
Quest Journals

Journal of Software Engineering and Simulation

Volume 11 ~ Issue 2 (2025) pp: 30-36

ISSN(Online) :2321-3795 ISSN (Print):2321-3809

www.questjournals.org

DOI: 10.35629/3795-11023036 www.questjournals.org 30 | Page

Research Paper

Malware Classification Based on Deep Learning

Ran Xu
(Hongta Group Yuxi Cigarette Factory, Yuxi, China)

Corresponding Author: Ran Xu

ABSTRACT: This paper proposes a novel malware classification method for personal computers, which I

have named MalCNN. The motivation behind selecting this topic is that, in the era of the pandemic, as online

work continues to grow, computer security has become an increasing concern.Currently, most malware

classification methods rely on either a hard decision strategy or analysis conducted by cybersecurity

professionals. However, traditional classification models and approaches are no longer suitable for the big data

era. In the digital world, millions of malware programs spread every moment, making traditional classification

methods inefficient due to their slow speed and inaccurate results. As a result, these methods struggle to meet

modern security demands.To address these challenges, MalCNN attempts to establish a soft decision

classification method based on computer vision techniques, allowing for the annotation of samples that do not

meet predefined classification conditions.

KEYWORDS: Malware Classification; Soft Decision; Computer Vision

Received 13 Feb., 2024; Revised 25 Feb., 2025; Accepted 27 Feb., 2025 © The author(s) 2025.

Published with open access at www.questjournas.org

I. INTRODUCTION
With the widespread adoption of computers in people's daily lives, issues related to computer security

have become increasingly prominent [1]. Nowadays, computers are deeply integrated into various aspects of

life, including work, travel, social interactions, and payments, making them more essential than ever. Against

this backdrop, cyberattack methods have become more diverse, complex, and sophisticated [1][2]. Additionally,

the number of malware samples, such as viruses and worms, has experienced explosive growth [1][3].

Conventional malware classification methods primarily rely on hard decision-making or require

security experts to analyze and determine the malware family, which can no longer meet today’s security

demands [1][2]. Furthermore, in the field of software security, security professionals are often in an exposed

position: the security software they develop is publicly accessible, whereas attackers operate in the shadows.

This means that security experts cannot fully anticipate the vulnerabilities exploited by attackers or the evasion

techniques they employ to bypass security measures. As a result, hard decision classifiers struggle significantly

when faced with such an overwhelming volume of malware samples.

Most computer software users today lack vigilance against malware, which can compromise the

security, integrity, or usability of data and programs on a network. Moreover, modern malware increasingly

exhibits characteristics such as long dormancy periods, enhanced stealth, and self-deletion mechanisms [4].

Relying solely on software usage experience or traditional hard-decision malware classification models makes

accurate classification increasingly difficult.

To address this issue, this study adopts a soft decision strategy and utilizes deep learning to develop a

more efficient and generalizable malware classification model, achieving higher accuracy in classification.

Deep learning has been a popular research direction in recent years. A review of the literature reveals

that malware classification research in China remains relatively limited, with many existing models

demonstrating suboptimal performance. Therefore, we believe that combining deep learning with malware

classification has promising prospects. Compared to other soft decision classification models in this field, such

as N-gram and LSTM models, the proposed MaLCNN model integrates the algorithmic classification

approaches of these models while reducing computational overhead. Through multiple iterations, the model has

achieved superior classification accuracy. This research provides valuable insights for the practical application

of malware classification in the cybersecurity industry.

http://www.questjournals.org/

Malware Classification Based on Deep Learning

DOI: 10.35629/3795-11023036 www.questjournals.org 31 | Page

II. RELATED WORK
2.1 N-GRAM-BASED CLASSIFICATION MODEL

 The N-gram algorithm [7] is based on probability theory and statistical language models. It assumes

that the N-th word in a text is only related to the previous (N-1) words. According to this principle, the most

probable word to follow a given sequence can be predicted. Typically, text content is segmented into fixed-size

byte sequences, where each segment is called a gram. The most common values for N are 2 (bigram) and 3

(trigram). The frequency of these grams is then statistically analyzed, filtered according to predefined rules, and

stored in a key gram table, which serves as a feature vector for the training text.

The N-gram algorithm was initially considered for this study based on the assumption that .byte files in

malware may exhibit statistical patterns similar to natural language text. After reviewing relevant research, we

selected the N-gram algorithm for testing. The work of [5] and others treated malware assembly code as "words"

in a text. Under this approach, an entire malware sample could be viewed as a "document," where different

"documents" have distinct writing styles and purposes—similar to a text classification task. By applying the N-

gram model from natural language processing (NLP) to malware classification, predictions could be made based

on these extracted patterns.

Experimental results showed that setting N = 3 (trigram) achieved the best performance, with an

accuracy of up to 96%. This confirms that the N-gram algorithm is applicable to malware classification and

provides valuable insights for our study. We determined that assembly code features are relevant for malware

classification, making NLP-based processing a feasible approach. However, despite achieving 96% accuracy,

there is still room for improvement.

One of the main limitations of this method is its difficulty in adapting to different computing

architectures. This is because assembly syntax and mnemonics vary significantly across architectures. For

example, an N-gram model trained on x86 assembly code cannot be directly transferred to ARM-based

architectures, leading to limited applicability.

Today, devices using ARM assembly architecture, such as mobile phones and edge computing devices,

account for a significant portion of computing platforms. Security concerns for these devices are just as critical

as for traditional x86-based computers. Therefore, focusing only on x86-based malware classification is not a

viable solution.

To overcome these limitations, we propose a cross-architecture malware classification approach that

works on x86, ARM, and other platforms. This is why our model does not use assembly code as input features.

Instead, our proposed MaLCNN model is designed to classify malware across different architectures without

requiring separate models for each platform. This eliminates the need to train multiple models repeatedly for

different architectures, improving efficiency and scalability in malware classification.

2.2 LSTM-BASED CLASSIFICATION MODEL

Long Short-Term Memory (LSTM) [6] is one of the commonly used deep learning algorithms, capable

of effectively addressing gradient explosion and gradient vanishing problems in recurrent neural networks

(RNNs). Compared to standard RNNs, LSTM performs better in handling long-sequence information.

The internal structure of LSTM can be divided into three main components:

Forget Gate – The network selectively forgets certain information from the previous node while

retaining the most important features.

Selective Memory – The network processes the current input (Xt in the diagram) and selectively

remembers important parts while discarding less relevant information.

Output Gate – After the above processing, the network determines which information will be passed to

the next node.

By incorporating these mechanisms, LSTM is able to capture long-term dependencies, making it well-

suited for sequential data processing, such as malware classification based on bytecode or API call sequences.
[8] and colleagues proposed a method that utilizes LSTM for malware classification. Similar to the N-

gram approach, they treated assembly code as words, mapping an entire malware sample into a "document."

This transformation allowed malware classification to be framed as a text classification problem, making it

possible to apply LSTM for classification.

However, a significant drawback of this method is that it can only predict malware based on a single

assembly architecture. A model trained on x86 assembly cannot be applied to ARM-based machines, as the

syntax and mnemonics of assembly code differ significantly between architectures. This limits its applicability,

making it less than ideal as a universal solution.

As discussed in Chapter 4, LSTM outperforms the N-gram algorithm in malware classification. The

selective memory mechanism and textual representation of malware in LSTM provided valuable insights for our

research. Inspired by this, our study continues to adopt mapping and feature extraction techniques while

focusing on improving classification accuracy and reducing computational overhead.

Malware Classification Based on Deep Learning

DOI: 10.35629/3795-11023036 www.questjournals.org 32 | Page

Figure (1): Structure of LSTM

III. MALCNN
3.1 DATASET

For our study, we use BIG2015, an open-source dataset provided by Microsoft [9]. This dataset

consists of nine malware families, specifically: Ramnit, Lollipop, Kelihos_ver3, Vundo, Simda, Tracur,

Kelihos_ver, Obfuscato.ACY, and Gatak. Each sample in the dataset has been manually analyzed and classified

by Microsoft security experts, ensuring accurate malware family labels.

A detailed overview of the dataset is provided in Table 1. After data preprocessing and cleaning, the

dataset contains 10,868 samples.

Notably, BIG2015 does not provide executable files; instead, it offers binary-formatted, non-executable

.byte files and .asm assembly files corresponding to each malware sample. In our experiments, we only use the

.byte files for feature mapping to build our classification model.

IV. CONCLUSION

Table 1: Malware Categories and Distribution in the Dataset

Malware Family Sample Count

Ramnit 1541

Lollipop 2478

Kelihos_ver3 2942

Vundo 475

Simda 42

Tracur 751

Kelihos_ver 398

Obfuscato.ACY 1228

Gatak 1013

The BIG2015 dataset does not store malware samples in categorized folders; instead, all samples are

placed in a single directory, while label information is provided separately in an Excel file. To partition the

dataset, we extract filenames based on their corresponding categories from the Excel file.

For dataset splitting, we randomly select 20% of the samples from each category as the test set, while

the remaining 80% are used for training. This ensures a balanced distribution across different malware families

for both training and evaluation.

3.2 FEATURE ENGINEERING

MalCNN adopts a computer vision-based approach to train a soft decision model. The first step in

feature engineering is to map a malware sample into an image while ensuring that essential features are

extracted efficiently without compromising processing speed. To achieve this, several key issues need to be

considered:

Malware Classification Based on Deep Learning

DOI: 10.35629/3795-11023036 www.questjournals.org 33 | Page

3.2.1 RELATIONSHIP BETWEEN IMAGE SIZE AND SOURCE FILE

Malware samples vary significantly in size due to differences in type and obfuscation techniques. If

only a portion of a file is used for mapping, important information may be lost. On the other hand, mapping the

entire file could reduce processing efficiency and introduce excessive redundancy.

To address this issue, we map the entire malware file into a grayscale image by reading the malware

file in binary format. Specifically, we read 1024 bits per row, forming a grayscale image, and pad with zeroes if

the last row is incomplete. This approach preserves as many features as possible while maintaining processing

efficiency.

The resulting grayscale images vary in size. Initially, we considered using RoI Pooling [10] to

standardize image dimensions. However, experimental results showed poor performance with this method. We

hypothesize that this is due to the pixel values in malware images being binary (0 or 1) rather than continuous

grayscale values, causing RoI Pooling’s max-pooling operation to distort key features.

Through experimentation, we found that resizing the images directly to 224×224 pixels yielded the best

classification results.

3.2.2 HANDLING ANOMALIES AND MISSING VALUES

Some anomalies and missing values may exist in our dataset, such as Malware samples whose

filenames cannot be found in the label table or Missing label information.

These issues need to be addressed to prevent disruptions in feature engineering, which could negatively

impact model training and evaluation.

Since the original dataset is extremely large [9] and the proportion of affected samples is less than

0.01%, we adopt a simple exclusion approach—ignoring these problematic samples. This method is efficient

and has negligible impact on model performance.

Additionally, missing values in our dataset primarily affect labels or filenames rather than numerical

features. Thus, common imputation techniques (such as mean or median filling) are not applicable in this case.

3.3 MODEL ARCHITECTURE

In this study, we selected ResNeSt as the model, an improved version of ResNet [14][15]. Unlike

ResNet, ResNeSt introduces a network slicing mechanism, as shown in the figure. During inference, the model

no longer follows a single sequential computation path. Instead, the input is duplicated into k copies, each sent

into a separate Cardinal for independent computation. Within each Cardinal, the input is further split into r

slices, processed separately, and then merged using Concatenate to combine the results.

This architecture enhances accuracy because even if a particular Cardinal learns incorrect features

during training, other Cardinals can still capture the correct patterns, improving overall classification

performance. Additionally, within each Cardinal, ResNeSt incorporates a split-attention mechanism [14], which

enables the model to learn relationships between one or multiple channels, further refining feature extraction

and classification accuracy.

For this experiment, we employed the ResNeSt50 network, balancing computational efficiency with

high classification performance.

Malware Classification Based on Deep Learning

DOI: 10.35629/3795-11023036 www.questjournals.org 34 | Page

Figure (1): Architecture of ResNeSt Network

V. EXPERIMENT RESULT
4.1 EXPERIMENTAL ENVIRONMENT

Our experimental environment configuration is shown in Table 2.

Table 2: Experimental Environment Configuration

Component Version

Pytorch 1.10.1

Numpy 1.21.5

CUDA 11.2

CuDNN 8.1.1

Pandas 1.3.4

The training hyperparameters are shown in Table 3.

Table 3: Training Parameter Information

Hyperparameter Value

Learning Rate 0.01

Epoches 50

Weight Decay 0.0001

Batch Size 64

Shuffle True

Drop Last True

4.2 EXPERIMENTAL SETUP

Since the methods proposed in [6][7] cannot be migrated to ARM-based machines, and the dataset in

[9] does not provide ARM-related data, we did not conduct comparative experiments. Instead, we performed

experiments solely on the x86 platform, using model accuracy on the test set as the evaluation metric. The

experiments were conducted on a Windows 10 system with an Nvidia RTX 3060Ti GPU.

Malware Classification Based on Deep Learning

DOI: 10.35629/3795-11023036 www.questjournals.org 35 | Page

4.3 EXPERIMENTAL RESULTS

At the beginning of training, the learning rate was set to 0.01, as the model weights were initialized. A

larger learning rate in the early iterations allows the model to explore a broader parameter space to find an

optimal region for subsequent fine-tuning [24].

As shown in Figure 2, the learning rate decreased rapidly at the start. If a high learning rate were

maintained for too long, the model could overshoot the optimal region, so it was necessary to gradually reduce

the learning rate to allow finer exploration in a promising region. However, between 20 and 25 iterations, we

observed a temporary increase in model loss, which we suspect was due to the learning rate being too high at

that stage, causing the model to jump out of a local minimum, leading to an increase in loss. As the learning rate

continued to decrease in later iterations, the model resumed learning, minimizing loss and converging to a better

set of parameters.

Figure (2): Illustration of the Impact of Learning Rate

Figure (3): Comparison of Model Accuracy Across Different Models

Table 4: Model Accuracy

Models 2-gram 3-gram LSTM MaLCNN

Accuracy 87% 95% 96% 98.4%

The reference models address malware classification by converting assembly code into a text

classification problem. In Table 4, we present the final test accuracy of all models. Among them, the N-gram

model performed best when n = 3, while LSTM achieved a high accuracy of 96%.

However, the N-gram method requires maintaining a large word frequency matrix [6], making search

and update operations highly costly, leading to a significantly higher model complexity compared to MalCNN.

Additionally, LSTM, as an RNN-based model, typically has a higher computational complexity than MalCNN,

which belongs to the CNN model family.

Malware Classification Based on Deep Learning

DOI: 10.35629/3795-11023036 www.questjournals.org 36 | Page

Therefore, MalCNN has a key advantage of lower model complexity, reducing computational overhead

far more efficiently than the other three methods.

VI. CONCLUSION
In this paper, we proposed a malware classification model based on computer vision methods. We

explored various feature engineering techniques for processing raw binary .bytes files and identified an

approach well-suited for our research. We then selected ResNeSt as the base model and, after conducting

experiments and reviewing related literature, incorporated AutoAugment, mix-up, and other training techniques

to improve model accuracy and robustness. Additionally, we optimized Label Smoothing to ensure

compatibility with other training strategies.

Compared to other models and methods, our approach achieved higher classification accuracy while

maintaining lower model complexity. However, we believe there is still room for improvement. In future work,

we plan to integrate adversarial training to evaluate the model’s robustness against state-of-the-art attack

algorithms and explore potential solutions to further enhance security and reliability.

REFERENCES
[1]. Sun C C, Hahn A, Liu C C. Cyber security of a power grid: State-of-the-art[J]. International Journal of Electrical Power & Energy

Systems, 2018, 99: 45-56.

[2]. Von Solms R, Van Niekerk J. From information security to cyber security[J]. computers & security, 2013, 38: 97-102.

[3]. Pascanu R, Stokes J W, Sanossian H, et al. Malware classification with recurrent networks[C]//2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015: 1916-1920.

[4]. Skoudis E, Zeltser L. Malware: Fighting malicious code[M]. Prentice Hall Professional, 2004.

[5]. Raff E, Zak R, Cox R, et al. An investigation of byte n-gram features for malware classification[J]. Journal of Computer Virology
and Hacking Techniques, 2018, 14(1): 1-20.

[6]. Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.

[7]. Brown P F, Della Pietra V J, Desouza P V, et al. Class-based n-gram models of natural language[J]. Computational linguistics,
1992, 18(4): 467-480.

[8]. Athiwaratkun B, Stokes J W. Malware classification with LSTM and GRU language models and a character-level CNN[C]//2017

IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2017: 2482-2486.
[9]. Ronen R, Radu M, Feuerstein C, et al. Microsoft malware classification challenge[J]. arXiv preprint arXiv:1802.10135, 2018.

[10]. Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in

neural information processing systems, 2015, 28.
[11]. Sutton R S, Barto A G. Reinforcement learning: An introduction[M]. MIT press, 2018.

[12]. Cubuk E D, Zoph B, Mane D, et al. Autoaugment: Learning augmentation strategies from data[C]//Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 2019: 113-123.

[13]. Rivest J F, Soille P, Beucher S. Morphological gradients[J]. Journal of Electronic Imaging, 1993, 2(4): 326-336.

[14]. Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.

[15]. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016: 770-778.

[16]. Madry A, Makelov A, Schmidt L, et al. Towards deep learning models resistant to adversarial attacks[J]. arXiv preprint

arXiv:1706.06083, 2017.
[17]. Zhang H, Cisse M, Dauphin Y N, et al. mixup: Beyond empirical risk minimization[J]. arXiv preprint arXiv:1710.09412, 2017.

[18]. Zhang L, Deng Z, Kawaguchi K, et al. How does mixup help with robustness and generalization?[J]. arXiv preprint

arXiv:2010.04819, 2020.
[19]. Ying X. An overview of overfitting and its solutions[C]//Journal of Physics: Conference Series. IOP Publishing, 2019, 1168(2):

022022.

[20]. Müller R, Kornblith S, Hinton G E. When does label smoothing help?[J]. Advances in neural information processing systems, 2019,
32.

[21]. Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015, 2(7).

[22]. Loshchilov I, Hutter F. Decoupled weight decay regularization[J]. arXiv preprint arXiv:1711.05101, 2017.
[23]. Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.

[24]. You K, Long M, Wang J, et al. How does learning rate decay help modern neural networks?[J]. arXiv preprint arXiv:1908.01878,

201

