — R, where hg(x) =
max{R[x - v]™}:v € K}. Here, - denotes the standard Hermitian inner product in C" and R[x - v]™ is
the real part of x - y. Let B and $" denote the complex unit ball and its surface in €™, respectively. For
K € K(C") and € € K(C), in [1] the authors introduced the complex projection body 'K as the
convex body with support function

1
(K, uy,) = VK, Cu,y,) = Ef
Srz

> hB,, ()dSe(v) (11)
m

for every u,, € 8", where Cu,, = {cuy,:c € C}L, V™ (K, Cuy,) is the mixed volume of K and Cu,,, and
Sk 15 the surface area measure of K.

Very recently, [9] established the following remarkable inequality.
Theorem 1.1. ([9]) Let K € K (C"). If C € K (C) is convex and origin-symmetric, then
ym (K)Zn—lvm((nzn:)*f(:} = ym [:B}Zn—lvm ({HEN)*B)

If dim € = 1. equality holds if and only if K is an ellipsoid. If dim C = 2, equality holds if and only if
K 1is an Hermitian ellipsoid.

Here, V™ stands for volume (that is, (2n)-dimensional Lebesgue measure), (II7*)*K is the polar body
of [I'K. Throughout the paper and the sequel, Wei Wang and Lijuan Liu [38] state the full theory and
methods. We add some ideas. Now we use the convention that 0 - o0 = 0. Theorem 1.1 contains Petty's
fundamental projection inequality [30] as the special case € = [—1,1] : Among all convex bodies of
given volume, precisely ellipsoids have polar projection bodies of maximal volume. This inequality
turned out to be essentially stronger than the classical 1soperimetric inequality (see [16]) and it is the
geometric inequality behind the affine-Sobolev inequality [37].

Note that HE’EM] is the classical projection body operator II™ which was first introduced by
Minkowski at the end of 19th century. Let §"~! denote the unit sphere in R". Given a convex body K
in R, the projection body, II™K, of K is the convex body with support function

himg(Um) = vOl(K | um™), ity € S*71
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where vol(K | u,,*) denotes the (n — 1)-dimensional volume of the orthogonal projection of K onto
the hyperplane orthogonal to u,,. Projection bodies have not only become a central notion in convex
geometry [7,8,10,25,29,31], they also found applications in other areas such as Minkowski geometry,
stochastic geometry, geometric tomography, symbolic dynamics, and functional analysis

[2,3,6,12,13,32 — 34].

The notion of zonoids is basic in the Brunn-Minkowski theory of convex bodies (see [31]). Zonoids
are defined as limits of zonotopes in the Hausdorff metric, where zonotopes are Minkowski sum of
line segments. Indeed, any origin-symmetric convex body in R? is a zonoid. Schneider and Weil [32]
introduced the notion of L,,, zonoids. Let K € R™ be a convex body and € = 0, the L,, . zonoid
Z1+K is defined by

M) = | ity 0 (0)

S‘i‘E—L

for every u,, € S™ 1, where y,. . is a finite even Borel measure on S™*. In particular, a L, zonoid
and any of its translates is called a zonoid. Based on the definition of the asymmetric Ly, . zonotope
[35], the asymmetrie L, . zonoid Z], _K can be defined by

) 1 ) ~1 )
}1?1'+FR{_Hm) e = J’ Z {.u'm : 1"_)++€d.|ul—e,K(.E‘1)
L gn—1
m

for every Uy, € §"71, where (U, - V), = max{u,, - v,0}. Thus, a convex body € € K () is called an
asymmetric L, . zonoid if there exists a finite even Borel measure ;.. on the unit sphere §! such
that

HE () = f D (il - vI™)E Ay (v) (12)

for every u,, € §'. From the fact that h§;, (v) = he' (i, - v) for all u,,, v € §", (1.1), (1.2), and the
sesquilinearity of the Hermitian inner produet in C", we have

W@ = [ D (SHle (- DI “hirec(©)
Eh m

N .ﬁ Z (Rlcwy, - vI™)3 e c(c)

forall u,,, v € §™.

A recent important result by [14,15] has demonstrated the special role of projection bodies in the
affine theory of convex bodies: Projection body operators are the only Minkowski valuations which
are contravariant with respect to the real affine group. This motivated the definition of the whole
family of complex projection bodies by [1]. They are the only Minkowski valuations which are
contravariant with respect to the complex affine group. In [15], the authors also established a
classification of L, . Minkowski valuations that are contravariant with respect to the real linear group
and obtained the family of asymmetric L., projection bodies. While there is no corresponding
classification result in the complex setting so far, we introduce complex L,, . projection bodies using
the original definitions of L., projections bodies by [20], [21]. and [15] as well as the definition of
complex projection bodies by [1].
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Let K, (C™) denote the set of convex bodies in C™ which contain the origin in their interiors. Let € =
0,K € X,(C"), and C € K (C) be an asymmetric L;,. zonoid, the asymmetric complex L.,
projection body (TT™)7, . oK is the convex body with support function

h (um)“s = 2nVE (K, Cupy)

(m™ 1 Tte
2 et 7)1 (13)

for every u,, € 8", where §;,., denotes the L,,  surface area measure of K on 5". Indeed,
htﬁlifm‘f' ¢ 15 positively homogencous of degree one and subadditive. The case C =[0,1] of
J1+EC

(M™)},.c 1s just the asymmetric L,,. projection operator (I1™)7, which was first considered by
Lutwak [20].

For € 2 0,K,L € K,(C") and € = —1 (not both zero). the L;,. Minkowski combination (1 + €) -
KE+,,.(1+ 2€) - L is defined by [5]

(h"™)iiik by = (L4 ) (A™L + (1 + 2€)(hm)t+e

l+eK+,1e(1+2e)0L

where the L;,. Minkowski and the usual scalar multiplication are related by (1+¢€)-K =

1
(1 + €)1+eK. The general complex L, projection bodies, {:Hm)’fﬁlcff. are defined by
(™) e cK = 4 (M) oKy (1=2) - (™), K (1.4)
for every A € [0,1], where (IT™) 1, . K = (II™)], . c(—K). In particular,

[Hm)i—f,cK = Ejnm)I+e.CH— and (Hm:)?+€,c‘!{ = (Hm);+E,CK
Let Dy, .C denote the Ly, . difference body of C, 1.e., Dy4.C = C414(—C). It follows from (1.2) that

LDHEC(HWJI = g1 2m Rt - v]I™) | dpy e c (V). Thus, Dy, C is a Ly, zonoid. As the real
case, we define the complex L, , . projection body 7% . | K by

1 1 .
H1+E D, +EC = (Hm)u.f chh = E ) {.Hm)I+e.Ch +1—e§ ) (Hm) 1+E,CK
Note that if K is origin-symmetric. then (IT"™)%, . K = Ny ep,.. K forany 4 € [0,1].

One aim of this paper is to establish sharp isoperimetric inequalities for the entire class of complex
L,.. projection bodies. For convenience, the polar body of (:Hm)f_EICK will be denoted by

(nm)1+ec

Theorem 1.2. Let € > 0 and K € K,(C"). If € € K (C) is an asymmetric L, . zonoid with dim ¢ =
1, then

Zn Zn R
)TV (I™) ] oK) < Vm(B)TF V™ (™), cB)

for every A € [0,1]. If dim € = 1, equality holds if and only if K is an origin-symmetric ellipsoid. If
dim € = 2, equality holds if and only if K is an origin-symmetric Hermitian ellipsoid.

The case 4 = % of Theorem 1.2 is the complex L,, . Petty projection inequality. In Section 3 , we will
show that for K € 2, (C"),
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Vm({:nm);+E.Dl+£JcK) <= Vm({:l—[m)f::ac}{) < Vm({:l—[m}f_.:achr)

If (M™)7,ccK = (M™).cK, these inequalities are strict unless A = %,.& =1 or A = 0. This shows
that each of these inequalities strengthens and implies the complex L,,. Petty projection inequality
and that the asymmetric operators {jl'[m)liﬁlc give rise to the strongest inequalities. The proof of
Theorem 1.2 makes use of the techniques by [9].

The complex moment body was introduced by [9]. For € € X (C) and K € X (C") with non-empty
interior, the complex moment body MK is defined by

hE L (1) =f hm, (x)dx
MeK K; C

for all u,, € §". Note that M_ ,; is the classical moment body operator M. Given a convex body K —
R"™ with non-empty interior, the moment body MK is the convex body defined by

hBe(u,,) = J. Z |y, - x|dx, 1, € 71
K m

If K has non-empty interior, then the centroid body I'K:= V™(K) 'MK. The centroid body is a
classical notion from geometry which has received considerable attention in recent years (see
[6,7,17,18,21,24,36] ). An important affine isoperimetric inequality associated with centroid bodies is
the Busemann-Petty centroid inequality [28]: Among convex bodies containing the origin of given
volume, precisely the origin symmetric ellipsoids have centroid bodies of minimal volume. With the
development of the BrunnMinkowski theory, important extensions of the Busemann-Petty centroid
inequality were established (see [4.10,21,24]. These extensions were used to prove affine Sobolev
inequalities [11,27] and information theoretic inequalities [23].

Based on the definitions of L,, . moment bodies by [26] and [15] as well as the definition of complex

moment bodies by [9], complex Ly, moment bodies are introduced. Let € = 0,K € X ,(C") and C €

H(C) be an asymmetric Ly, zonoid, the asymmetric complex L;.. moment body My, K is the

convex body with support function

me k@) =2 [ Y R, M
1+eC K
m

2 : .
— [ [ D Gleu v 0, (o) (1)
§n 1 m

for all u,, € $". Indeed, hy+ is positively homogeneous of degree one and subadditive. The
1+e.

X
C
general complex L, moment bodies, M7, (K. are defined by

MiiecK =24 Mo cK+1,(1—2) MoK (1.6)
for every A € [0,1], where M7, . K = M{,_(—K). In particular,
M%—E,CK = M1_+E.CK and M?+E,Ch. = 1.VII_+1_=,CI{

and
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1 .
= 1 1
M1+E.D1+E,CK: = Mf-;.e,c}{ = E : M:IT+E.CK— + 1+E§ ' MI+€.CK

which is the complex L,,. moment body of K. Note that if K is origin-symmetric, then M{,_ K =
Mitep,,, K forany 4 € [0,1].

The other aim of this paper is to establish sharp isoperimetric inequalities for the entire class of
complex L, . moment bodies.

Theorem 1.3 [38]. Let € > 0 and K € F,(C"). If € € X(C) is an asymmetric L,, . zonoid with
dim € = 1, then

in in
V™ (K) Tre WM (M, (K) = V™(B) Tve V™ (MY, cB)
for every A € [0,1]. If dim C = 1, equality holds if and only if K is an origin-symmetric ellipsoid. If

dim € = 2. equality holds if and only if K is an origin-symmetric Hermitian ellipsoid.

The case 4 = S of Theorem 1.3 is the complex L; . . Busemann-Petty centroid inequality. In Section 4 ,
we will show that for K € &, (C").

Vm(M1+E.DJ_+EJ{;Kj = an(Mf—E,CK) = Vm(M1i+E.CKJ

. - . . . 1 .
If MY, cK = M. K, these incqualities are strict unless A = > A =1, or A = 0. This shows that the
asymmetric operators M1i+ec provide the strongest version of the complex L,.. Busemann-Petty

centroid inequality.

If € = {0}, then (T™)7,_.K = Mil+e,cK = {0} for every K € K,(C™) and every 4 € [0,1]. Thus, we
assume that dim € > 0 throughout this paper.

2. Notation and Background Material

For a complex number ¢ € C, we write ¢ for its complex conjugate and |c| for its norm. For ¢,, €
C™*" let ¢, denote the conjugate transpose of ¢,,. We denote by - the standard Hermitian inner
product on C™ which is conjugate linear in the first argument, 1.e. x - ¥y = x"y forall x,y € C". Let B
stand for the complex unit ball {c € C™: ¢ - ¢ = 1} and S" its sphere. We write ¢ for the canonical
isomorphism between C" (viewed as a real vector space) and BR?", i.e..

(c) = Rleyl, ... Rlc,], Sley ], .., Sle,D), c e C”
where R, 3 are the real and imaginary part, respectively. Note that

Rlx-y]™ =wx -1y (2.1)

for all x, y € C", where the inner product on the right hand side 1s the standard Euclidean inner product
In
on R,

Let ¢b, € GL(1, C) be decomposed in its real and imaginary part, i.e. ¢y = R[Pm] + i3[Pm]. The
real matrix representation is the block matrix

_ _ 91[%1] _ﬁ[‘i’m]
Rl¢m] = (f:e[cx:m] nlp )

It is easy to see that
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|det pn|® = |det R[@m]| and ((@mX) = R[@m]ux (2.2)

The volume V™(K) of K is defined as the 2n-dimensional Lebesgue measure of (K, ie. V™ (K): =
V™(tK). Then (2.2) implies

V™ (@mK) = |det ¢ [PV (K) (2.3)
for each ¢, € GL(n, €). In particular, V™ (cK) = |c|*"V™(K) forall ¢ € C.

We collect complex reformulations of well known results from convex geometry. These complex
versions can be directly deduced from their real counterparts by an appropriate application of the
canonical isomorphism ¢. General references for these real results are the books by [6]. [8]. and [31].
The convex body K is uniquely determined by its support function hif: C* — R, where

hig (x) = max{fi[x - y]™:y € K} (2.4)
It follows from (2.1) and (2.4) that
hg =h%et (2.5)

where h] is the usual real support function, i.e. h*(x) = max{x - y:y € L} for a convex body L €
R?™ and x € R*™. If A = 0, we have

hix = Ahg (2.6)
If ¢,,, € GL(n, C), we have
hgax = Mg ° b (2.7)
For every Borel set w,, C §", the swface area measure of K € K (C"), Sk. is defined by
Sg(wnm) = K™ 1(fx € K:3u,, € wy, with R[x - 1™ = AP (1) D)
where H 2771 stands for (2n — 1)-dimensional Hausdorff measure on RZ™,

Fore = 0,K,L € K,(C") and € = —1, the L, Minkowski combination (1 + €) - K+;,.(1 4+ 2¢) - L
1s defined by

(hm:}zf—efjl-K+L+g(1+Ze]-L = (1 + E){:hm:}zl{*-e + {l + 25:}(hn1)j£_f (28)

1
where (1 + €) - K = (1 + €)1+K. The L, . mixed volume V% .(K, L) is defined by [19]

n V*(K+,..e - L)—V™K
——VE_(K,L)= lim (Kty.ee- L ()
1+e€ =07 £

By (2.5). it follows that (K+,, £ - 1L = ((K+,, .- L). Thus,

Vite(K, L) = V2 (K 1L) (2.9)
where V% (1K, (L) is the usual L, mixed volume in R%". Obviously,

Vite(K.K) = V(K) (2.10)
and ¢ K+1,.8 - ¢, L = @, (K+,. .- L) for every ¢,,, € GL(n,C). (2.9) and (2.3) yield

V(@K pml) = |detd,, | ViR (K, L) (2.11)
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The following results follow immediately from the real facts since all quantities (volume, L, mixed
volume, L. surface area measure, support function) are compatible with the canonical isomorphism
(. The L, . mixed volume V% (K, L) has the following integral representation:

1 :
VKD == [ D mEdS e (2.12)
' 2N Jgn '
m
Here Sy, . 1s the L, . surface area measure of K on S$” which is absolutely continuous with respect to
Sg and has Radon Nikodym derivative i;ll—fr;'ﬁ' = (h™)%5. The L,.. Minkowski inequality states (see

O]):Ife = 0 and K, L € K,(C™), then
19]): If 0 and K, L € K,(C™), tl

. 2n-l=c 1:c
Vite(K,L) =2 V™(K) 2n V™(L)2n (2.13)

If € = 0, the L; Minkowski inequality is the classical Minkowski first inequality for mix volume with
equality if and only if K and L are homothetic. If € > 0. equality holds in (2.13) if and only if K and L
are real dilates. An immediate consequence of the Ly,

Minkowski inequality is the Ly, . Brunn-Minkowski inequality: If € = 0 and K, L € K(C"), then

1+¢

1+e 1+¢
V™(K+,, L) 20 = V™(K)Zn + V(L) Zn (2.14)

If €=0, the L, Brunn-Minkowski inequality is the classical Brunn-Minkowski inequality with
equality if and only if K and L are homothetic. If € > 0. equality holds in (2.14) if and only if K and L
are real dilates.

Given M,, < C™, its polar set M}, is defined by
M ={xeC"Rx-y™m=1lforally e M,,}
It is casy to see that
(PmMp)* = b Mp, (2.15)
and in particular, for every 4 > 0,
(AM,,)* = 1M, (2.16)

The radial function (p,,): C" \ {0} = [0, +¢0 ), of a compact, star-shaped (about the origin) K < C",
is defined by (pm)x(x) = max{d = 0: lx € K}. If K € K,(C™). then K* € K,(C"). Moreover, on
{C"}\ {0} we have

(Pm)s = (N™)i* (2.17)

If (p,) i 1s positive and continuous, then K is called a star body (about the origin). Let §(C™) denote
the set of star bodies in €". For € =0 and K,L € §(C") and € = —1 (not both zero), the Ly..
harmonic radial combination (1 + €) - K¥,, (1 + 2¢) - L is the star body whose radial function is
given by [20]

—(1+&) —(1+e

(o) it oyt saszers = (L) (om)e ™ + (1 + 26) () ;79 (2.18)

1 ~—
where (14 €) - K = (1 + €)%K The dual L, mixed volume VI{, (K, L) is defined by [20]
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m V(K F1ees - L) — V(K
TTeel o) = IR :

The polar coordinate formula for volume yields

Fm p 1 : 2n+l+e y—(1+€)

P ® D) == D (pn)F (o), Vdo (2.19)
an mn

where o stands for the push forward with respect to ™! of H ! on the (2n — 1) dimensional
Euclidean unit sphere. In particular,

. 1 _ _
VI(K) = V(K K) = ELEZ (pm)gda (2.20)

Using Hélder's inequality in (2.19) to obtain the dual L,, . Minkowski inequality (see [20]): If € = 0
and K,L € §(C"), then

- ) _Zn+l+e 1+e ) .
Viiee (K, L) 2 VT(K) 2n V(L) 2n (2.21)
with equality if and only if K and L are real dilates. An immediate consequence of the dual L,
Minkowski inequality is the dual Ly . . Brunn-Minkowski inequality: If € = 0 and K, L € §(C"), then

l+e 1+e

V(KT L) B 2 VK)o V(D) o (2.22)
with equality if and only if K and L are real dilates.
Let K € K (C"). If there exists some positive definite symmetric matrix ¢,,, € GL(2n, R) such that
K={xeChwx- ¢,ux <1}
then K is an origin-symmetric ellipsoid. Moreover, K is an origin-symmetric Hermitian ellipsoid if
K={xetChx ¢ux <1}

for a positive definite Hermitian matrix ¢, € GL(n, C). Note that, K 1s an originsymmetric Hermitian
ellipsoid if and only if K =, B for some matrix Y, € GL(n, C). Moreover, Haberl obtained the
following characterization of origin-symmetric Hermitian ellipsoids.

Lemma 2.1. ([9]) Let K € Ko(T") be an origin-symmetric ellipsoid. Then K is an origin-symmetric
Hermitian ellipsoid if and only if ¢K = K for some ¢ € $* with 3[c] = 0.

3. The General Complex L;,. Petty Projection Inequality
In [15] the author showed that the asymmetric L,. . projection body operator (II™)7,. is GL(n, R)

contravariant. We will show that (II"™)7, _ . is GL(n, C)-contravariant.

Lemma 3.1 (see [38]). Let € = 0,K € K,(C") and € € K (C) be an asymmetric L, zonoid. If ¢,,, €
GL(n,C), then

r - z —% m” -
(.Hm)I+E.C(¢)mh) = |det¢]m|1_f¢’m (H .}I+E,C'h

Proof. From (1.3), (2.11). the fact that ¢, Cu,,, = Cp . u,,. and (2.7), we have
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h’ um)1+E = 2ﬂvl+e{¢'mhr Cum) - IdEt¢1n|22ﬂV1+€ K fi)mlcu )

= Id"Et‘(1'4'.'1.7:|2 l[nm]"' (lt’mlu )1+E = h" 2 ( 'm:)1+€
tec | det m[TFedm (T™)7 4 cK

Hm]l+6 C¢mK

for every u,,, € 8", which concludes the desired result.

Lemma 3.2 (see [38]). Let € = 0 and C € K (C) be an asymmetric L, . zonoid. Then (I™)], _ - maps
origin-symmetric balls to origin-symmetric balls.

Proof. Since Sy, . (1105 = (1 +6) " Seqp = (1 + €)2" 1%y for every € = 0, we have
m , 1+ _ In—-1-¢ L qa My 1+e g
it )7 = 1+ 0717 [ D7 Gtlew 0] pec()de (3)
m

for all u,, € §". Now fix some (u,,)q € $". For every 1, € §", there exists a (¢,,),,,,, € SU(n) such
that (@), (U)o = Uy, Then Clty, = (D), € (U )o- Plug this into (3.1) and use (2.7) to get

S, 1+€
h?lllmlf+elcf(1+e)3)(umjl_s = (1 + E)Zn—l—e L“ J';l Z (E‘H[C(u‘m)ﬂ ) (.qu_}:xmv]m)_'_ d“1+E.C(C}dU

Since ¢ is SU(n)-invariant and dim € > 0, the right hand side is independent from u,,, and greater
than zero. Hence (II™){, .- ((1 + €)B) is an origin-symmetric ball.
Let € = 0, define (™), K: = (IT™)], . 0,13K- The defmition of (IT™)7, . g 47and (2.9) imply
Myt e (Um) ™% = 2nVE (K, [0,1]1,,)
= 2nV_(IK, [0,1]iu,y,) = hénm]h_ ey (Um) €
for all u,, € ™. Apply (2.5) to get
W(IT™) 1, K = (™)1, (1K) (3.2)

which justifies the notation (™)1, for (IT™)}, o,y More explicitly. the equality hfg,, (V) =
(Ruy, - v]™)  together with (3.2) show, for all u,,, € §",

LU [ (R, - v]™)EdS, e (V) (3.3)
) o E
m

Indeed. the asymmetric complex L, projection operator (IT™)1, . is an average over multiples of
the asymmetric L,, . projection operator (IT™)7, .. This connection will play an important role in our
proof.

Lemma 3.3 (see [38]). Let € = 0 and € € H(C) be an asymmetric L, . zonoid. Then, for u,, € §"
and K € Ky(C"),

Wyt ) = [ W ) () (34)
5t m
J+E
. . ety [ YR@™ ] B)
In addition, the total mass |y, . c| = fty,.c(SY) = (W]:;:CJ
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Proof. By (1.3), Fubini's theorem, (3.3), and (2.7), we have
Wyt = [ [ Otlet - V1M @Sian®) = [ [ et VIS, (V)i o)
= [ et )@ = [ W, i) O
£l m & ol

It remains to calculate the total mass |ﬂ1+€5|. Lemma 3.2 implies that (II™)7,.B is an

originsymmetric ball. Thus, h'{l‘[“‘] =h" 5 for every ¢ € §1. Taking K =B in (3.4) and

n“‘-J
applying (2.6), we have (Hm)lﬂ,cB = |u1+ec|l+£(l'[m)l+EB Polarize both sides and apply (2.16) to

get {Hln)HEc = |u1+€.5| e (Hm.}lerB. Take the volume on both sides and use (2.3) to complete the
proof.

Now, we relate the volume of (IT™)}7 " cK to that of (M=) K

Lemma 3.4 (see [38]). Let € = 0 and K € H(C™). If € € X () is an asymmetric L, . zonoid, then

In
Vm( Hm)l e.C ) |Ju1 EC| 1+5Vm((1-[m)1+6 ) {35)

with equality if and only if there exists a point d € §* with ¢(IT™)},.K = d(IT™)], K for fy..c-
almost every ¢ € §'.

Proof. From (2.20), (2.17), (3.4). Jensen's inequality, Fubini's theorem and the fact that
Vm(c(l'lm}l_'_fh) Vm( 3G K) for all ¢ € S, we get

(k) =5 [ D Wy, ()0 )
5 m o

Zn

1+ 1+e
_ ||u'1+€.C|

1
m y1+e g -
m J:gn [|#1+e,c| J;L ; hf[nmjf_'_gx(um_} d.lul—E,C[_C) dg(um_}

2n
= 1
) |Iu'1+€-C| e m g -2n - _
= m ha(nﬂ‘]++g_:g (1) Aty yec(c)do(uy,)
sn J52 b= :

2n
—1
||"“‘|'1+¢.-.C| 1+e m . —9n ) )
:T 5t E(Hm\ltrg.tft-“m) do (U )dpy e c(C)
5N o

~lrusee T Y P 0

||"""'1+€C| 1+E J‘ Z Vm {Hm)1+eK)dﬂ1 EC{C)

||u1+ Cl l+EV?’?1( Hm) )
In order to obtain the equality condition, let us first prove the following equivalence for K € Ho(CT") :

mn, m g . P "
Vi, €ESM:ic = hE(l'Im)LEK[-u’”) is constant U, . . c-almost everywhere

3c, € S (™), K = ¢(I™)f, K for p, . c-almost every ¢ € S (3.6)
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Obviously, the second condition implies the first one. Suppose that the first condition holds. Then for

cach i, € 8" there existac, € 5! and a Borel set N, © s with

Uiser (Num) = 0 and thHthsK () = hg(nm)hex(um) forall c € N¢

Um

(3.7)

Let i,, € §" and b € Supp(luuﬁc). Each open neighborhood of b has positive [y, measure and
therefore non-empty intersection with N, . So we can find a sequence (bg)gen with by € N and
by — b. By the continuity of ¢ = hgpm, , . (uy) and (3.7), we get

hg}nmjt “’ ) - hm hbk{ﬂm)-" (Hm) Hm + +eK m} Hm I EK(um)

forall ¢ € N, . Since (1 + €) is at least one dimensional, there exists a ¢y € Supp(_{{HE.C) and NZ =
@. Soforallu,, € S$"andc € Supp(_ulﬁlc) we have

m - __3m -
hﬂnmjtﬂx{.”m) = 'Jlfotn“‘Ilf_S,gx{-“m)

. c . B . .
Since P‘l+e,c(5upp(ﬂl—e.c) )= 0 and convex bodies are uniquely determined by their support
functions, we complete the proof of equivalence (3.6).

By the equality condition of Jensen's inequality, equality holds in (3.5) if and only if for all u,, € §"
the map ¢ = h T‘?Hm'ﬁ (W) 1s constant i, , . -almost everywhere. But (3.6) reveals that this happens

precisely if there exists a ¢o € §* such that F(IT™)], K = &G (IT™)], K for .. c-almost every c.
Setting d: = ¢y, 1t concludes the proof of the equality condition.

Let us recall the asymmetric L,,_ Petty projection inequality which was established by Haberl and
Schuster.

Theorem 3.5. (Haberl and Schuster [10]) Let € > 0 and K = R?" be a convex body which contains
the origin in its interior. Then

V’”(f\)1+e tym((m=){iK) < Vm(EB)l e tym ((m=)3+.B)
with equality if and only if K is an origin-symmetric ellipsoid.
Next, we will establish the complex version of the asymmetrie Ly, Petty projection inequality.

Theorem 3.6 (see [38]). Let € > 0,K € K,(C"). and C € K (C) be an asymmetric L, , . zonoid. Then

VKT Y (™), K) < V(B ym (™), .B) (3.8)

If dim C = 1, equality holds if and only if K is an origin-symmetric ellipsoid. If dim C = 2. equality
holds if and only if K is an origin-symmetric Hermitian ellipsoid.

Proof. Polarizing both sides of (3.2) and using * ot = 1 o * gives
(™)K = (™)K (3.9)

By Lemma 3.4, (3.9), and Theorem 3.5, we get
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_2n 2n

| Lreym(K)Tee tym ((Hm)ue )
Zn

= |ﬂ1+eclﬁvmtaff')1—+1—‘vm(: )77 K)
in

= |-”1+EC| 1+ EV’“UK}HE Vm((l—[m)l E‘K:’
Zn

|,”1+ec| Lreym B:‘“E_lwn((nm)ne )

Vm(g()ue‘lvm( Hm)l eC ) =

)

1+E
m m- A zn
Taking |#1—f,c| = (#’l”i])) into the above inequality proves (3.8).

1+eC

We turn towards the equality conditions. By Lemma 3.4 and Theorem 3.5, equality holds in (3.8) if
and only if there exists a point d € §! with F(TT™)F, K d(l'[m}lﬂ,h for Uy, . c-almost every ¢ € §!
and K is an origin-symmetric ellipsoid. Thus, it follows from Lemma 3.2 that (IT™)7, K is an origin-
symmetric ellipsoid.

First, suppose that dim € = 1, i.e. C is a segment [0, ¢y] for some ¢, € €\ {0} and the measure y1,,
of € 1s given by

|C0|1+E
Hitec = 2 (6—(00'} + 5{:?0})

where § denotes the Dirac measure and (c,): = ¢5|cy| ™t stands for the spherical projection of ¢, to the
unit circle. Since (MM™)}._K is an origin-symmetric ellipsoid, then —(co} (™). K = {co)(T™)}, K
holds true. Thus, if dim € = 1, then equality holds in (3.8) if and only if K is an origin-symmetric
ellipsoid.
Next, suppose that dim € = 2. Since (II™)7, .is linearly associating, this implies that if K is an origin-
symmetric Hermitian ellipsoid, then so is (II™)7, K. Lemma 2.1 shows that the above equality
conditions hold. It remains to prove that the above equality conditions imply that K is an origin-
symmetric Hermitian ellipsoid. The equality condition of Lemma 3.4 implies that there exist a point
d € §' and a Borel set N © §! with py2.c(N) = 0 such that &(T™)7, K = d(IT™);, . K forall c €
N¥¢. Since dim € = 2, N® contains two non-antipodal points, i.e. there exist ¢y, ¢; € N° such that ¢, #
—¢; and &, (™). .K = &, (II™){, K. Clearly. &, and &, are also non-antipodal. So for c:= & we
have

c(I™);, K = (IT™)], K where ¢ € §* with §[c] = 0

By Lemma 2.1, it follows that (IT™){, K is an origin-symmetric Hermitian ellipsoid. Thus. there
exists a i, € GL(n, C) such that

(T™);..K = B (3.10)
Let K = (1 + €)¢,,B, where € = 0 and ¢,,, € SL(2n, R). By Lemma 3.1, we have

Zn—-1-¢ Zn—1-e

(T™)fe oK = (T, (L +€)$pB) = (L+€) Tre ¢i(T™LB =7y (1+6) Te ¢p'B  (311)

where 1, . > 0 such that (II™)},.B = ry,.B. Combining (3.10) and (3.11). we get ¢,,, = 1, .(1+

Zn—1-¢

€) 1 P f6. where 8 € SU(n). Thus.

In in
K =1 (1+ &)=y 08 = . (1 + e)Treyp B
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It means that K is an origin-symmetric Hermitian ellipsoid.

From now on, we pay our attention to the general complex L,,. projection body operator. The
following two consequences can be immediately obtained from Lemma 3.1, Lemma 3.2, and the

definition of (M™%, ..

Lemma 3.7. Let € = 0, K € K,(C"), and € € X (C) be an asymmetric L, , . zonoid. If ¢,,, € GL(n, T),
then

: 2 .
(™)1 cc(PmE) = |det d, [Teg7" (T™)], oK

Lemma 3.8. Let € = 0 and € € K(C) be an asymmetric L, zonoid. Then (II™)7%, - maps origin-
symmetric balls to origin-symmetric balls.

Moreover, the asymmetric operators [_Hm)l—_EJC give rise to the strongest inequalities.

Theorem 3.9 (see [38]). Let € > 0, K € K(C™), and € € K (C) be an asymmetric L, . zonoid. Then

V(%) e pyecK ) < V()L K) < V() EL K)

for every A € [0,1]. If (II™)T. K # (II"™)I, . K. equality holds in the left inequality if and only if
A= %and equality holds in the right inequality if and only if A = 1 or A = 0.

Proof. Let 0 << A < 1, from (1.4), (2.8), (2.17), and (2.18), we have

Hm)l el 1_[rrl)1+ec"r{"'1+e —4)- (Hm}nec (3.12)

where multiplication is the dual Ly,. scalar multiplication, i.e., A+ K = A 1+¢K. By the dual L.
Brunn-Minkowski inequality (2.22), we obtain

V(™ cK) < V(™)L K) (3.13)

with equality if and only if (IT™)] recK and (IT™)[7, (K arc real dilates which is only possible if
(™) ecK = (I™) 4o oK. It means that if (I™)7, K = (II™)7,.cK, the inequality (3.13) is striet
for every 0 << A < 1 which completes the proof of the right inequality.

It remains to prove the left inequality. By (2.20), (3.12), and (2.18), we have

Vm((l'lijech J‘ Z (p,,.)mm A, (u.,,.) A ()

In

f Z Ao gy, e ) ™57+ (1 = D)) gy, ) ™) 7 )

The derivative of the function A +» V™ ((Hm)f_:e CK) is given by

a i de g 1 LIS 2 - —im , i i .
ﬁV”‘(tH"'Jﬂe.cﬁ'} =- L_EL“Z u:.,,,l,nm,?;(fx(u.,,r“““ (oIt e(tim) = (i (it ) ')dac_u,,_.) (3.14)
m . : ’

The continuous function A4 = V’“((l’[m:)‘;":mf{ ) must attain a minimum on [0,1]. Morzover, (3.13)

implies that the pomts where this minimum is attained are contained in (0,1). If A is such a point, then
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d
V(LK) =0

Thus, it follows from (3.14) and (2.19) that
T (™) oK, (™) K ) = P2 (™) oK, (™) oK) (3.15)
By (2.20), (3.12). (2.19), (3.15). and the fact that {1'[111)1+EC( K) = _[:Hmﬁ:e,cK- we have
Vm( l_[m)l €.C ) le e((Hm:}l+scK {1_[111)1+EC )
= if’ ( l_[m)l eck, I[I_Im)l+.-s|:‘?“‘r) +(1— i:}?—l—f( Hln)l+£n’.‘ J(Hm)1+ef )
:‘i ((Hm)1+€c Hm)l_*EC )+{l_j)]:;—n ((Hm)1+ec Hm)l +e.C )
(@™ k ('Hm)[’_‘;,cif—f\’)) + (1= D (™ K, ()7, (-K))
=V ({Hm)uecK (Hm)1+eﬂ{ K))
l f( 1-[m)1+51:' _(Hm)l £.C )

Using the dual L., Minkowski inequality (2.21), we conclude that {H‘“)HE K 1s originsymmetric.
By (3.13) and (2.18), this is equivalent to

(2";: - 1) ((:Pm:’(l'l“‘ +' R(um) e - ('O'm)inm J1iecK (um:] T E) =0

for every iy, € ™. If (™), K = (M), K. then (IT™)[7 K = (™) ] K. Thus, we must

have 1 = % which proves the left inequality.
Proof of Theorem 1.2. Theorem 3.9 shows that Theorem 3.6 immediately gives Theorem 1.2
The case A = % of Theorem 1.2 is the following complex L, , . Petty projection inequality.

Theorem 3.10. Let € > 0 and K € K, (C™). If C € K (C) is an asymmetric L, , . zonoid, then
2n . : an
m(K)IF Y (1™)ihep,, K ) < V(B V™ ((1™)isep,,.,B)

If dim ¢ = 1, equality holds if and only if K is an origin-symmetric ellipsoid. If dim ¢ = 2, equality
holds if and only if K is an origin-symmetric Hermitian ellipsoid.

The case ¢ =[0,1] of Theorem 1.2 is the general L,,. Petty projection inequality which was
established by [10]. The case ¢ =[0,1] and A =% of Theorem 1.2 is the L,,. Petty projection
inequality (see [21]), while the L,,. Petty projection inequality is the core of the sharp affine L.,
Sobolev inequality which is significantly stronger than the classical L, . Sobolev inequality (see

[22.37]). Note that every originsymmetric convex body in F (C) is a zonoid. Thus, Theorem 1.1 can be
considered as the version of Theorem 3.10 for e = 0.
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4. The General Complex L;;. Busemann-Petty Centroid Inequality

It was shown in [21] that once the L, Petty projection inequality is established, the L, _ Busemann-
Petty centroid inequality can be derived as an almost effortless consequence. We will show that this
still holds true in the complex vector space.

Lemma 4.1 (see [38]). Let € = 0,K € Hy(C"), and € € ¥ (C) be an asymmetric L, zonoid. If ¢,,, €
GL(n.C), then

2z
Mi'—+E,C[. mhr_} = |d9t¢'m|1+€¢me—E.6K

Proof. From (1.5), (2.3). and the fact that ¢, Clt,, = (D1l ). we obtain
itz o cppuac () 75 = f Z hE,, () edx = Z 2] det ¢y ? [ B, (Smo) *Edlx

—Z |det¢>,,n|2h\{1+ e Bt ) 155 = ().

| der¢m|L+E¢ml\1L+suK

2
HEI‘LCE.‘. MI+€.C[:¢”1K) = |d8t¢'ln|L+E¢TﬂM;—+E,CK'

Lemma 4.2 (see [38]). Let € = 0 and C € (C) be an asymmetric L, zonoid. Then M, _. maps
origin-symmetric balls to origin-symmetric balls.
Proof. For every origin-symmetric ball (1 + €)B with radius € = 0, we have

2{1 + E)2n+l+e

R T Z (Rctty - vI™) ¥ At eo(€)do ()

for all u,, € §". As similar as the proof of Lemma 3.2, we can show that M, _.((1+ €)B) is an
origin-symmetric ball.

Define My, K:= M. [01K. Note that hg ™ (X)) = (R 1y, - x]™) 4. by the definition of
M e f0,> and (2.1), we have, for every um € §2n,

h§1+ EK(:um:)1+E = N’;+ K tu )1+E = QJ- Z JrI'[0- 10

2[ (R u, - )™ edx = ZJ‘ (R, - o rx]™)i edx
5 » :
1+e

- 2[ Z (1L - X)4Fedx = Z s Q) ¥

Hence (M7, K = M7, (1K) which justifies M{, _for M7 e o,1)- More explicitly.

m l+e . mlE 2N HL1HE J oo ag
N e mﬂz @ity - VI () ()27 <A (v)

Apply Lemma 4.1, Lemma 4.2, and the definition of Mfﬁ,c. we get

Lemma 4.4. Let € 2 0 and C € K (C) be an asymmetric L,,. zonoid. Then M{,_, maps origin-
symmetric balls to origin-symmetric balls.

The following lemma provides a connection of (:Hm)f_ff and M2, __ in terms of mixed volumes and
their duals. For € € € we write C: = {¢: ¢ € ¢}. Obviously, if € is an asymmetric Ly, . zonoid, so is C.

Lemma 4.5 (see [38]). Let € =2 0,K € K,(C"),L € §(C"), and C € K(C) be an asymmetric L,
zonoid. Then

2 _

Vit (K MY, L) = mrite - (L, (™)) :K)
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Proof. By (2.12), (1.6), (2.8), (1.5). Fubini's theorem, the sesquilinearity of the Hermitian inner
product, (1.3), (2.17), (2.18), (3.12). and (2.19), we obtain

V(K ME L oL)
1 . )
=§L Z Ahgge )4+ (L= g (i Sy ()

— 2 LMy les h T In+lt+e g h
= TETTD o o, 20 A VI ) (07 o (V) i)
2 .
e — 1 L FmyitE T 2n+it+e ) 7 ¢
T e ey [ 2 (DOt VI o) (V) VNS i)
m]r L f‘ Z ARt - (V™ (o) (V)12 d s e, 0 (€)1 s e () AT (V)

2 — 1P F ] my Lt a7y 2ntldbe g h '
* 2?’1[23’! +1+ E] Lu J-r: L: Z (1 ﬂ][%[ur [CEJ] }_ [_,O,,_.:)L[_T/} d.u1+s.c[.c}dsl—f_\-‘({ur.':.]do—(‘[/j

2 .
- A Tyentlte e FyioE 1 — yEntlte oy = 1y i-E T
TS ). § (A (VP (DDt (V7% + (1= D)) (V)40 gz, i (V)2 dor (V)
2 mIZntlte 11y —1—€ b
—72n[2n+ 7). E (om)(V) (Bm) qys (V)7 7"da (V)
TIn+l+ e?rl s [L (Hm}ﬁs EK)

Corollary 4.6 (see [38]). Let € = 0 and € € K (C) be an asymmetric Ly, . zonoid. Then

1

)1—5 ym(B)?

Vm(M1+¢=C )an({H111)1+EC ) = (21,1 +1+¢€

Proof. Apply Lemma 3.8 and Lemma 4 .4 to get

(™)} -B = cB and M{,..B = (1+ 2¢)B

2
2n+l+e

where € = —1. Take K = L = B in Lemma 4.5 to conelude (1 + €)(1 + 2¢€) = ( )HE Thus,

n

1+¢
Vm[Mlﬂ-r: )Vm({nm)uec ): ) Vm(BJZ

2
(2]’1+1+E

Next, we introduce two abbreviations which contain all terms of the general complex L,.. Petty
projection and the general complex Ly, . Busemann-Petty centroid inequality, respectively:

2n
ym B')1+e tym((mmyd:
Prse(l+ € K) = ( (™2 B)

v (1) K)

and

K)™ 1""-: Vm(M1+e CK)

by (1+€K) =
ym(B) Treym(MZ,_ B)

Note that the general complex L,,_ Petty projection inequality is equivalent to py, (1 +€6,K) = 1,

whereas the general complex L;.. Busemann-Petty centroid inequality is equivalent to by,.(1 +

€.K)=1.

Theorem 4.7 (see [38]). Let € > 0, K € K,(C™), and C € K (C) be an asymmetric L, zonoid. Then
(1+26)1e(1+6K) = (1+6€).(1+eM  K)

with equality if and only if K and ( l'lmj1 ECMf_,_ECh are real dilates.

Proof. By Corollary 4.6. it is enough to prove that

Zn

- -1
2n 2 i+e = 5
v ) T V(M cK) = (5 ) (V"‘(Mfﬂ.ch’)i-f Lvm((n“‘-);:;,c-mm,cxj) (1)

2n+1+e
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with equality if and only if K and {Hm)HECMLE K are real dilates. From (2.10), Lemma 4.5, and the
dual L, . Minkowski inequality (2.21), we get

Vm(Ml +E&,.C ) V]TEE(M1+€|:'A’ Mf—E,CK) = mLl4ie —|:1+€ (K (H111)1+ECM1 ECK)
2 _1+e
- * A '
;—ZHHEV”‘(AJ V() M K) 2

with equality if and only if K and ( 1'["“:11 ECM1+€ K are real dilates. Rearranging terms yields (4.1).
Proof of Theorem 1.3. Theorem 4.7 shows that Theorem 1.2 immediately implies Theorem 1.3.
The case A = % of Theorem 1.3 is the following complex L, . Busemann-Petty centroid inequality.

Theorem 4.8 [38]. Let € > 0, K € K,(C"), and C € K (C) be an asymmetric L, zonoid. Then
R Ay
"(E) TRV (Mysep, oK) 2 V(B) TH VT (Mysep,,. B)

If dim ¢ = 1, equality holds if and only if K is an origin-symmetric ellipsoid. If dim ¢ = 2, equality
holds if and only if K is an origin-symmetric Hermitian ellipsoid.

The case ¢ = [0,1] of Theorem 1.3 is the general L, . Busemann-Petty centroid inequality which was
established by [10]. The case ¢ = [0,1] and 4 = % of Theorem 1.3 1s the L, , . Busemann-Petty centroid
inequality which was established by [21] (see also [4]).

Indeed. Theorem 1.3 holds true for all star bodies.

Theorem 4.9 (see [38]). Let € = 0,L € S(C"), and € € K(C) be an asymmetric Ly 4. zonoid. Then

n 2n
V(L) TR W™(M], L) = V™(B) T V™ (MY, .B) (4.2)

If dim ¢ = 1, equality holds if and only if L is an origin-symmetric ellipsoid. If dim ¢ = 2, equality
holds if and only if L is an origin-symmetric Hermitian ellipsoid.

Proof. Take K = M{,_ L in Theorem 1.2, get

—(1+€) _ —(1+€)

In—(1+e)

V(™) Mivecl) 2 VREBEIV(()0B) VT (Mg L) (43)

If dim ¢ = 1, equality holds if and only if M{,_ L is an origin-symmetric ellipsoid. If dim¢ = 2,
equality holds if and only if MZ, _ L is an origin-symmetric Hermitian ellipsoid.

Take K = M{.. L in Lemma 4.5 and apply the dual L, . Minkowski inequality (2.21), get

Vm(Ml+eC ): Vni E(L {Hm)1+fPMf—E,CI‘)

2Zn+1+e¢

1+e

— pm m m A n
> VL) V(I M) (44)

with equality if and only if L and {l'[m)lﬂ,r_.l‘-ﬂpﬂE L are real dilates. By (4.3), (4.4) and Corollary 4.6,
we have

Zn
m(L) T V(ML L) 2 V™(B)” e tym (M, .B)
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If equality holds in (4.2), then equalities must hold in (4.3) and (4.4). Since (Hm)“_e; is linearly

associating, this implies that if dim ¢ = 1, equality holds if and only if L is an origin-symmetric
ellipsoid, and if dim ¢ = 2, equality holds if and only if L is an origin-symmetric Hermitian ellipsoid.

. + . . ..
Moreover, the asymmetric operators M, _ . provide the strongest inequalities.

Theorem 4.10 (see [38]). Let € > 0,L € §(C"), and C € K (C) be an asymmetric L, . zonoid. Then
v (M1+E-D;+E.CL) Vm(Ml ECL) Vm(MHec )

If My, ..L #= My, . .L. equality holds in the left inequality if and only if 1 = %and equality holds in the
right inequality if and only if A = 1 or A = 0.

Proof. Let 0 << A < 1. Applying the L, Brunn-Minkowski inequality (2.14) to the representation
(1.6), we obtain

v (Ml L) = v (ML, L) (4.5)

with equality if and only if M7, _.L and M{, . L are real dilates which is only possible if M{, L =
M7, ccL. It means that if My, _.L #= My, _.L the inequality (4.5) is striet for every A € (0,1) which
completes the proof of the right inequality.

It remains to prove the left inequality. For fixed A, note that

Vm(Miyocl) — Vit (MEL L M7, cL)
,1—,1

R ) ™ um)

1
MA+ fz. MiiecL .
J- § 1 e ds[\.{’_'- ,;_(_um)
=n — ;{ 1+EC

and

Vlm(Mf—e,cLJ Mil+€.c‘[') Vm[:Ml E.C )
A—4

CL(um) ()

My, ool :
_J;n Z - :{' dSM%ﬁ.cL (tm)

From the uniform convergence of support functions and the weak convergence of surface area
measures, we deduce that the following limits

v (MEecl) = Vit (ML MY L)

lim (4.6)
A=A A=1 o
and

v M L L ym M L )
lim 1 ( 1+e.c 1+ec ) ( +&,0 ) {4?)
A=i A-1 ]
exist and are both equal to
oi=5m [ Z 5 et ()| A ) (+.8)

Using the Ly Minkowski inequality (2.13) for € = 0 in (4.6) and (4.7). respectively, shows that

L
Zn

1 ~
2n-1 V(ML) — v (ME, L)
L) ™ lim inf =
: A—A A— A

L=}
ES)
R
I
~
3
—_—
(=)
i
L]
B
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and
1 N 1
) an—-1 Vm{:Ml )zn_ym Mil oL Zn
g(i) = m(MHECL) 2" lim sup = P ( +EC)
A1 -
Thus. we obtain
1
2n— m 21:_ m n
- M2, L -V M -
90 = V(b 1) P g el 7 (Msect) (49)
A=A _A

which implies that the function A — Vm(M1 e ) is differentiable at A. By (4.8). (4.9), (1.6), and
(2.8), we get

? pm .
EVW(M;H.EP J‘ Z a;{ M_1+gcL(um)dSMll+s,ff-{'um')

= e 2 i) (i ™ = BB, ) ) S, () (410)
m

The continuous function 4 ~ Vm{:Mer e.cL) must attain a maximum on [0,1]. Moreover, (4.5) implies
that the points where this maximum is attained are contained in (0,1). If 4 is such a point, then

EJ
7" M2, ‘ =0
(hsect)|
Thus, it follows from (4.10) and (2.12) that
Vite(ME LMY, L) = VI (MEL (LML, L) (4.11)
By (2.10), (1.6). (2.8). (4.11), and the fact that MZ, _.(—K) = —M{, . K. we have
Vm[:Mite,cL) Vlnlf(Ml+E C‘L Mil+f,c"-':]
= ‘;lvfne(M1+€ CL M]T—EC ) + {l - ;{)V]ﬁe(Mlﬂs L, M]._+E.CL)
= ‘&Vlme(MHe.cLa Ml_—e,c ) + {_l - H)V1+5(M1+e,:‘f—'r M]-.'—+E.CL)

= Vlmf(M1+ECL Mi{+E,C{:_L))
= Vlmf(M1+E CL _Mf—e.f‘[‘)'

Using the L;,, Minkowski inequality (2.13), we conclude that MLECL is origin-symmetric. By (1.6)
and (2.8), this 1s equivalent to

(2'-‘;1‘ - 1) ﬁ*’ L(un1)1+f - hﬁ;gfl.(um)l_f =0
1+&.C :

. _ 51 . . .
for every u,, € S*". If M, _.L = M, L. then we must have 4 = 3 which proves the left inequality.

The classical Blaschke-Santald inequality states (see [6,8,31] ): The product of the volumes of polar
convex bodies 1s maximized precisely by ellipsoids. Note that ((K — x) = (K — 1x for every x € C"
and 1((K*) = (1K)". The classical Blaschke-Santalé inequality induces the complex Blaschke-Santald
inequality. Let K € #;(C"). Then

Vm(h)v}ﬂ(hs) VHI{B)Z
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with equality if and only if K is an ellipsoid. Here, K° = (K — 5)" is the polar body of K with respect
to the Santalé point s of K, i.e., the unique point s € int K which minimizes V™ ((K — x)*) among all
translates K — x, for x €int K.

Applying Theorem 1.3 and the complex Blaschke-Santalé inequality, we can obtain the following
general complex L, _ Blaschke-Santald inequality.

Corollary 4.11. Let € > 0, K € K,(C"). and € € K (C) be an asymmetric L, . zonoid. Then
204 A Ry A
VTK) TV (ML K) < VT(B)TRET V(M B)

If dim ¢ = 1, equality holds if and only if K is an origin-symmetric ellipsoid. If dim ¢ = 2, equality
holds if and only if K is an origin-symmetric Hermitian ellipsoid.

The case ¢ =[0,1] of Corollary 4.11 was established by [10]. The case A4 =% and ¢ =1[0,1] of
Corollary 4.11 was established by [26]. Note that M;+e.'o,1]H —+ K as € — oo, Thus, the classical
Blaschke-Santald inequality can be obtained as a limiting case of Corollary 4.11 for A =1 and ¢ =

[0,1].
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