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ABSTRACT 
Privacy preservation has become a critical issue in the age of big data and machine learning, where vast amounts 

of sensitive information are processed and analysed. Traditional machine learning models often require 

centralizing data from various sources, which poses significant privacy risks, especially for sensitive domains like 

healthcare, finance, and personal communications. Unauthorized data access, potential data breaches, and 

misuse of personal information are major concerns. Moreover, compliance with stringent privacy regulations, 

such as GDPR, becomes increasingly challenging. This paper presents a federated learning-based privacy-

preserving model aimed at enhancing the security of machine learning processes while maintaining the 

confidentiality of sensitive data. The system demonstrated a high level of accuracy, reaching 98.36% during 

training and testing phases. Additionally, the system ensures regulatory compliance with modern data privacy 

laws and enhances its scalability for real-time applications. These results underscore the effectiveness of the 

proposed model in addressing contemporary privacy challenges while maintaining high predictive performance. 
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I. Introduction 
Machine Learning (ML) has witnessed an unprecedented surge in utilization across diverse applications, 

revolutionizing the way we approach problem-solving and decision-making. From healthcare and finance to 

transportation and entertainment, Machine Learning has become an integral component, offering sophisticated 

solutions that adapt and evolve based on data patterns. This widespread adoption is fueled by the exponential 

growth in data availability, computational power, and advancements in Machine Learning algorithms. The 

increasing reliance on Machine Learning reflects its transformative potential to unlock insights from massive 

datasets, automate complex tasks, and improve decision accuracy (Jordan & Mitchell, 2015). However, this 

proliferation of Machine Learning comes with inherent challenges, with one of the foremost concerns being the 

privacy of sensitive data used in training and deploying Machine Learning models. As Machine Learning 

applications become more pervasive, the need to address these privacy issues becomes paramount to ensure ethical 

and responsible use of technology. 

Privacy concerns associated with sensitive data used in Machine Learning (ML) models are multifaceted 

and can have significant ethical and legal implications. Some key privacy concerns include: Data breaches, Re-

identification Risk, Bias and Discrimination, informed consent, Algorithmic Transperency, Secondary use of data, 

Cross-Domain Inference, Model inversion, Homomorphic Attacks, Data Poising etc. Addressing these privacy 

concerns requires a comprehensive approach that includes robust security measures, ethical data handling 

practices, transparency in model development, and ongoing efforts to mitigate biases and discrimination in 

Machine Learning algorithms. It also emphasizes the importance of adhering to privacy regulations and standards 

to protect individuals' rights and maintain public trust in the use of ML technologies. 

Given the importance of preserving privacy in the era of Machine Learning, there is a compelling need 

for robust and effective privacy-preserving techniques. These techniques should not only ensure the 

confidentiality of sensitive data but also address the broader ethical considerations associated with ML 

applications. 

Federated Learning (FL) emerges as a promising solution to address the privacy concerns inherent in 

traditional ML approaches. Unlike conventional centralized training methods, Federated Learning distributes the 

learning process across decentralized devices or servers. In this paradigm, the training of ML models occurs 
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locally on individual devices, utilizing locally stored data. Only the model updates, rather than raw data, are 

transmitted to a central server, where they are aggregated to improve the global model. 

 

II. Review of Related Literature 
In fields such as healthcare, Machine Learning algorithms analyze patient data to facilitate early disease 

detection and personalized treatment plans (Obermeyer & Emanuel, 2016). Financial institutions leverage 

Machine Learning for fraud detection, risk assessment, and optimizing investment strategies (Lipton et al., 2016). 

Additionally, Machine Learning plays a pivotal role in enhancing the efficiency and safety of transportation 

systems through predictive maintenance and autonomous vehicle technologies (Goodfellow et al., 2016). 

Furthermore, the entertainment industry benefits from ML-driven content recommendations, personalized user 

experiences, and advanced content creation tools (Hu & Wu, 2018). Other researches in this domain are outlined. 

Kairouz et al. (2019) presented "Privacy-Preserving Credit Scoring with Federated Machine Learning". 

They explored Federated Learning for credit scoring applications, allowing financial institutions to collaboratively 

build models without sharing sensitive customer financial information. In their ,methodology, Financial 

institutions locally train credit scoring models on their datasets. Only model updates are shared and aggregated, 

ensuring privacy. The result of Federated Learning-based credit scoring models achieve comparable accuracy to 

centralized models without exposing sensitive financial information. 

Hao et al., (2019) presented Federated Learning for Secure and Privacy-Preserving Industrial artificial 

intelligence, which focuses on applying Federated Learning to secure and privacy-preserving Industrial Internet 

of Things (IIoT) in smart grids, ensuring efficient energy management without compromising data privacy. They 

proposed an efficient and privacy-enhanced federated learning (PEFL) scheme for Industrial Artificial Intelligence 

(IAI). Compared with existing solutions, PEFL is noninteractive, and can prevent private data from being leaked 

even if multiple entities collude with each other. Moreover, extensive experiments with real-world data 

demonstrate the superiority of PEFL in terms of accuracy and efficiency. 

Bonawitz et al., (2019) designed "Federated Learning for Autonomous Vehicles". The study discusses 

Federated Learning applications in the context of autonomous vehicles, enabling vehicles to learn from each 

other's experiences without sharing raw sensor data. In their methodology, Autonomous vehicles locally train 

models on their sensor data. Model updates, capturing knowledge from various vehicles, are transmitted and 

aggregated without sharing raw sensor data. The result of their experiment showed that Federated Learning 

facilitates collaborative learning among autonomous vehicles, improving overall model performance and safety 

without compromising individual vehicle data. 

Rani, et al (2023) in their work “Federated Learning-Based Misbehaviour Detection for the 5G-Enabled 

Internet of Vehicles”, discussed how Vehicular Networks and the Internet of Vehicles (IoV) enable 

cooperative learning through federated learning. The work proposes a privacy-preserving IoV malware detection 

framework. According to experiments, the proposed Federated Learning approach detected attacks in IOV 

networks with a maximum accuracy of 99.72%. In addition to precision, recall, and F1 scores, 99.70%, 99.20%, 

and 99.26% were achieved. A comparison of the proposed model with the existing model shows that the proposed 

model is more accurate. 

 

Gu, et al., (2023), proposed an information reporting framework for solving both efficiency and privacy 

issues. Specifically, messages are probabilistically reported to the server depending on their importance. 

Furthermore, the DAG-based blockchain ensures that messages reported for a specific event are all gathered in 

the same ledger. We also present a scheme based on the geo-indistinguishability to protect the location privacy of 

vehicles. Extensive experiments demonstrate that the proposed framework preserves the location privacy of 

vehicles and achieves efficiency with acceptable overheads. 

Wang et al., (2022) proposed a Privacy Protection Scheme for Federated Learning under Edge 

Computing (PPFLEC). Firstly, they proposed a lightweight privacy protection protocol based on a shared secret 

and weight mask, which is based on a random mask scheme of secret sharing. It is more accurate and efficient 

than homomorphic encryption. It can not only protect gradient privacy without losing model accuracy, but also 

resist equipment dropping and collusion attacks between devices. Second, they designed an algorithm based on a 

digital signature and hash function, which achieves the integrity and consistency of the message, as well as 

resisting replay attacks. Finally, they proposed a periodic average training strategy, compared with differential 

privacy to prove that their scheme is 40 % faster in efficiency than in deferential privacy. Meanwhile, compared 

with federated learning, they system achieved the same efficiency under the condition of ensuring safety. 

Therefore, the scheme can work well in unstable edge computing environments such as smart healthcare. 
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III. Analysis of the Proposed System 
The proposed system's architecture shown in figure 1 integrates distributed key management to enhance 

privacy preservation and scalability within a federated learning framework. Initially, learning clients request both 

traditional encryption keys and homomorphic encryption keys from a centralized Key Management Center 

(KMC). However, instead of relying solely on a centralized entity, the distributed key management approach 

ensures that key generation and distribution tasks are decentralized, potentially across multiple KMC nodes or 

through a distributed consensus mechanism.  

With these keys, clients encrypt their model updates using homomorphic encryption, maintaining data 

privacy during transmission to the central server. The server, equipped with its own set of decryption keys, 

performs computations like model aggregation directly on the encrypted updates, eliminating the need for 

decryption and preserving privacy. Moreover, the KMC’s distribution of homomorphic encryption keys for 

encrypting global model parameters further fortifies privacy protection. By distributing encryption keys and 

computation tasks, the system mitigates risks associated with centralized key management, such as single points 

of failure, while enhancing scalability. Additionally, the integration of homomorphic encryption enables secure 

inference on sensitive data, extending privacy protection beyond training. Overall, the proposed system offers a 

comprehensive solution for privacy-preservation, ensuring data privacy across diverse and distributed datasets 

while enabling collaborative model training. 

 

 
Figure 1: Architecture of the Proposed System 

The proposed architecture is grouped into three modules namely, client, key management center and server 

modules. The details of the components and the process of operations are outlined below. 

a. Load Data: The process begins with loading the training data from distributed sources, which may be 

spread across multiple learning clients. These data sources contain sensitive information that needs to be protected 

throughout the federated learning process. 

b. Request Distributed Key Pairs: Learning clients initiate a request to a centralized Key Management 

Center (KMC) to obtain distributed key pairs. These key pairs include both traditional encryption keys and 

homomorphic encryption keys, necessary for securing data and computations in the federated learning process. 

c. Key Management Center (Distributed Key Management): The KMC is responsible for generating 

and distributing key pairs to learning clients securely. It ensures that each client receives the necessary encryption 

keys to protect their data and enable secure computations during model training and aggregation. 

d. Initialize the Model: Once equipped with encryption keys, learning clients initialize their local models 

using the training data available to them. This step prepares the models for training and eventual aggregation with 

contributions from other clients. 

e. Model Updates Encryption with Encryption: As training progresses, learning clients encrypt their 

model updates using the encryption keys obtained from the KMC. Additionally, homomorphic encryption is 
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applied to these updates, allowing computations to be performed directly on the encrypted data without decryption, 

thus preserving privacy. 

f. Server (Add Gradients and Send Back to Each Clients): The central server receives the encrypted 

model updates from learning clients and performs aggregation using homomorphic operations. It adds the 

aggregated gradients to each client's encrypted model updates and sends them back for further training iterations. 

g. Feed Forward: Learning clients receive the aggregated model updates from the server and continue 

training by incorporating these updates into their local models. This process iterates until convergence criteria are 

met. 

h. Loss < E? (YES) -> Final Model: At each iteration, the system evaluates whether the loss function falls 

below a predefined threshold (E). If the condition is satisfied, indicating convergence, the final global model is 

derived from the aggregated parameters across all clients. 

i. Loss < E? (NO) -> Back Propagation: If the convergence criteria are not met, backpropagation occurs, 

and the process continues with another iteration of model updates, encryption, aggregation, and training until 

convergence is achieved. 

 

IV. Experimental Setup and Results 
The experiments implements a simplified federated learning scenario using PyTorch. It is structured into 

several main components, with key functionality detailed below: 

First, during the Data Preprocessing stage, three datasets (dataset1.csv, dataset2.csv, dataset3.csv) are 

loaded into the system. For each dataset, it performs feature scaling using StandardScaler to standardize the 

features. It also uses RandomOverSampler to balance class distributions by oversampling the minority class when 

needed. After preprocessing, the data is converted into PyTorch tensors for use in the model training. Next, the 

basic logistic regression model built using PyTorch’s torch.nn. Module, is used as the neural network architecture 

in this implementation. It consists of a single linear layer with weights initialized to zero. The forward pass uses 

the sigmoid activation function to map the output to a probability, as logistic regression is well-suited for binary 

classification problems. Furthermore, the federated learning scenario known as the client class, which involves 

multiple clients, each of which independently trains a local model on its own dataset is implemented. Each client 

performs the following: 

1. Preprocessing: Each client preprocesses its dataset by scaling and splitting it into training and testing 

sets. The labels in the dataset are also modified, replacing categorical values with binary ones (e.g., "M" for 

malignant, and "B" for benign in a diagnostic column). 

2. Training: The client trains its local logistic regression model using a stochastic gradient descent (SGD) 

optimizer and binary cross-entropy (BCE) loss function. The training loop runs for a specified number of epochs, 

and at each epoch, the client updates the model weights based on the loss calculated from predictions and true 

labels. 

3. Model Encryption: After training, the client encrypts the model's parameters (weights and bias) using a 

custom encryption function encrypt_weights(). The encrypted parameters are saved locally for future aggregation. 

4. Evaluation: Each client evaluates its local model by calculating its accuracy on the test dataset. The 

accuracy is derived by comparing the predicted outputs with the actual test labels. 

5. Plotting: Clients can visualize the training process by plotting graphs for training accuracy and loss over 

iterations. 

6. Server Role: In this federated learning setup, after the local models have been trained, the server is 

responsible for aggregating the model weights from all clients to create a global model. This global model 

represents the combined knowledge learned from all the clients’ local datasets. The script hints at the future 

implementation of the federated aggregation step but currently focuses on training each client independently. 

7. Final Execution: Three client objects are created, each initialized with its respective dataset. The script 

then proceeds to train each client’s local model for 500 iterations. After training, the script evaluates and prints 

the model performance, displaying both accuracy and loss metrics. The models’ weights can later be aggregated 

in the server for federated learning. 

The overall workflow mimics the federated learning process where data remains decentralized (clients do not 

share raw data) but models are trained locally, and the learned knowledge (model weights) is shared securely. 

This approach enhances privacy and security, especially for sensitive data such as medical diagnostics. The 

training results of the federated learning model for the clients are shown in the Figures 1 to 9. 
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Figure 1 Training of the federated learning model using logistic regression for client 1 

 

 
Figure 2 Training loss of the federated learning model using logistic regression on client 1 

 

 
Figure 3 Training accuracy of the federated learning model using logistic regression on client 1 
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Figure 4. Training of the federated learning model using logistic regression for client 2 

 

 
Figure 5: loss of the federated learning model using logistic regression for client 2 

 
Figure 6: accuracy of the federated learning model using logistic regression for client 2 
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Figure 7: Training of the federated learning model using logistic regression for client 3 

 

 
Figure 8: loss of the federated learning model using logistic regression for client 3 

 

 
Figure 9: accuracy of the federated learning model using logistic regression for client 3 

 

V. Discussion of Results 
From the experiment conducted, Figures 1, 4 and 7 indicate the training progress of a logistic regression 

model over 500 epochs. The training accuracy (Train ACC) improves rapidly and stabilizes around 97.87%, 

97.93% and 99.16% respectively by epochs 250 in each training, indicating that the model has effectively learned 
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from the training data. The loss, which measures the difference between the predicted and actual values, decreases 

consistently from 0.296, 0.286 and 0.293 respectively in the early epochs to 0.090,0.073 and 0.081 by the 500th 

epoch, reflecting a gradual improvement in the model's performance. The displayed model parameters, including 

the weights and bias, are the learned coefficients after training, which will be used to make predictions. The stable 

accuracy and decreasing loss suggest that the model is well-trained without overfitting. 

Figures 2, 5 and 8 depict the training loss over 500 iterations in a federated learning setting. The training 

loss starts relatively high, near 0.7, and decreases sharply during the initial iterations, indicating that the model is 

quickly learning to minimize the difference between predicted and actual values. As training progresses, the loss 

continues to decline but at a slower rate, eventually approaching a value close to 0.1. This behaviour suggests that 

the model is effectively learning and converging towards a minimum loss, indicating good performance and 

potentially effective training under the federated learning framework. The steady decrease in loss without 

significant oscillations also suggests that the learning process is stable. 

Figures 3, 6 and 9 shows the training accuracy over 500 iterations in a federated learning environment. 

The accuracy starts around 97.50%, 97.92% and 98.36% respectively and exhibits a general upward trend with 

slight fluctuations. There are noticeable step increases in accuracy at various points, particularly around 100, 200, 

and 400 iterations, ultimately reaching a peak accuracy of approximately 97.87%, 98.31% and 98.36% 

respectively. The gradual improvement in accuracy indicates that the model is effectively learning from the data 

and becoming better at making correct predictions as training progresses. The final accuracies same as the peak 

accuracies for each training suggests that the model has achieved a high level of performance. The small 

fluctuations early in the training suggest some initial adjustments, but the overall trend indicates successful model 

convergence. 

 

VI. Conclusion 
In this paper, we have demonstrated that Federated Learning offers a robust framework for building 

machine learning models in a privacy-preserving manner. The principles and mechanisms of Federated Learning 

were effectively analyzed, a system for privacy preservation was designed and implemented, and the impact on 

privacy was thoroughly assessed. This study not only highlights the potential of Federated Learning in protecting 

user data but also sets the stage for future research into more advanced privacy-preserving techniques and their 

integration into FL systems. Future work could explore optimizing communication efficiency, enhancing model 

performance on non-IID data, and further strengthening the privacy guarantees through the integration of 

differential privacy or homomorphic encryption. 

Thus, this paper uniquely contributes to the field by integrating Federated Learning with advanced 

privacy-preserving techniques, specifically tailored to environments with varying communication constraints, this 

dissertation emphasizes practical implementation, demonstrating how to optimize communication efficiency and 

enhance privacy protections in real-world scenarios. The approach not only advances the understanding of 

Federated Learning's mechanisms but also provides a scalable, privacy-centric framework applicable across 

diverse domains, setting it apart from existing studies. 
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