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Abstract  
Anomalies in industrial applications, such as gas turbines, can lead to unexpected performance issues, costly 

downtime, and severe equipment damage. Detecting and preventing these anomalies is crucial to ensure 

operational efficiency, safety, and the longevity of the machinery, thereby minimizing financial losses and 

potential hazards. The study presents an approach to detect and prevent anomalies while running gas turbine 

engines for power generation using a hybrid model of K-means clustering and Radial Basis Function (RBF) 

networks. K means clustering was used for the detection of anomaly in gas turbine engine (faulty sensors), and 

the RBF was used for the prevention of anomaly in the gas turbine engine. The system was trained and tested 

using gas turbine dataset obtained from kaggle.com. the result show that the hybrid techniques was able to detect 

and prevent anomaly with an accuracy of 99% compared to other techniques, the model can enhance reliability 

and efficiency and proactively prevent potential failures. 
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I. Introduction 
Ensuring operating safety and efficiency in industrial engines relies heavily on the detection of 

anomalies. Multiple studies have highlighted the significance of anomaly detection in industrial environments for 

the purpose of accident prevention, enhancing maintenance operations, and improving the overall reliability of 

the system (Quatrini et al., 2020; Canizo et al., 2019). Machine learning techniques such as K-Nearest Neighbour, 

Support Vector Regression, and Random Forest have been effectively used in anomaly detection approaches to 

identify early faults in industrial electric motors using vibration data (Torres, 2022). These strategies are crucial 

for upholding safety standards and ensuring quality assurance in industrial production processes (Kim & Kim, 

2022). 

Anomaly detection activities have difficulty due to the intricate nature of industrial systems, which are 

characterized by multimode processes and imbalanced data distributions (Chen et al., 2021). The researchers have 

devised novel methods, such as the sliding-window convolutional variational autoencoder (SWCVAE), to detect 

anomalies in industrial robots in real-time. These methods effectively handle the spatial and temporal elements of 

multivariate time series data (Chen et al., 2020). Moreover, the utilization of advanced deep learning models such 

as multi-head CNN-RNN has demonstrated potential in identifying irregularities in various time series. This is a 

practical approach to enhance the availability and dependability of systems (Canizo et al., 2019). 

Anomaly detection in industrial engines entails the identification of unforeseen events or objects in 

datasets that diverge from the usual pattern (Goldstein & Uchida, 2016). Researchers have utilized modern 

technologies like deep learning and support vector machines to construct unsupervised anomaly detection 

systems. These methods aim to tackle the difficulties presented by high-dimensional monitoring data in industrial 
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settings (Xu, 2023). These methods are essential for promptly identifying anomalous process data, minimizing 

losses in raw materials, and improving production efficiency (He et al., 2019). 

Anomaly detection in industrial engines is a complex area that necessitates the use of advanced 

algorithms and models to guarantee the security, dependability, and effectiveness of industrial operations. 

Researchers are constantly improving anomaly detection approaches for industrial systems by combining machine 

learning, deep learning, and statistical methodologies. These endeavours not only aid in accident prevention and 

enhancing maintenance activities but also have a crucial impact on increasing overall operational performance in 

industrial environments. 

 

II. Related Works 
Zhang et al. (2019) introduced a sophisticated deep learning model designed to detect anomalies in 

extensive industrial data without the need for supervision. The framework comprises a deep autoencoder neural 

network that is trained on normal data in order to accurately recreate the input data. Anomaly scores are 

determined by measuring the discrepancy between the input data and the reconstructed data. The suggested 

framework demonstrated a precision of 92.1% when applied to a dataset obtained from a semiconductor 

manufacturing process. An inherent constraint of the paper is that their approach necessitates substantial quantities 

of training data and computational resources, which may be lacking in certain industrial applications.  

The study conducted by Goyal et al. (2021) offers a thorough examination of anomaly detection methods 

specifically designed for industrial Internet of Things (IoT) applications. The authors evaluate a range of 

methodologies, encompassing statistical techniques, machine learning methods, and deep learning methods. The 

report also addresses the difficulties and constraints associated with each technique. This research is a survey and 

does not present individual outcomes for each strategy that was reviewed. Nevertheless, it offers significant 

perspectives on the difficulties and constraints of anomaly detection in industrial Internet of Things (IoT) 

applications.  

Xu et al. (2018) presents a comprehensive examination of anomaly detection methods specifically 

designed for analyzing time series data in industrial settings. The authors evaluate a range of methodologies, 

encompassing statistical techniques, machine learning approaches, and deep learning methodologies. The report 

also examines the difficulties and constraints associated with each technique. This report provides a 

comprehensive assessment that does not present specific findings for each technique that was examined. 

Nevertheless, it offers significant perspectives on the difficulties and constraints of anomaly identification in 

industrial time series data.  

Himmelspach et al. (2018) presents a hybrid method for detecting anomalies in industrial systems. The 

methodology integrates statistical and machine learning techniques, such as principal component analysis (PCA), 

independent component analysis (ICA), and support vector machines (SVMs).  

The proposed methodology attained a precision rate of 95% when applied to a dataset derived from a 

manufacturing procedure. An inherent constraint of this study is that the methodology may necessitate substantial 

parameter adjustment, a task that could prove arduous in some industrial contexts.  

Liu et al. (2021) conducted a thorough examination of deep learning methods used for detecting 

anomalies in motor-related applications. The researchers conducted a comparative analysis of different deep 

learning models, such as autoencoder, LSTM, and CNN, to assess their effectiveness in detecting motor faults. 

The findings demonstrated that deep learning models surpassed traditional machine learning techniques, with 

accuracy rates that varied between 89% and 99%. Nevertheless, the primary constraint of these methods is the 

requirement for substantial quantities of annotated data, which can be lacking in certain industrial environments.  

Yousaf et al. (2020) performed a comprehensive analysis of anomaly detection methods specifically 

applied in industrial settings. The researchers assessed a range of methodologies, such as statistical approaches, 

machine learning algorithms, and deep learning models, and scrutinized their constraints and possible remedies. 

The findings indicated that deep learning-based approaches exhibited superior accuracy rates compared to 

conventional methods, but at the cost of increased data and computational resource requirements. The authors 

proposed a hybrid methodology that integrates many strategies to enhance accuracy and mitigate constraints.  

Bhattacharya and Pandey. (2023) conducted a systematic literature review of anomaly detection 

techniques in industrial applications. They evaluated various techniques, including statistical methods, machine 

learning, and deep learning, and analyzed their limitations and potential solutions. The results showed that deep 

learning-based methods had higher accuracy rates than traditional methods, but they also required more data and 

computational resources. The authors recommended a hybrid approach that combines different techniques to 

improve accuracy and reduce limitations. 

Safdari et al. (2020) introduced a hybrid methodology for identifying anomalies in industrial processes 

by combining LSTM networks and deep autoencoders. The researchers assessed their methodology using a 

practical dataset of a hot-rolling process and attained a precision level of 99%. The authors acknowledged that 
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the primary constraint of their method is the requirement for a substantial volume of data to train the deep 

autoencoder, which might not be accessible in certain industrial environments.  

Gopalan et al. (2019) introduced a method that utilizes randomized matrix decomposition to detect 

anomalies in industrial systems. The researchers assessed their methodology using a practical dataset from a gas 

turbine engine and attained a precision level of 96%. The authors acknowledged that their method was 

computationally efficient and capable of handling data with a large number of dimensions. However, it 

necessitated the use of domain expertise to choose suitable hyperparameters.  

Jiang et al. (2019) introduced a framework that use deep learning to detect anomalies in Industrial 

Internet of Things (IoT) systems. Their approach was assessed using a real-world dataset from a steel-making 

process, resulting in an accuracy rate of 97%. The authors acknowledged that their methodology was capable of 

processing time-series data and demonstrated computational efficiency. However, it necessitated a substantial 

quantity of labeled data to effectively train the deep learning model.  

In this study, Yuan et al. (2018) provide a machine learning methodology designed specifically for 

identifying and flagging anomalies within industrial systems. The researchers employ a fusion of Principal 

Component Analysis (PCA) and Support Vector Machines (SVM) to detect aberrations in the dataset. The authors 

assess their methodology using a dataset that includes information from a chemical facility located in China. The 

authors of the study compare their method to other conventional anomaly detection techniques, such k-nearest 

neighbor (k-NN), and provide evidence that their method achieves more accuracy than the standard methods. 

 

III. Methodology 
This section describes the system architecture and the various components that are made up of the system 

architecture in predicting and analysing uncertainty in big data. A detailed design of the proposed system 

architecture can be seen in Figure 1 below. 

 

 
Figure 1: Architectural Design of the Proposed System 

 

Gas Turbine Engine Dataset: A powerplant engine (gas-turbine) is mainly used to generate electricity.  

 Components of the Architecture  
Compare to reference model: Incoming data is provided in the form of a snapshot measurement vector, y. 

Typically, this data has been corrected, or normalized, to a standard operating condition to help reduce the effects 

of operating condition variance. The incoming data is compared against a reference model (run at the same 

operating condition and power setting as the measured engine data). Typically, this model is a fleet average engine 

model representing average engine performance across a fleet of gas turbine power plant.   

Anomaly detection: Anomaly detection algorithm (K-means Clustering) is applied to detect any unanticipated 

rapid shifts in the observed Δy measurements. The k-Means algorithm takes the following steps for the detection 

of anomalies: 

 

Algorithm of K means for Anomaly Detection 

1. Choose the number of clusters, K. 

2. Initialize K centroids randomly or using a specific initialization algorithm. 

3. Assign each data point to the nearest centroid, forming K clusters. 

4. Calculate the distance between each data point and its assigned centroid. The most common distance metric 

used is Euclidean distance. 

5. Update the centroids by taking the mean of all data points assigned to each cluster. 

6. Repeat steps 4 and 5 until the centroids no longer change significantly or a maximum number of iterations is 

reached. 

7. Calculate the distance between each data point and its assigned centroid after convergence. 

8. Identify anomalies based on a predetermined threshold for the distance or using statistical techniques such as 

z-scores or outlier detection methods. 
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Mathematical equations: 

1. Euclidean distance between two data points (x) and (y): d(x, y) = √(Σ(xi - yi)^2), where xi and yi are the 

feature values of the two points. 

2. Updating the centroids: For each cluster k, the centroid (μk) is updated by taking the mean of all data 

points (xi) assigned to the cluster: μk = (1/|Ck|) * Σxi, where Ck represents the set of data points assigned to 

cluster k. 

3. Distance between data point (x) and its assigned centroid (μk): dk = d(x, μk) 

4. Calculating z-score: The z-score of a data point (x) is calculated based on the mean (μ) and standard 

deviation (σ) of the distances between data points and their assigned centroids: z = (dk - μ) / σ 

Anomaly Prevention:  The RBF network is used for preventive mechanism for anomaly detection on gas turbine 

engine. 

 

Step 1: RBF Network Initialization 

i. Determine the number of hidden neurons (K) for the RBF network. This can be done using various methods such 

as the Elbow method or cross-validation. 

ii. Initialize the centers of the RBF neurons. This can be done using clustering algorithms like K-means or randomly 

selecting data points. 

iii. Determine the spread (width) of each RBF neuron. This can be done by calculating the average distance between 

the neuron center and its nearest neighboring centers. 

Step 2: Calculate the Activation of Hidden Neurons 

i. Calculate the activation (or similarity) of each hidden neuron for each training example using a Gaussian function. 

ii. The activation (A) of a neuron j for an input vector x can be calculated using the formula: A_j = exp(-(||x - c_j||^2) 

/ (2 * σ_j^2))    =                                   (3.1) 

iii. where c_j is the center of neuron j and σ_j is the spread of neuron j. 

Step 3: Solve for Weights 

i. Solve for the weight matrix (W) by performing a linear regression between the activation values of the hidden 

neurons and the output values. 

ii. The weight matrix can be calculated using the formula:  

W= (Φ ^ T * Φ)^-1 *Φ^T*Y      (3.2)                                                                           

where Φ is the matrix of activation values of the hidden neurons for all training examples and Y is the matrix of 

output values. 

Step 4: Anomaly Detection 

i. For each testing example, calculate the activation of the hidden neurons using the same Gaussian function as in 

Step 3. 

ii. Calculate the predicted output (Y_pred) for each testing example using the weight matrix W and the activation 

values.  

    Y_pred = Φ * W   (3.3)                                         

iii. Compare the predicted output with the actual output to detect anomalies. 

iv. You can define a threshold or use statistical methods like Z-score to determine if a predicted output is significantly 

different from the actual output. 

 

 
Figure 2: RBF Architecture 

 

Reconcile & Report Result: This module is responsible for alerting the user when a sensor of the gas turbine 

engine is faulty. 

Module Performance and Deterioration trend Monitoring: This module is responsible for monitoring and 

checking for faults. 
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IV. Results 
4.1   Exploratory Data Analysis (EDA) 

This section describes the use of charts (graphs, histograms, and other visualized plots) in performing 

analysis on the dataset such as feature correlations, frequency distributed plots, bar charts of feature rankings. 

From the analysis conducted, Figure 3 shows a density distribution plot of Turbine Energy Yield (TEY). Figure 

4 shows a density distribution plot of Ambient Temperature (AT), and Figure 5 shows a density distribution plot 

for Ambient Pressure (AP). For having a better insight on continuous variables, a box plot was visualized. The 

box plot for continuous variables can be found in Figure 6. A log transformation of the box plot can also be seen 

in Figure 7. Net was checking the correlations between the target variable and the independent variable. This can 

be seen in Figure 8. Finally, a plot in Figure 9 was carried out to rank the dependent features, to see which feature 

have more effect on the dataset. This was achieved using predictive power score. The correlated features can be 

seen in Figure 10.  

 

Table 1: Dataset samples 

 
 

The features of the dataset can be seen as follows: 

1. Ambient temperature (AT) C â€“6.23 37.10 17.71 

2. Ambient pressure (AP) mbar 985.85 1036.56 1013.07 

3. Ambient humidity (AH) (%) 24.08 100.20 77.87 

4. Air filter difference pressure (AFDP) mbar 2.09 7.61 3.93 

5. Gas turbine exhaust pressure (GTEP) mbar 17.70 40.72 25.56 

6. Turbine inlet temperature (TIT) C 1000.85 1100.89 1081.43 

7. Turbine after temperature (TAT) C 511.04 550.61 546.16 

8. Compressor discharge pressure (CDP) mbar 9.85 15.16 12.06 

9. Turbine energy yield (TEY) MWH 100.02 179.50 133.51 

 

 

 
Figure 3: Density Distribution Plot of Turbine Energy Yield (TEY) 



A Model for the Detection of Anomaly and Prevention in Industrial Application using .. 

DOI: 10.35629/3795-10064353                                  www.questjournals.org                                           48 | Page 

 
Figure 4: Density Distribution Plot of Ambient Temperature (AT) 

 

 
Figure 5: Density Distribution Plot of Ambient Pressure (AP) 

 

 
Figure 6: Visualized Plot for Continuous Variables 
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Figure 7: Log Transformation for Continuous Variables 

 

 
Figure 8:  Correlation of Target variables Vs Independent Variables 

 

 
Figure 9:  Feature Ranking for Important Feature 
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Figure 10:  Correlated Features of the Dataset 

 

4.2    Anomaly Detection Using K- Means 

K- means algorithm was used for anomaly detection on the gas turbine dataset. The result of the K means for the 

detection of anomaly can be seen in Table 2. 

 

Table 2: Detected Anomalies 

 
 

Table 2 contains the data points identified as anomalies, each represented by a row. The value -1 is used 

in the table to clearly indicate which rows are anomalous, making it easy to differentiate them from normal data 

points. These anomalies were detected using the k-means clustering algorithm, which partitions the data into 

clusters. Data points that are significantly distant from their cluster centroids, based on a defined threshold, are 

classified as anomalies and listed in this table. 
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Figure 11: K-means Clustering.  

 

This is the output of the k-Means for anomaly detection. Here, k means was able to group normal points and 

anomalous points.   P is defined as the threshold to identify anomalies. 

 

4.3    Anomaly Prevention Using Radial Basis Function (RBF) 

This sub section describes the application of Radial Basis Function (RBF) networks for preventing 

anomalies in gas turbine engines. This method involved data collection from various sensors (See Table 2) for 

training the RBF network, and a three-layered architecture with an input layer, RBF hidden layer, and an output 

layer for anomaly detection. The center selection and width determination were performed using K-means 

clustering and distance metrics. The results indicated high accuracy of 99.99%. Figure 12 and Figure 13 depicts 

the evaluation of the RBF using confusion matrix and classification report.  

 

 
Figure 12: Classification Report 

 
Figure 13: Confusion Matrix 
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4.8   Comparison with other Existing System 

Table 3 and Figure 14 shows the comparison of the proposed system for anomaly detection with other existing 

systems. 

 

Table 3:  Comparison with other Existing System 
Authors Technique Model Accuracy 

(%) 

Cavdar et al. (2022) Convolutional 
Neural Network 

97.89% 

Bhattacharya 

S and Pandey. 
(2023) 

 Autoencoder 98.48 

The proposed 
system 

RBF model 99.98 

 

 
Figure 14: Comparison with other Existing Systems 

 

V. Conclusion 
This paper effectively utilized an industrial gas turbine engine dataset to train a model specifically aimed 

at detecting control system failures. By applying the k-means clustering algorithm, the study identified abnormal 

behaviours in the dataset samples. Furthermore, a Radial Basis Function (RBF) was implemented to potentially 

prevent anomalies by providing timely notifications to operators, enhancing proactive maintenance capabilities. 

The model was developed using the Python programming language within the TensorFlow framework, ensuring 

robust and scalable performance. Finally, the study conducted a comprehensive comparison of the results obtained 

from the developed system with those from other existing systems, successfully meeting all the outlined 

objectives. 
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