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Abstract
The pioneers’ authors in [27] give a general method for the study of unimodular multipliers on certain

function spaces defined by decomposition on the frequency plane. These basic spaces include modulation
spaces, (1 — €)-modulation spaces and (homogeneous and inhomogeneous) Besov spaces. We give a
complete characterization of the Fourier multipliers on these valid function spaces, and a characterization
of unimodular multipliers under some warious assumptions. As applications, we obtain some sharp
boundedness properties of unimodular Fourier multipliers between these function spaces. We also obtain
the asymptotic estimates for certain free dispersive semigroups.
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l. Introduction

From the basic studies in harmonie analysis is to study the boundedness of certain linear operators on
various function spaces or distribution spaces. These operators are usually raised from partial differential
equation (PDE). mathematical physics, probability theory and other fields. We are interested with the

B
Fourier multiplier operator e+ with the Laplace operator A, is the fundamental semi-group of the
Schridinger equation when f = 2 and is the fundamental semi-group of the wave equation when f = 1.
On the other hand. choosing a right function space (or distribution space) as a ground frame is a crucial step
in order to obtain the well-posedness of certain Cauchy or boundary value problems of partial differential
equations. Thus, an important criteria or a compact features is to study various function spaces and
distribution spaces to fit different PDE problems. So, one of the most efficient methods of defining function
spaces is to use the frequency decomposition of R"™. In the Euclidean space R", a family of countable
subsets § = {Q;};; is called an admissible covering (see [10]) of R™ if
(DR" = U Qi
(2) sup #Uel:QnQ =0} < oo
For yo, be the characterization function of Q; and ¥, be a smooth modification of ¢, so that it is a smooth
bump functions related to @; for each i € I. For sequences of distributions f, consider the frequency
projection

Fb[{f;) = fqig{f;)
Here  is the Fourier transform with the inverse Fourier transform ', Choose an appropriate sequence of
positive numbers {4;}. Fors € Rand 1 < € = o, we can define the norm

1
1+2e
_ s
I fc" IIF‘.S+E,J.+2F - Z Z ('1} )
[+3

f_lfbj(f;)

1+2e¢
JjeI

LJ.+£
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The space I3% . 1.0, then is the set of all f; satistying || f; < . When we let Q; be the dyadic

||Ff+£.'.+2£
regions [r;“' ER": 2/ = [§] < Zj_l} and {4} = {27}, the space I7%. 1. 2. becomes the homogeneous
Triebel-Lizorkin space that includes the classical Lebesgue space L1*€ and the Sobolev space W55 if
one chooses appropriate parameters § and (1 + 2¢). Related to the Triebel-Lizorkin space is the famous
Littlewood—Paley theory that plays a remarkable role in the study of harmonic analysis and PDE.

Also, we can define the frequency decomposition space

1
1+2¢

g—lqu(fa)‘|)l+25 < o

¢’f—s,1+2€ = fﬂ' ; " fG ||¢‘“§+E,J.+ZE= Z Z (AJS

Jel o

#1 4 1+2¢ Decomes the modulation space M7, _ 4o, if we choose the uniform unit cubes {Q; : j € Z"}in

L
the frequency space and ; = (1 + |j|?)z and @, ;. becomes the Besov space By, ;4. if we choose
a dyadic decomposition on the frequency space. Besides M{, . 1,2, and By, .42, the (1 — €)-modulation
1 _ . : - .
spaces M 1,5, 0 < € = 1, can be derived from #,_ 1. by choosing a sequence of (1 — €) coverings

(see Section 2).

First of all we give the precise definitions of the spaces M7, 1.2 Bi 1.0 and Mls'_lfffue. The Besov
space is a well known function space. We leave it to the reader. Below, we keep the statements of the
historical developments of the modulation spaces M{, ;2. and (1 — €)-modulation spaces M f:e_ Lioer
with a bit change if possible.

The modulation space M7, ;... was originally introduced by Feichtinger [8] in 1983 by the short-time
Fourier transform. It can be used to measure the size and smoothness of a function in a way different from
the L1 space and the Sobolev space. It have been discover that this space has a discrete version based on
the uniform unit decomposition on the frequency space. Based on this alternative definition, many notable
performances were showed on the modulation space when deal with PDE and pseudo-differential operators.
For more knowledge on the modulation space, see [8, 12, 22] for many elementary properties of modulation
space, [2, 1, 3] for the study of boundedness on modulation spaces for certain operators and [4, 22, 21, 23]
for the study of nonlinear evolution equations related to modulation space.

As we mentioned above, the inhomogeneous Besov space Bi,.110. 15 another frequency-decomposition
funetion space based on the dyadic decomposition. Thus, it i1s interesting to build a bridge connecting the
modulation space and the Besov space. To this end, the general framework of a decomposition method
considered by Feichtinger and Grobner in [9, 7] to construet the (1 — €)-modulation spaces, which is an
intermediate space between the modulation space and the Besov space with respeet to the parameters 0 =
€ < 1. We also see [14], which contains a comprehensive study of (1 — €)-modulation spaces. Modulation

spaces is a special (1 — €)-modulation space in the case € = 1, and the Besov space Bf, ;.. can be
. . Jl_ N . ~ o .
regarded as the limit case of M] . _; ., as € — 2 (see [11]). So, for the sake of convenience, we can view

5.1
1l+el1+2¢

Besov space Bi, . 142e In [13]. the conclusion on (1 — €)-modulation spaces was proved to be unable to
be obtained by a simple interpolation between modulations and Besov spaces.

the Besov space as a special (1 — €)-modulation space and use M to denote the inhomogeneous

In addition to the above function spaces, the homogeneous Besov space Bf,_ ;... is another important
function space, which is also a popular working frame in the study of partial differential equations. Now,
we refer the (1 — €)-modulation spaces and (inhomogeneous and homogenecous) Besov spaces collectively
as frequency decomposition spaces.

We study certain unimodular Fourier multipliers on the frequency decomposition spaces (see [27]).
Suppose X and X + € are two function spaces. We call a tempered distribution m a Fourier multiplier from
X to X + €, if there exists a constant € = 0 such that

I Z To(£) lgee = (1 + e)z I £y

for all sequences f, in the Schwartz space S(R"™), where
- -1
Tnfe = m(D)f, = F (¥ f,)
is the Fourier multiplier operator associated with m, and m is called the symbol or multiplier of T,,,. Let
Mg (X, X + €) denote the set of all symbols such that the corresponding Fourier multipliers are bounded
from X to X + €. We set the operator norm of T}, in the following:
Im| Mg(X,X +€)l =1 T llx—xse=5up {ll Tmfs lx:c: fo € S(R™) I 51X = 1}

Fourier multipliers arise naturally in formal solutions of linear partial differential equations with constant

B
coefficients and in the summabilities of Fourier series. So as before, the linear operator e!(1+)AIZ jg the

fundamental solution of the Schridinger equation if § = 2, and the fundamental solution of the wave
. . . . . . g . i(1+<)| 5|8 . .

equation if # = 1. This operator is a Fourier multiplier with symbol ¢?*<)¥1° Notice that a Fourier

multiplier T,,, is a convolution operator, and the frequency decomposition space ®7, _,,,. 1s defined also
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using the convolution on each picce of decomposition. By the commutative property of the convolution
operators, we have
T "Po;(fe) = F Po,(Tufo).

Thus, a Fourier multiplier bounded on the Lebesgue space L1*€ is automatically bounded on any frequency
decomposition space @5, 1,.. But it is not true vice versa. We know that the Fourier multiplier e'l*l is
not bounded on any L' except in the case € = 1, while this operator is bounded on any modulation space
M{, _1.5.. Thus, establishing the boundedness of Fourier multipliers on the modulation spaces. if they are
unbounded on the Lebesgue spaces. Particularly, if such a Fourier multiplier was raised from some PDE
problems, we naturally expect that the modulation spaces can serve a good substitution of the Lebesgue
spaces and that it together with the Fourier multiplier play a notable role to study certain well-posedness of
the corresponding PDE problem. Based on the above, we extend one of the main results in [10] to establish
characterization of the boundedness for the Fourier multiplier on the (1 — €)-modulation space Wf:e_ e
and on the Besov spaces. We use a quite different method from [10] to prove the theorem by means of the
corresponding Wiener amalgam spaces, before we present some preliminary knowledge in Section 2. We
give two applications for this boundedness eriterion. The first application is a simple proof for the sharpness
of embedding between different (1 — €)-modulation spaces. In the second application, under some mild

Mg(D) e will establish its sufficient and

assumptions on the function i, for the unimodular multipliers e
necessary conditions of the boundedness on the (1 — €)-modulation spaces. We also obtain the asymptotic
estimates for the operator norms of e'(1*<)s(P)_ These results are substantial extensions to all the previous
known results. We can see the details in Theorems 4.2, 4.8, 4.9, 4.10 and some comments related to these
theorems (see [27]).
2. Preliminaries
Now let C be a positive constant that may dependonn,1 +€,1 + 2¢€,5;, 1 — €, . The notation X = X + ¢
denotes the statement that X < C(X + €), the notation X ~ X + ¢ means the statement ¥ = X +¢ £
X, and the notation X =~ X 4+ ¢ denotes the statement X = C(X + ¢€). For a multi-index k =
(ky koo k) € B, we denote

Ikl o= max |kl (k)= (1 + [KIP):

i=12.n
Let § := S(R™) be the Schwartz space and 8’ :== §' (R™) be the space of all tempered distributions. The

Fourier transform #f, and the inverse Fourier F 'f, of f, € S(R") is defined by
@ = 6@ = [ Y et a5 = (-0 = [ D foema
R = E" 5

We now bring the definitions of some function spaces that will be discussed here. First, we need to give the
partition of unity on frequency space for 0 < € < 1. Suppose thatc > 0 and € > 0 are two appropriate
constants, and choose a Schwartz function sequence {13 }yezn satisfying

MO =1 i - (@0%4 < ol
1-e
suppn;~© C{f = |rf — (k) ek

Do =1 v e Ry

ksET

1-&
£

1-¢
< Clk)e };

(1—ellyl _
la"m ()] = ¢ k)= ., v eR", ye(Z"u{ohn
where C, _, is a positive constant depending only on 1 and (1 — €). This {3~ °(&) }xezn constitutes a smooth

A

decomposition of R™. The frequency decomposition operators associated with above function sequence can

be defined by
1l—e
Ll =9"ns

fork € Z". Let 1 < €= 0,58 € R 0< e = 1. The (1 — ¢€)-modulation space associated with above
decomposition is defined by
1

51-¢ i . . 5(1+2€) 1—¢ Line 1+2e
MEE e ®) = fr € 8 B fy lysce am = | 0 0 (K5 & 0L o 132 < o

1tel+2e
KEE™T @
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with the usual modification when € = . For simplicity, we denote M{, 142, = ‘Mffe.l 2 and N (&) =
ne(&).For0 < e < 1andeach k € Z", define two subsets of Z" by

A —gez:[ ] -] =0 (2.1)

And
1—e 1-¢
N5 = {E € Z": ]:L . I:lm = 0 forsomem € /’1,1(_5}. (2.2)
We denote
1—e,* 1-¢ 1—cs _
L= > O m= =) e (2:3)
lea € lea;

Next, we recall a standard dyadic decomposition of R"™. Let ¢(¢) be a smooth bump function supported in
the ball {f 2 |E] < %} and be equal to 1 on the ball {5 P %} Denote
P(E) = @) — @(20), (2.4)

Q) = 9278, jeL (2.5)
For integers j € Z7, we define the Littlewood—Paley operators
8= F 1 (O)F,
Do= F9()F.
Letl < € < wands € R.Forf, € § we set

and a function sequence

. 1
co 1+2e
I fo U8 yeane = Z Z 20502 || A ITE , (2.6)
J=0 @
with the usual modification when € = oo, The (inhomogeneous) Besov space is the space of all tempered
distributions [ satisfying || £, llgs < oo,

1+e1+ze
To introduce the homogeneous Besov spaces, we define the Littlewood—Paley projections

b= F Y (O)F
forj € Z.Wehave I = X g .-ﬂ'\j inthe sense of §'/P. Let1 < €< wands € R.Forf, € §'/%, we
set

-1
' 1+2¢
. = is(1+2¢ A 1+2¢
I fo g5y, pne = Z Z 2750529 || A, Nl e , (2.7)
JEL o ,
with usual modification if ¢ = . The homogeneous Besov space is the space of all £, € §'/% satisfying

” fg ”Sf+e.1+ze < o

Now, we introduce the definitions of Wiener amalgam spaces associated with some exact decomposition
methods.

Suppose 0 = € = »,0< e = lands € R Let{af},pczn denote a sequence of complex numbers. Set
1

: 1+e
s(l+e)
€ |ag|**c if0<e < o

( “)
||{ak}|hi1;€—- keI™ o

(2.8)

keIl
: 1- .
We use ], © to denote the set of all sequences {af }4xezn such that || {af} ”;S.i—e{ o, Similarly, we use
1+€

sl a
I}, . to denote the set of all sequences {a}- }G,jEN such that

THe
Z Z 21"5|(1f|1_E ifo< e < o
a7} sz = \im (2.9)
sup (2|7 |) ife = o
jeN &

is finite. Denote by [J'_ the set of all sequence {aj“} - such that
a,jel
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JEL o

sup Z (27]a7]) ife = e
ez &

25 |af f0< ¢ < o
(a7} lee = (Z Z & | ) 1 © - (2.10)

1s finite.
Next, we define the space of pointwise multipliers between sequence spaces. For 0 < € < 1, we set
s,.1—€ s 1-¢ -
My (155070 0500) = {(08)okez 1 {afA) Dpspames €} Npsgae]  (210)

and denote the norm of {aj} € MHE(Eiﬂi € ii;f E) by

AP Mo (137 552 ) I =1 {af) Npyae yssa-e = sup I {afAi} lyspame.  (2.12)

1tze ”{AA}HSLJ. =1
For a tempered distribution m, we denote
1-¢e l+s gl+2e
”m' w (Mg (L5, L ). M1+E(I1+e' 1+ZE) ||

= [“ l:[k T IILL+E_‘LJ+E£} I SJ;;_G _jSal—e (213)

1+ze
for 0 < e <1. The space Wi (M (LY*E, 11%29), vy, E(Il+€, Eiizf)) is the set of all tempered
distributions m satisfying
[t 5me (3 02,1920, 365, 2.
This space is called the Wiener amalgam space associated to the (1 — €)-modulation space M; +1€_ e

Similarly, we can define the Wiener amalgam spaces associated to the inhomogeneous Besov space
s i - i . . .
Bi, 1. and homogeneous Besov space By, 4., respectively, by defining their norms

Hm| Wi (M (L1+E L1+EE) My, E(Il+¢:r 1436 )” = {ll ﬂij ||[LJ.+£_)LL+25}||Eii.; _’Eiiés (214)

< oo,

and

||m| Wt (J"vf (L, 172), My (132 1955, )" =1 {Il 4T l(grenpsrze s _ysaa . (2.15)
3. Fourier Multipliers on Function Spaces
To study the unimodular multipliers by a unified approach on frequency decomposition spaces, we give
characterizations of Fourier multipliers by means of the corresponding Wiener amalgam spaces. We give
an elementary proof without the aid of advanced theorems such as open mapping theorem used in [10]. The
results fall into Theorem 2.11 in [9]. in which Feichtinger obtained the characterization of the Fourier
multiplier on an abstract Banach space frame by a contradiction argument. We use an alternative, but more
elementary proof to obtain our result. More importantly, our simple method allows us to extend a
corresponding result in [10] on the modulation space to the (1 — €)-modulation spaces forall0 < ¢ < 1.
Theorem 3.1 (see [27]) (Characterization of Fourier Multiplier on Function Spaces). Let 0 < € < 00,5 €
R,0<e=1andm € §'. Then we have

Ma(MyyE S MTams ) = WA (M (17, 1829), My (153152, (3.1)
and
M—*(SHE 1+eJB1SJZrze,1—2e) = Wt (M (LY, 11729), My, E(E]_-H:— 1+2€)) (3.2)

Proof. We only state the proof for (1 — €)-modulation spaces for 0 < € = 1, since the proof for other case
15 similar.

1—e
Firstly, assume m € W1 (.’M' (L1*e, [i+2e), M1+e(fl E,Ifiz'f))- Then, for k € Z",D Tn €
L([Ye, [1429) and {]| D m lprteitze} € MHE(Ef“i & f ;:) For any f, € §, we have

1—s l—g.*
I Z l:[k mfcr “L"”E =l Z I:| m]:[k fa ”LH‘ZE
) E.%
< Z I I:l T Nprve_paze | ]:L{ fo lp+e. (3.3)

o

: : Z : 1-¢e
” n;l_fa' pMEEETE = ” {” I:[k Tmfo' ||LJ.+2-E} ||Isz.'.—s
MY aea+ze 1+ze
o

Hence,

DOI: 10.35629/3795-11010929 www.questjournals.org 13 | Page



Best Sharp Estimates of Unimodular Multipliers on Certain Frequency Decomposition Spaces

l—€ 1—e+
< Z {0 T Mvegvae 1 L i loe lpspae
(o3
= Z II {H I:ll_E Tm ||L1+£ 1+ze} [ ——|| {” I:ll_&*f Il L+E} | e
—L Lie —lia ko Jo L Iie
5

< Z |],n| Wl € M {Ll 3 Ll 25) M1+E(E1+E’ 1426 )|| ” fa’ | _S'J_J_ szs, (34)

+EL

a
which mmplies

Iml 26 T ) S [miwie (36 @, 0929, 000, (10 200 ) GS)

Next, we assume m € M_,(MHE 1eer ] \/Ifjréflfuf). We obtain that

1) L T lawwae~ R 1D L Tonfe sz

M Yo 1+2e
o
=K ||Z Ty fo llyszace
M 3og142e
- '7
< —= spl—€ 5 eSal-e I:[ )
g Z k € "]‘n| Mg(ﬂ‘fl+fl E,MHZE 1+2€)|| “ fa “Mf+£Ii£
5p.1-€ 1 Sa.1—€ _
(Mlﬂr 1+e’4f1+25.1+25)” I fo llps+e. (3.6)

1_
Thus, we hfn'cl:[ ) T, € L(L**F, LHZE)

By the spurit of the disjointization lemma of decomposition (see Lemma 2 in [10]), one can find a subset of
Z™ denoted by [;,,, which depends on exact m, such that

AN AT =0 (3.7)
forany k,l € I,k = [, and

1-e ‘Tl+e Jl+2e 51. Sz
([l wi=e (5 (Live,0429), M (13 152,) ) |
[FuiE _Szie’

1—e
= C || [Xf'm I l:lk Tn ”L_1+F~L.1+2E}
1+e  Tlizze

where the constant € 1s independent of the exact m. Forevery k € I, onecanfind (f;), € S, () = 0

such that
1—& i ] l-¢ )
z I ] Tw(f)i ez 1 Z [ L Ton Nprengareell (£ lgase. (3.9)
[+3 o
It then follows

l—e L—e+ - l—¢ l—e .
Z L Tl L (i lparze ||Z [l T lpsegasae | ] (fi lpsse.  (3.10)

o &
For any nonnegative sequence {af}, re Iy We have

1—e 1—e* -
1) (af 1 ] T seegurnel L] () I lE232° () |
[+3
. 1-€ 01—
S @ 0L Tk lawwae } 5252 () |
a

(3.8)

1—e* 3
Z Z G‘.g I:I;( Tm(.fa)k
kel @ M e
Z Z ay I:[ (o
e e M rae
— L1- 1 1—s+
~ Z ||?‘?’i'.| Ml?("wlie.lie le15-21-25 :+2€)" Z (Ig I:Ik (fcr)k
o kehn 51.1—€

Mi{eite

- 1 1-&+ 1-
< My MR LI Y, 1 eE LT (e e IR (G 1 (3.10)
[
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Since the sequence {a} }; ke, is arbitrary, we have that

(g Ayme—
By the fact

= ||]‘H.| ‘;’V[‘-?(m‘f‘ls-Li—:ELlff’‘I 15'2:2lef+2€)|| (312)

SJ_J. € (52—

(Fm) =1,5 ¢ (Im)

1-€

”[;(Fm Il I:Ik T ||L;+E_Ll+25}
1—e

= H [” l:lk T ”L“’G—)LH'ZF}

we deduce the desired inequality

[l wi=e (2 (e, 1420, 7y (120 15250) )| < lml 2es(Mgyinso 2250l (328)
4. Unimodular Multipliers on Function Spaces
By using Theorem 3.1, we study the unimodular multipliers on function spaces. We only take (1 — €)-
modulation spaces as examples to illustrate our idea. The same method works also for the homogeneous
Besov spaces. We recall the following proposition as a simple application of Theorem 3.1.
Proposition 4.1 (see [27]) (Embedding, [20,14]). Let 0 =€ < co,5; € R, fori = 1,2, and0 =€ = 1.
Then

S11—€ _,S2,4—€
DYe  ~lidee

(3.13)

isll (rm) —’f,_+zs (fm)

1 -
fk".I'ls-t—f I-Ei—e = wlg2 2e, f+2£ (41)
if and only if
e=0
n(l—e) n(l—e) (4.2)
— = 7 = - ¢ .
27 1xz2e ST 14
or
€=0
n(l—e¢)+n(e n(l—e¢)+n(e
, M1=9+n© _ - r1-9+n© (4.3)
1+ 2e¢ 1+e¢
holds.
Proof. This result actually can be found in Triebel’s book for the case ¢ = 0, and in a recent paper by Han
and Wang for the case 0 < € < 1. Here, as an application of Theorem 3.1, we reprove the result by a
simpler method. We will only show the proof for 0 < € < 1, since the proof for € = 0 is similar. It is

obwvious that the embedding relations between e-modulation spaces can be viewed as the boundedness of
the identity operator between the same (1 — €)-modulation spaces. By the viewpoint of Theorem 3.1, we

" . . -~ 1_6 - - " .
need to obtain the asymptotic estimates for || ]:[k | j2+e_j1+ze. In fact, by Young’s inequality and a

scaling argument, one can easily verify
(1—€)n

1- _(=ein

LT Npsrenpven (k)TFaTR2, (4.4)
With the help of (4.4) and Theorem 3.1, we reduce the embedding between (1 — €)-modulation spaces to
the boundedness

1 e _Q-=m
H [" ||LJ.+£_,LL+2E} Sii-€  Spi-e — {k)y(1+e)(1+2¢) (4.5)
e Tl e -
To prove the last identity, we divide the proof into two cases: € = 0 and € < 0.
Casel:e = 0.
1 21— —-s31-
In this case, we have My, (I]2.7°, 72507) = 1227777 and
(1-en Sg—5y (1-€)n
{k)(l+e)[l+2£j = sup (k} € [1+€]{l+2£j_ (4.6)
[F2SuE keIl
oo
. n{l—g) _ n(l—e) . A " - -
Obviously, s, — e = St T s the sufficient and necessary condition for the boundedness of
3 +E€
(4.6).
Case2: e < 0.
. pl- 1 -5y - 1 - .
In this case, we have that My, (LY. 12,07) = 27707, where = = m Thus 1t is easy to see
T € €

that
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[s‘ -5 1—e)n
- Z k) (1+e)(1+2€)
keIl

1

T

) . (4.7)
n(1-e)+n(e) n(l—el+n(e) .

We now easily verify that s; — QT S S T 1s the sharp condition for the boundedness
€ €

[S2—s11—¢€
r

of (4.7). The proposition is proved.
. . - 1_6 " ~ .
Since the estimates of || I:l;( [l 2+e_ 1+2¢ 1s easy, the above proof is not difficult. However. to study the

unimodular multipliers, we need to face a more complicated situation. We will study the boundedness

propertics of the unimodular Fourier multiplicr e™*#‘?? where |1, is a real-valued function satisfying some
derivative assumptions of order f > 0. Again, we only consider the (1 — €)-modulation case.

It is known that e??!* is not bounded on any Lebesgue space L'*F and Besov space, except for € = 1 or
f = landn = 1, (see [15. 19. 24]). However, in [2], the authors proved that if 0 = f = 2, ¢’ 1017 i

bounded on M7, ,,. forall 0 < € < o,5 € R. Furthermore, in the case f > 2, Mlyachl—Nlcola—
Rivetti-Tabacco—Tomita [18] showed that, for 0 < € < @ and 8,,8; € R,e'?” is bounded from

Mlsjrfl . to ‘Mf-zi—c.—'.1+€ if and only if 5, — s, = (f — 2)n| | In [3. 6], the authors obtained some

2{1
asymptotic estimates for certain unimodular Fourier multipliers on \ the modulation spaces. In [25], we study
the boundedness of *o®) on (1 — €)-modulation spaces and establish a sharp theorem by assuming some
radial conditions on |,. Now, we revisit this topic as an application of Theorem 3.1. Using a new idea, we
will extend some results in [18] by a different proof.

Firstly, we give a conclusion about the necessity of boundedness of unimodular Fourier multipliers on (1 —
€)-modulation spaces.

Theorem 4.2 [27]. Let § > 0 and |1, be a real-valued smooth function on B™ Y {0} which is homogeneous
of degree . Suppose there exists a point 5 # 0 at which the rank of the Hessian matrix is at least 7. Let
0 =€ = o5 E R,0<e<1fori = 1,2.Suppose that the Fourier multiplier e?#¢(®) is bounded from
ML o M

1telte 1+51+e Then we have

1
s, + 7) max{rf — 2en,0 4.8
: + 1 (g | maxtrE ) < (48)
To prove the theorem. by the spirit of Theorem 3.1, we need to obtain the lower bound estimates for ||
1-e . .
I:Ik © gDl give_pa+e and || ﬂje""G(D" | 1+e_ j1+e, respectively. For this purpose, we will invoke the

following Lemmas 4.3, 4.4, and 4.5. The first lemma is the following classical result due to Littman [16].
Lemma 4.3 [27]. Let (1 be a bounded open set of R™. Assume that g, is a smooth function and suppg,

W1

) e 2pg(E : .
0. Let ¢, be a real-valued C* function on R" satisfying that the rank of (ﬁ;?)) is at least v > 0.
N |

Then there exists a constant C = C(n, g,, ¢, ) such that
) . i L
I Z 7 g, (8)e 98D o < C(1 + [1+€])7Z (4.9)

&
We use this lemma to further get the following partial dual estimates (see [27]).
Lemma 4.4 (Partial Dual Estimates for B{,_,,.). Suppose that § > 0, satisfies the assumptions of

Theorem 4.2. Then there exists a smooth function sequence {hj }jEN such that
(1) supph; c B(2/ eq,276),
(2) by = 1on B(27 ey, 27716),

(3) 1 Z F [y (DD e = c27(1 + 2149)‘% (4.10)

[
forall j € N, where e, 1s a unit vector, § is a small positive constant, C is a positive constant independent
of j.
Proof. By the rank condition in Theorem 4.2 and the homogeneous of |, we can find an appropriate £
function h satisfying supph < B(e, 6) and b = 1 on B(ey, 27'8) for some unit vector e, and
sufficiently small constant &, such that the rank of Hessian matrix of 1, 1s at least 7 on the support of h.
We use Lemma 4.3 to deduce

1> 57 [ @] Iy 5 (1 + [1+€DE (4.11)
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Denote
h; (&) = h(&/27). (4.12)

Then by a scaling argument the final conclusion can be verified by
; r
I Z LRy (2] flpm= 20 | Z [h(f)e”m“ﬂr(”] e 277(1+278) 72 (4.13)

Lemma 4. q (see [27]) (Partial Dual Estimates f01 MM, ., 0 < € < 1). Suppose B > 0, i, satisfies the

assumptions of Theorem 4.2. Then there exists a nonempty open cone I' < R"™ with vertex at the origin,
and a sufficiently large constant R such that

[ Z 5 = (©)e™o D] Ims Ck)FRYD) (4.14)

1—&
forallk € Z" with (k)¢ k € I'\ B(0,R), where the constant C is independent of k.
Proof. In fact, we will use the continuous version of Lemma 4.4. Taking h as the function we found in
Lemma 4.4, one can easily verify that

I Z Hhree (©)e%e®] o < (146" (1 + (1+e)F)2 (4.15)

.- R ¢
forr = 1, where h(lﬁj(_f) = h(_“+e]).
Notice that the support of hgy, ) expands faster than the support of 7} ~¢. We can find a nonempty open

cone I' = R"™ with vertex at the origin, and a sufficiently large constant R, such that for all k¥ € Z" with

1—€
(kY e k € '\ B(0,R), there exists an appropriate (1 + €) satisfying

haee) (O (@) = m™() (4.16)
with the relationship
1
(1+€) ~ (k)= (4.17)
Then
1) F e @e* @] w5 ) 15 [l @ni @©ere®] I
S 15 [ben @ ®)] lm
a
- — n o Brr
S 1+ (1 + (1+6)F) 2~ (k)e(k)e\ 2 (4.18)
Proof of Theorem 4.2 (see [27]). We first give the plOOf forthecase 0 < e <1,—1=< ¢ = 1. By the
spirit of Theorem 3.1, if gita(D) ig bounded f10111 Wlsl - 1+E to Mlz ;HEJ we have

||Z [ ] eo® fuse_jire 5 1 (4.19)

forall k € Z™ But for k € Z" with (k k € '\ B(0,R), where I' c R" is a nonempty open cone
chosen in Lemma 4.5, denote (f,), = F n;_e' , we have

1l-¢c .
I:Il_f ing(D) = I I:lk EIHJED)(-’F‘T)I" ||Ll+€
|| " e ”L"+g~L1+£:" ” (f }k ||L1+5
a
o

7 G [pi-e ing(£) te
-2 Rl Lt L (4.20)
I [ (©)e™ol®] flare
Recalling
. iy i aers Q-omy
1) 7 e @e® @] =1 ). FEIE @ Iz~ (k7 @) @21
and
g1 [,.1-¢ef ing(E) < 2 E(i)
1> 57 (o] o 5 (Rye(ieye 2, (422)
We use
1) S e @@ i 5 ) 157 i e @ D] 1,2l 57 [ e (@] 1,2 (423)
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to deduce
1

) ) ) (1—€)n 1 1-¢ rg—2n)
I Z F (@) o @] e = (k) & (T (k)T TP, (4.24)
a

So we abtain

1—e . . I & ﬂ'—l ”1—5{-{)85;15(5:] I 1te
| Z I:Ik gf,lln:l:D.] ||LJ_+£_}LJ.+E = Z [lk == ] L
i z [ ()] ese

1/ 1
= {;c)?(zu_fezl)‘"ﬁ “neaimamn) (4.25)

Then we use (4.19) to deduce
_ 1
( hfsl( ) (2{1+E)]{rﬁ' —2en)

1—-€
for (k)¢ k € I'\ B(0,R). Letting k tend to infinity. we obtain

S; + (2(1715)) (rf — 2en) < sy. (4.27)

Next, we use the Hausdorff—Young inequality to deduce

$1 (4.26)

) ) . ) 1—e)n
”Z L @e O]l £ ) N e s ke . (428)
=2
Repeating the above argument, we deduce
l—e .
Z 1L, e®® e pire = 1. (4.29)

(=2
Then (4.19) yields s, < s,. Combining with (4.27) and the fact s, < s;, we conclude

1—¢
s, + (7) max{rf — 2en,0} = s,. 4.30
The proof for the case —1 = € = 1 is completed.
For the case of € > 1, if ete(D) jg boundecl flom Ml+€ e 1O ‘wl;—e 1+ We also have

" Z E[k eha®) || he ire 51 (4.31)
=2
forall k € Z". By duality, we deduce

11—
I Z I:I [ua—[D] ||LJ.+£_,LL+£— I Z ]:I [llcr[D] | 14 1te, (432}

I € =L €

1+€

“he1e— +—=—=1=€[12). Sonehme

1+e
||Z ]:l pito(D) | aste 245 1 (4.33)

€ oL €

. . 1+e . )
i this case, where — € [1, 2). By the same methocl asinthe caseof 0 = € = 1, we conclude
€

S, + max{rf — 2en,0} < s,. (4.34)

Gir=a)

)|ma1r:{'r,.@ — 2en, 0}, we conclude

Noticing (Z{E—} max{rf — 2en,0} = |(2[1+ )

s, + |(.1;)|1113X{?ﬁ — 2en,0} = s,. (4.35)

We complete the proof of Theorem 4.2.

Checking the proof of Theorem 4.2, one may observe that the role of L™-estimates 1s to provide a lower
bound estimate of the operator norm of e}, In order to get an upper bound of the operator norm of
e™9®) e may need some Ll-cstimates. We recall an estimate in [26]. Since [26] is published in Chinese,
for convenience to the reader, we present the proofs in this paper.

Lemma 4.6 (See [26]). Lete = 0, > 0 and € > 0. Assume that |1, is a real-valued function of class

C[] on R™ \ {0} which satisfies
|Z M DI = I, 0 <=1 vl = /2] + 1 (436)

and
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IZ Mgl = ¢ IE1F M, gl > 1, 2=y = [n/2] +3. (437)

Then we have

il
—2enT

; . ‘o 8 2e%2
I z F e (8)et+oks@] 05 (1 + (L+e)k) < f) , OD<e< 1, kezy
7 . (4.38)
I Z [ (OO s (14 (14 2P0 c=2  keN

a

Proof. We only show the proof for 0 < € = 1. By the property of L' norm, we have
1Y 77 e @ei o] I, =|Z = [ L E({k =+ (& )L;:k]ef“‘f'“"“"Tf‘“‘3‘7"5‘} ls. (439)
o

By Taylor’s formula, we write
1-e
€ ) &

o (5% + Gk }l—fﬁc) = o (007%K) + oy T (00
fﬂf (1 — ) a*’u)((k}Tk + (14O e f) (4.40)

2(1-¢)

+ 2(k)

pl
and denote

@ = b (7T + (k)lfkj ~ 1o

(kY e (V) ({k:- k) - (441)
Then we have
1-¢ 1-¢ I .
I Z :;— J. € e’_)E,l(J_+s:-p¢;(E || L= F [’T (U"}T‘f + {R}T}{)gﬂl*’s-“—i (;)] ||r_1-- (442)
For sufficiently large |k|, small £ and 0 < 8 < 1, we have
1—¢ 1—¢ 1
007K + o0 =g | ~ e

and

> @) (ke + e<k>¥¢j| < W

a
for2 < |y| = [n/2] + 3.S0

2, I an

pI=2 yi+y2=

o7 74| =

[ (1 - 6) (e{k) ) ™ ) ((k)l;efk + euc)?fj d6

1 2(1-e} B-2
eyl B-2-2D) < (" (k) = (4.43)

) 2(1-¢) 1—¢
T (k) e (k)

for |[y| = [n/2] + 1. We now have

_ _2en ¥
|gY et1+e)T ()] < (1 +(1+e)k )‘8_6) (4.44)
for |[y| € [n/2] + 1. Moreover, we conclude that
1- —2e ly
o7 (n~e (055 + (0'Fk) et ®)| 5 (1+ 1+ e =) (4.45)
for|y| € [n/f2] + 1 _
Combining the above estimate with the support condition of ;¢ ((R}T§ + (Fc}‘Tk), we have
vl

or (ni- ((k)ff+{k>fIc)e”“f]ﬁ‘f_gm) Zs;:(-1+{:-1+e){k>‘ﬁi) (4.46)

for |[y| £ [n/2] + 1.Bernstein’s theorem and a dilation argument then yield

1Y, 57 e @ o] 15 (14 A ) T ) (447)

(X
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Forsmall k (k = 0), we have
||Z ‘[m, (e D], ,\,Z 1" 5o ("M@ — )] +1 F 05~ 2

[

< Z I :;—1 [né—e(efi1+€]|..gif:3 _ 1)] I+ 1

o
< Z Z I 5 [ (e"tekal® — )]+ 1. (4.48)
j=c o
By the property of Ll norm, we have

Z Z I & I,b (ert1+6)|-a(cf' - 1)] 2= Z Z 1[l+EI'.lLaE2~"£} _ 1)] I (4.49)

jsc @
On the other hand, by the fact that |&] ~ 1,2/ £ 1, one can verify that
|Z v (et — 1| 5 ((1+€) + L+ 28 (4.50)
a
for [y| = [%] + 1. So we can verify that
>0 [p@) (e - 1)l 5 (1 + 1+ )2 (451)
Then
I Z 07 [p(2) (e ) — 1) (1 + (1 + &))" (4.52)

a
follows. We use Bernstein’s theorem and a dilation argument to deduce
l Z (e om0 — 1) s (1 + (14 €))7 2 (4.53)

Hence

I Z r—l [nl 3 [a’.-)ezt1+e)|..a(§3 ”LJ Z Z Ef*' (f)( z‘t1+e)|.¢a(2-f5:] _ 1)] ”LL+ 1
jsc @
s;iz 1+ a+e)22¢f+15s (1+@1+6) (4.54)
Using Lemma 4.6, one can verify the following theorem which we obtained in [26].
Theorem 4.7 ([26]). Lete = 0,8 > Oand e > 0, and
. — €
Siee = S12e(B) = n(m) max{f — 2¢,0}.
n
Assume that |1, 1s a real-valued function of class C[E]_g on R™ \ {0} which satisfies
|Z Mg = 1M, o<l =1 Iyl = /2] + 1 (455)
o
and
1D D = GIRIFE E1> 1 2=yl < [/2] + 3 (456)
a
Supposel = € = oo,5; € R0=e =< 1fori = 1,2, and they sarisfy Sl — 55, = |8;..]- Then we have

”Z O a®If | sae \Z I fy lysie, + (1+ )2 2ia Z I ol pstisiselame. (457)

The folloumg theorem shows that if rhe L*-estimates and L™ -estimates hme some uniform relationship,

the operator norm of e™#e(2) is equivalent to its norm of the corresponding modulation space.
Theorem 4.8 (see [27]). Let 1 < ¢ < ow,5; € R0=e=1 for { = 1,2, = 0. Suppose that the
unimodular Fomie1 multiplier e *sP) satisfies the following uniform inverse Halder conditions:
Z g— €f'3,')€ (1+Elpgl fl] ”L‘ -——1 [??,t E(f]el {14e) pmf] | o < CZ I ‘;_1 1 E(f}ﬁ? |1+E).La|§)] ”L_) ffE < 2

(4.58)

|Z G [y (5)e¥ A+ | | F [af () efl+0el®] e < CZ | 57 [y (£)e" @] 2, ife=2
where the constam C is independent of k in the case € < 2, and independent of | in the case ¢ = 0. Then
we have
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i 1- 1 -1,
lle® el Mr (M2 23 MES2T )~ 15770 e, (4.59)
Where
. 1 5
1+ 2¢ lfl+2 2:_=_1+
A+re)=114e s
if =
€ 1+ 2e 1+e¢
loo ife=0
= —€ . , (4.60)
—  ife <0
(1+e)(1+2¢e) f

! €
§ =8 — & +'1—£n.—)—'1—£n .
2= s tA-€) ((,1 +26)(1+¢), a-e (1 - e)
Proof. We only show the proof for 0 < € = 1, since the proof for € = 0 is similar. By the spirit of

. . - l-s .
Theorem 3.1, we need the asymptotic estimate for || I:lk eMalP) || 1ie  14ze. In fact, we want to verify

- . (1= F L [pke(&)eireld)
” I:ll 13 e[.“cr(D.] ” e itae ~ (k)(\{l—e:]{l—Ze)) ” I:r”( (f) ] ”Ll+£. (461}
k L=l (1- f]n €.
o o ('E()
1 [ng 5 ()e™a I 14e . :
Wedenote Ay, = 2.0 G, L= then 4,; ~ 1.By the assumption, we have 4, LA =
(k)" 1¥e

1. Moreover, one can deduce

Atrele ™ ALEE RA?+SE ke’ (4.62)

forany0£e= 0,8 € [0,1],(1+¢€) = (1 — 8)(1+2¢) + (1 + 3¢). In order to estimate (4.61),

we divide the condition € = 0 into four cases.

) 1 .. € i 1 .1
Casel,.— = — ,- < = .
1+2¢ 1+e 2 1+2e 1+e

Firstly, we use the interpolation argument to deduce

1-2¢ 4e
I 2 D;_fe%(m I atze_jitze S Z I E[; etho(P) 132 | I:I:( etho(P) || 132¢,
a a
) . . ) . 1-2¢
<= Z I F [m](.—etf)ez(1+5)po({,l] ”;11-25
1-2¢ 1-2¢ e
= A7 = ALALYS = Avee (4.63)
Then, we have
1-e . (_(1-en__ 1-e
I Z [ ] e®o® fure e S (k)(~{1‘f-’{1‘2€))z I e™o® flusepuree
o a
[ (L—ein }
S (R)\IF)O+2 A ek (4.64)
On the other hand, we denote (f,), = l[r]l “(gj}].Then

l—e . N
o
17 i (D) - I ]:[k ethal 'I(fa:]k ll2+2e
E I I:Ik el | a+e_ja+ze = E —

- I (fp)x Npate
_ Z I g1 [}h{'—f(:f)er}a(f:]] [ 1+2e
g1 [J‘};_E’x{f)] llgr+e

a

a
(’ (1l—e)n )
~ (RPN Ay 4o ek (4.65)
e 1 11
Case 2. =—, =-=—
) 1+2¢ 1+e 1+2e 2 1+e
Firstly, we use an interpolation argument to deduce
2
l—s . . 1—
ing (D) < ap.a(Dl 1 26 [pa—[D) 1+2¢
1) Tl eme® e s> ] Tz ] I,
a a
-1
< Z -1 [nl €(§)€!(1+E)|Jg-(f ] ||1+2€
o
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(1-e)ng2e—1y (261
= () 1
(1—6)?’1(26 1) (2= 1] —2Z_ (&)
— (k) e 4T _ (@), . (4.66)

Then, we have

1—s . . (1-e)n; 1 2e .
ing(D) < Tie Ti3z ]:I e HalD)
||Z [ e lave_javze S (k) e Y | I s,
a

L 2e —

o

(1—e)ny 1 2€ ) (l—ejane—l]

< (k) e \l+e 1+25,(k} e \l+2e
( (1—e)n )

= <k) (1+£)(14+2¢)

‘41—26.&

Agiack (4.67)
On the other hand, we use the same method as in Case 1 to deduce
I Z I:I pihg(D) l|j+e_prtze = (k\a+ei+ze Atsrei (4.68)
Case 3 = < <1
1 Ze l+e "1+42¢ 1+e 2
By the symmetry of{l + E) and (1 + 2¢), we reduce this case to Case 1.
1
Cased. —— —= —

1+2e = Tee 1+e’ _1+zE T 27 1+€
By the symmetry of (1 + €) and (1 + 2¢€), we reduce this case to Case 2.

By Theorem 3.1, we have

in s A-e Sa :
E e G|M5( 1+el+e’ "f1+2g1+?s}

a

Z eite| W€ (Mg (1146, 1429), My (15, 1+zg))H-(ﬁ4-69Z)
a
By the fact that My, (Ij¥L 5, 1523°F) = 12747°

1“0. spl-¢ 5q,1—¢
é |MJ(‘M1+5 1o M2 2e, 1+25)

(=)

, we have

1— R |
{” I:Ik : SIP‘G(DJ | j2+e_j142e }
(’ {1_—E)n )
{Uc) o Am,k}
!iz—SL,L—E

~ G lgin _
Z | # “ete ”Mfi €. (4.70)

&

51.1—€ Sa1—€
I¥e —liise

a
By the spirit of Theorem 4.8, we give the following theorem (see [27]).
Theorem 4.9. Let § > 0 and let [, be a real-valued C**(R" \ {0}) function which is homogeneous of
degree . Suppose that the Hessian matrix of |l, is non-degenerate on BR™ \ {0}. Let 0 < £ < o0,5; €
RO=e= 1fori = 1,2,

1-
Sive = S1:e(B) = 2(1 n E)) max{fi — 2¢,0}.
Then the Fourier multiplier e™¢®’ is bounded from M; jr - e to M2 2 . 1+oc if and only if
€=0
n(l—e) n(l—e€) 471
————— + maxiS S = - (4.71)
Ry m“{ 12e 1%} Y
or
e=0
n(l—e) n(e) n(l—e)+ne (4.72)
52 7 1+ 2e + 111L1X{S1+25,5¥}+1+2E =5 1+e ' '
holds.

Proof. We will sketch the proof for case 0 < € = 1, the proof of case € = 0 is similar. Using Lemma 4.3
and Lemma 4.6, we use the assumption of |1, to verify

IIZ e (§)eitrme@] . < ( ) —Ezf)

EIE]

. (4.73)
_ ) . . B (1-ejn —2ey 2
1) 57 [ e @] o s k) E (1 =) 7,

&
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forall k € Z™. Then we have
I Z F iSO i 7 [ (e D] e
o

; n B-2¢ _g
s(iew= )( (1+0=)
N €l i1 1 L :
ST~ Y 1T (e o] |, (4.74)
[
Denote
. . . € . N
1+ 2¢ lf_l e = 1+ e PO | g1 [r}l_f 'f)efho(f,l] Il 1+e 5
A+ =114 1 e o Aveek = G - (475)
i < (k)T
€ 1+2¢ 1+¢
We have
[2[1+EI)
Ay ™ (1 + ) ~ (k)Sare, (4.76)
Using Theorem 4.8, we obtain '
. ] ( {1_—5:]:1 )
Z eina(D) {(k} (1+e)(1+2¢) A1+e,k} . (4.77)
51,1—€ . 5=m,1—E
7 Mi+:1.f-s_'"’ff+:ef+ze Lie _.I;igg

So we have

' [(1—-€)n )
||{ k) (1+e)(1+2€) A1+e k}

T ervenpeze Avee)

Sl=€  Sn1—€
[Se_ SZL—E Lie —L3a.
1+E
s_ -
™~ H{{k e ”]:I ”L"+E—-L1+2E} T3,1—€ ,53,1—€
1¥e —lhiiae

~ ||f|| 53.1—€ Sa+8 4 ol—€. (4.73)

MijesreMitaciize
Noticing §;,. = max{S, ,., S1+¢}, we use Proposition 4.1 to obtain the final conclusion.
E

By using Theorem 4.8, one can also obtain the asymptotic estimates about unimodular Fourier multipliers
with parameters, if the inverse Holder conditions is uniform with the parameters. We give the following
theorem for the asymptotic estimates of free dispersive semigroups.

Theorem 4.10 (see [27]). Let 8 > 0 and let p, be a real-valued C*(R"\ {0}) function which is
homogeneous of degree . Suppose that the Hessian matrix of |1, is non-degenerate on R" \ {0}. Let 1 =
€< ms € RO=e< 1fori = 1,2 Denote

€
_ 1+2e if—— 27— _ 1—
(1+e) = 1+¢ . 1 € Si+e = S14.(8) = [2{1+ })max{ﬁ 26,0} (479)
€ 1+2¢ 1+€
Suppose
E —
= + n(l-— | + Si4e + {——F————,0}+&, (480
si=s2 +nll=e) ((1+e) 1+2€)) et M S 0 (4.80)

where d = 0ife = 0,6 > 0if e < 0. Denote
1—¢
A=—6-S.,.+(B—2em (7)

2(1+¢)
B=-@-20. (+e)=n(31r)
= - — 4E), : E)=N|—77F"=]|
' ' 2(1+¢)
We have the following asymptotic estimates for e?1*<#e(D) 0 < ¢ < oo
A
(14 e)5++e), B<0 A+B(l+e) >0
ellrele | My(MYi T Mi2s ——E 4.81
2 |50 M) n (1+e )™ Gea”, B<o0 A+Bl+e =0 (+80)
1 otherwise
ase€ = 0%, and
A
(1+ e)ymti*e), B>0, A>0
i(1+e) s,1-€ szl—e =
Z M| Me(Myy o 5o MiTeoteae) U+ (1 (.l+E)—L)“‘“‘(i—Zs)(i—E}’O"_ B =0, A=0 (4.82)
a f
t'l'E), otherwise
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as e — oo,

Proof. We only sketch the proof for € < 1, since the case € = 0 can be handled similarly. We divide this
proof into two cases.

Casel.e = 0.

In this case, we have

oL ) 1— Sz—5) 1—€ . - i .
z El(l+£'ma|ME(M{LJLJ Hfiz.:]&‘?s} ~ sup (k) e z |||:[k i1+ (D) l| e proe. (4.83)

= kezh =
We denote
_ | F :-— 1-¢ ez(l+£)pa{f| ” +
Apecr(l+6) = 2o [77(0) J e (4.84)
1+ek p (1—¢)n
(.IC)‘( 1+e }
Using Lemmas 4.3 and 4.6, we use the assumption of U, to verify
n
) ; B-2enz
I Z g1 [njjé—e(fjei(1+fﬂlvla'{f]] e (1 + (1 +e)ky = )
7 o , n (4.85)
. . . 1—-&n —2ey 2
1D 57 @ @ s e (1+ @+ e ),

o

forall k € Z". Observing that
||Z T () eirens D] ) F e (E) et (L+€'““(§]||mellz FH e (&)eirans ] |17, (4.86)

we deduce

A1+E.k ~ A%:ge.k‘q?+af,kl (4'87)
forany0=e < 0,8 € [0,1,(L+¢€) = (1 — 8)(1+ 2¢) + 8(1 + 3¢), it follows that
1—¢
: B2 "(2{1+ )']
Aprer(1+€) ~ (1 +(1+e)k) < ) - (4.88)
On the other hand, by the proof of Theorem 4.8, we have
1-e ['—Iil—e]n }
I Z [ ] et ome® | jiaen (k\TFIE29)4, (1 +€). (4.89)
(=)
By a direct calculation, we have
S2—5 . S2—38y (1-<n
(k) € . I Z I:I gill+e)ug(D) e jitae ~ (k) € : (k}({1+e)[1+26|)[41+ w(l+¢€)
P— ( (1-¢)n ) . _ 3_ [2[1+EI)
~ (k) {k)\(L+e)(1+2e) ((2 +e)k) = )
4 8 1+e
= (k)e ((k)? + (1+ E)) . (4.90)

Thus,

keZl

l+e
L - _ A B .
‘Z e | M (M MEST || ~ sup (k>f(<k)e+(ﬁl+s)) . @9

a

8 . . [
For the proof of (4.81). If B = 0, we have (k) + (1+¢€) ~ (k)ease — 0*.Then

i(1+e)p 51.1—€ s2.1—¢ M

Z € Cr|j“'f5(ﬂ'f1+f1 My L) f;lzpn (k) e = 1 (4.92)
[+3
IfB < 0,wehave 4 = 0,
A E 1+e
sup (k)e ({k}e + (1+ E))
{k}%{{lz—f]

4 A

~ sup  (kyetl*e ~ (14 €)pT*S (4.93)
{H%{{l;—e:l
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sup (k}é ((k}}fz + (1+ E))

g
{kye~(1+e)

A A
~ sup {k>?t1—f ~ (1 + E:)E+(1+E],

(4.94)
(kye~(1+€)
and
‘_‘1 E - . 1+
sup () (me e e_))
(k)ez2(1+€)
A+B(1+¢) 1, A+ B(l+e) =0
~ sup (kY € ~ A . (4.95)
g _ (1+6e)8" ) 4 4+ B(1+e) > 0.
(kyez2(1+€)
Then we have
4 JG_’ - 1+¢
sup (kye ([ (kye + (1+¢€)
keZn
A
- ]f{j-l +e)5"*) B <0, A+ B(l+e) >0, (4.96)
1, otherwise.
B
For the proof of (4.82). If B < 0, wehave (k)e+ (1+¢€) ~ (1 +¢€)ase — o Then
) A
Z eif1+€)l-10| M_:;(J'Lf::;zif, wai';;i_zf) ~ EE?HE (k)? tl—E — E-1+EI (497)
~ =
IfB = 0, we have
al g e
sup (kye | {kye + (1 +€)
{_R)%e._{l;“f:'
(k)€ t1e { “ A= (4.98)
~  sup et ~ A . .
O NEEL) 1+e)B 9, 4 >0
2
and
a E 1+e
sup (k)ye [(k)e+ (1+¢€)
B
(kYE~(14€)
4 1+€ J -ﬂ+(1+€]
~  sup (kYet'™® ~ (1+€)B . (4.99)
{k}%‘(l+f:l
In addition, observing that A + B(1+¢) = —& < 0 1in this case, we obtain
af B\
sup (kye | (kye + (1+€)
(k)e=2(1+¢)
A+B(1+¢€) _ A
~ sup (kY e ~ (1+e)B*19, (4.100)
{k}%:=2(1+6]
Then we have
ﬁ JS_ . 1+
sup (k) | (k)e+ (1+e)
keZ
A
=+(1+¢) -
:{(l‘l' E)B , B = 0, A > 0, (4101)
tite otherwise.
Case 2. £ < 0.

. 1 € .
In this case. we denote = = —————— Using Theorem 3.1, we deduce
r (1+2e)(1+€) =

. _ _ l—e .
Z ei(l+€)ka|M5(M‘sl’1 € pMozl-e ) v Z H{" ]:lk gika(D) ||LL+F_.L'.+2£}

1+el+e' 14261+ 26
o o

S11—€ _,S2.1—€
Lie =I5
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- Z |{0= 1, " e IIL-.+sﬁLl+ze}HI . (4.102)
,

o
Asin Case 1. we obtain

(1—e)n "3(1re)

—E —2e ( = )
I Z I:Ii e[l-la(D) IlLL-I-E_)LL—ZE ~ {k)((1+é)(1+2€)) ((2 + E){k)ﬁT) ( o (:4_1(}3:)

Write

S,—5 (1—€jn fS’—ZE)n 2(1+e)

S3—5 1l—& . B =
k) e I Z I:L{ e#alP) || ive javae ~ (k) = L(ﬂ()({l+£_](l+26}) ((2 +e)ky =
a

_ (o) e (<k>§+ (1 +e)) . (4.104)

Thus, we have

i(l+e s1,l—€  pgsad-e€
Z e )PG|M5(‘wl+el e MiTo s 25)

{(k)_Jf‘ ((k)e + (1+ ej)) }
Iy

B
For the proof of (4.81). If B = 0, we have {k:)e + (1+¢€) ~ (kYease — 07.Inaddition, we have 4 +
B(l+¢€) = =8 < 0by thc fact §1.c = 0 in this case. Thus

i

(4.105)

W+ ehe) Mg (M M <Ny Y~ 1 4.106
e | 5(’ 1+el+er ! 1+2e,1—2€) (k)™ £ . . (4.106)
& ¥
IfB < 0,wehave 4 = —§ < 0.By a direct calculation, we obtain
(1+edr
> W (e aso)
ez (e
~ Z ()T (14 @ror (14 o)FHE)r (4.107)
mg [1+e]
(1+e)r
Yoo wE (uoe £ 1+ e:))
(1+€) ‘{R)§{2[1+el
~ Z G e @+ oo ~ (14 0F ) (4108)
(1+e)/2<(kE<2(1+e)
We also have
ar g (1+e)r
Y w0 (W avo)
{kyez2(1+€)
(A+B(1+e))r
~ Z (k)™ R (4.109)
(k}€22(1+€)
Where
1, A+ B(l+e)< 0,
(a+B(1+e))r -1 —
Z {]{)_n*—if - In '[1 +E) A+ B(l + E:’ 0, (4110}
FH1+e) : .
{k;§>z{1_e;; (1+ )( ) , A+ B(l+e) > 0.

Thus, we have

Z Bfl:1+€}|.,g|M?(JwSl,l EE; l;wSz.l—E )

1+e.1 1+2e,1l+2¢
a0
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1, A+ B(l+e)< 0,
( y-1y1/r : y —
(In {1+ &)~ 1)/, A+ B(l+¢) (4.111)

e ])
(1+e)\ . A+ B(l+e) > 0.
as€ — 0% for B < 0. We get the desired concluswn by the estimates of the cases B = O and B <

For the proof of (4.82). If B =< 0, we have (k)s + 14+€ ~ 1+ €ease — oo Inaddition. we have 4 =
~ plte (4.112)

—& < 0 1n this case. Thus
n A
e
Iy

> el g (ML E M)
IfB > 0,wehave A + B(1+¢) = —d < 0.By a direct calculation, we obtain

(1+ir
3w (wF+ a+o)

{k;e (1+€]

- Z (k)™ n+ 1+E){1 e (4.113)

8
(kYe=(1+e)/2
where

(% (W + 6)){1_5_3r

(1+€]

(1+¢)+er A <0,
(1+ e)f“fl’”ln (1+€), A =0,

—I—I:1+E:I )r

(1+6)\" J, A > 0.

(k;e
(4.114)

We also have

o ar E . . (1+)r
(kY2 (<k>e fa+ e_))

Sag

@«:{k}?{z (1+€)

ar ﬂ_( el |r
N Z ()™ (14 ) ~ (14 E)(B o ) . (4115)

B
(1+e)/2<(k)e<2(1+€)

(1+e)r
Z Ky ™ ({me + 1+ej))

(kyez2(1+e€)

~ Z (k)‘“w« (1+ e}(%_m":])r. (4.116)

B
(kye=2(1+¢€)

and

Thus, we have
tite, A4 <0,

1
~¢tt*(In (1+€)", 4 =0 (4117)

(1 +e)( (1+e). A > 0.

as€ — o for B > 0. We get our desired conclusion by the above estimates of the cases B < Oand B >
0.

Comments [27]:

1. In the special case € = 0, the result of Theorem 4.9 was obtained in [26]. In [26]. we also obtain the
following asymptotic estimate

S o) e, (sl Mz

[
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1-—e
~ (1 + |1+e|)“‘2£1+f> (4.118)

Z piti(D)

&

S1d—€ _ 4.S2l—€

M'.+E.J.+£ 1t+e1te

fOl' 51 — 82 = Sl—EJ (l + E} e R
2. A radial version of Theorem 4.9, when [1;(€) = r(|&]), can be founded in [25]. Using Theorem 3.1 or
4.8, one can also give a simple proof for the corresponding results in [25].

5.1

. . . . . ; . —£ 5o, 1—g
3. The assumption € = 0 is based on the observation that if e7?) is bounded from MY o to MG

1+2e,1+2€’

l-ec . l—e |
then I:lo eaP) is bounded from L'** to L1*%¢, Since I:L e(P) i< a non-zero translation invariant

operator, it is easy to deduce € = 0.

4. Using more tedious symbols and techniques, all the conclusions in this paper can be extended to a wider
range 0 < € =< o2 by the same methods. In order to make the discussion more clear and concise, we only
choose the more interesting case 0 < £ = oo to discuss in this paper.

5. The result obtained in Theorem 4.2 is not sharp in the degenerate case r < n. By an example of

separation of variables [, (&) = Yo, |&|f where r < n, the expected sharp result may be
1—¢
S5, + 1 7) max{ff — 2¢,0} < s,. 4.119
2+l (Goag) Imaxs — 260) < 5 (4129)
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