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ABSTRACT: This paper proposes a novel malware classification method for personal computers, which I 

have named MalCNN. The motivation behind selecting this topic is that, in the era of the pandemic, as online 

work continues to grow, computer security has become an increasing concern.Currently, most malware 

classification methods rely on either a hard decision strategy or analysis conducted by cybersecurity 

professionals. However, traditional classification models and approaches are no longer suitable for the big data 

era. In the digital world, millions of malware programs spread every moment, making traditional classification 

methods inefficient due to their slow speed and inaccurate results. As a result, these methods struggle to meet 

modern security demands.To address these challenges, MalCNN attempts to establish a soft decision 

classification method based on computer vision techniques, allowing for the annotation of samples that do not 

meet predefined classification conditions. 
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I. INTRODUCTION  
With the widespread adoption of computers in people's daily lives, issues related to computer security 

have become increasingly prominent [1]. Nowadays, computers are deeply integrated into various aspects of 

life, including work, travel, social interactions, and payments, making them more essential than ever. Against 

this backdrop, cyberattack methods have become more diverse, complex, and sophisticated [1][2]. Additionally, 

the number of malware samples, such as viruses and worms, has experienced explosive growth [1][3]. 

Conventional malware classification methods primarily rely on hard decision-making or require 

security experts to analyze and determine the malware family, which can no longer meet today’s security 

demands [1][2]. Furthermore, in the field of software security, security professionals are often in an exposed 

position: the security software they develop is publicly accessible, whereas attackers operate in the shadows. 

This means that security experts cannot fully anticipate the vulnerabilities exploited by attackers or the evasion 

techniques they employ to bypass security measures. As a result, hard decision classifiers struggle significantly 

when faced with such an overwhelming volume of malware samples. 

Most computer software users today lack vigilance against malware, which can compromise the 

security, integrity, or usability of data and programs on a network. Moreover, modern malware increasingly 

exhibits characteristics such as long dormancy periods, enhanced stealth, and self-deletion mechanisms [4]. 

Relying solely on software usage experience or traditional hard-decision malware classification models makes 

accurate classification increasingly difficult.   

To address this issue, this study adopts a soft decision strategy and utilizes deep learning to develop a 

more efficient and generalizable malware classification model, achieving higher accuracy in classification.   

Deep learning has been a popular research direction in recent years. A review of the literature reveals 

that malware classification research in China remains relatively limited, with many existing models 

demonstrating suboptimal performance. Therefore, we believe that combining deep learning with malware 

classification has promising prospects. Compared to other soft decision classification models in this field, such 

as N-gram and LSTM models, the proposed MaLCNN model integrates the algorithmic classification 

approaches of these models while reducing computational overhead. Through multiple iterations, the model has 

achieved superior classification accuracy. This research provides valuable insights for the practical application 

of malware classification in the cybersecurity industry. 

http://www.questjournals.org/
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II. RELATED WORK 
2.1 N-GRAM-BASED CLASSIFICATION MODEL 

 The N-gram algorithm [7] is based on probability theory and statistical language models. It assumes 

that the N-th word in a text is only related to the previous (N-1) words. According to this principle, the most 

probable word to follow a given sequence can be predicted. Typically, text content is segmented into fixed-size 

byte sequences, where each segment is called a gram. The most common values for N are 2 (bigram) and 3 

(trigram). The frequency of these grams is then statistically analyzed, filtered according to predefined rules, and 

stored in a key gram table, which serves as a feature vector for the training text. 

The N-gram algorithm was initially considered for this study based on the assumption that .byte files in 

malware may exhibit statistical patterns similar to natural language text. After reviewing relevant research, we 

selected the N-gram algorithm for testing. The work of [5] and others treated malware assembly code as "words" 

in a text. Under this approach, an entire malware sample could be viewed as a "document," where different 

"documents" have distinct writing styles and purposes—similar to a text classification task. By applying the N-

gram model from natural language processing (NLP) to malware classification, predictions could be made based 

on these extracted patterns. 

Experimental results showed that setting N = 3 (trigram) achieved the best performance, with an 

accuracy of up to 96%. This confirms that the N-gram algorithm is applicable to malware classification and 

provides valuable insights for our study. We determined that assembly code features are relevant for malware 

classification, making NLP-based processing a feasible approach. However, despite achieving 96% accuracy, 

there is still room for improvement. 

One of the main limitations of this method is its difficulty in adapting to different computing 

architectures. This is because assembly syntax and mnemonics vary significantly across architectures. For 

example, an N-gram model trained on x86 assembly code cannot be directly transferred to ARM-based 

architectures, leading to limited applicability. 

Today, devices using ARM assembly architecture, such as mobile phones and edge computing devices, 

account for a significant portion of computing platforms. Security concerns for these devices are just as critical 

as for traditional x86-based computers. Therefore, focusing only on x86-based malware classification is not a 

viable solution. 

To overcome these limitations, we propose a cross-architecture malware classification approach that 

works on x86, ARM, and other platforms. This is why our model does not use assembly code as input features. 

Instead, our proposed MaLCNN model is designed to classify malware across different architectures without 

requiring separate models for each platform. This eliminates the need to train multiple models repeatedly for 

different architectures, improving efficiency and scalability in malware classification. 

 

2.2 LSTM-BASED CLASSIFICATION MODEL 

Long Short-Term Memory (LSTM) [6] is one of the commonly used deep learning algorithms, capable 

of effectively addressing gradient explosion and gradient vanishing problems in recurrent neural networks 

(RNNs). Compared to standard RNNs, LSTM performs better in handling long-sequence information. 

The internal structure of LSTM can be divided into three main components: 

Forget Gate – The network selectively forgets certain information from the previous node while 

retaining the most important features. 

Selective Memory – The network processes the current input (Xt in the diagram) and selectively 

remembers important parts while discarding less relevant information. 

Output Gate – After the above processing, the network determines which information will be passed to 

the next node. 

By incorporating these mechanisms, LSTM is able to capture long-term dependencies, making it well-

suited for sequential data processing, such as malware classification based on bytecode or API call sequences.  
[8] and colleagues proposed a method that utilizes LSTM for malware classification. Similar to the N-

gram approach, they treated assembly code as words, mapping an entire malware sample into a "document." 

This transformation allowed malware classification to be framed as a text classification problem, making it 

possible to apply LSTM for classification. 

However, a significant drawback of this method is that it can only predict malware based on a single 

assembly architecture. A model trained on x86 assembly cannot be applied to ARM-based machines, as the 

syntax and mnemonics of assembly code differ significantly between architectures. This limits its applicability, 

making it less than ideal as a universal solution. 

As discussed in Chapter 4, LSTM outperforms the N-gram algorithm in malware classification. The 

selective memory mechanism and textual representation of malware in LSTM provided valuable insights for our 

research. Inspired by this, our study continues to adopt mapping and feature extraction techniques while 

focusing on improving classification accuracy and reducing computational overhead. 



Malware Classification Based on Deep Learning 

DOI: 10.35629/3795-11023036                                      www.questjournals.org                                       32 | Page 

 

 
Figure (1): Structure of LSTM 

 

III. MALCNN 
3.1 DATASET  

For our study, we use BIG2015, an open-source dataset provided by Microsoft [9]. This dataset 

consists of nine malware families, specifically: Ramnit, Lollipop, Kelihos_ver3, Vundo, Simda, Tracur, 

Kelihos_ver, Obfuscato.ACY, and Gatak. Each sample in the dataset has been manually analyzed and classified 

by Microsoft security experts, ensuring accurate malware family labels. 

A detailed overview of the dataset is provided in Table 1. After data preprocessing and cleaning, the 

dataset contains 10,868 samples. 

Notably, BIG2015 does not provide executable files; instead, it offers binary-formatted, non-executable 

.byte files and .asm assembly files corresponding to each malware sample. In our experiments, we only use the 

.byte files for feature mapping to build our classification model. 

 

IV. CONCLUSION 

Table 1: Malware Categories and Distribution in the Dataset 

Malware Family Sample Count 

Ramnit 1541 

Lollipop 2478 

Kelihos_ver3 2942 

Vundo 475 

Simda 42 

Tracur 751 

Kelihos_ver 398 

Obfuscato.ACY 1228 

Gatak 1013 

The BIG2015 dataset does not store malware samples in categorized folders; instead, all samples are 

placed in a single directory, while label information is provided separately in an Excel file. To partition the 

dataset, we extract filenames based on their corresponding categories from the Excel file. 

For dataset splitting, we randomly select 20% of the samples from each category as the test set, while 

the remaining 80% are used for training. This ensures a balanced distribution across different malware families 

for both training and evaluation. 

3.2 FEATURE ENGINEERING 

MalCNN adopts a computer vision-based approach to train a soft decision model. The first step in 

feature engineering is to map a malware sample into an image while ensuring that essential features are 

extracted efficiently without compromising processing speed. To achieve this, several key issues need to be 

considered: 
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3.2.1 RELATIONSHIP BETWEEN IMAGE SIZE AND SOURCE FILE 

Malware samples vary significantly in size due to differences in type and obfuscation techniques. If 

only a portion of a file is used for mapping, important information may be lost. On the other hand, mapping the 

entire file could reduce processing efficiency and introduce excessive redundancy. 

To address this issue, we map the entire malware file into a grayscale image by reading the malware 

file in binary format. Specifically, we read 1024 bits per row, forming a grayscale image, and pad with zeroes if 

the last row is incomplete. This approach preserves as many features as possible while maintaining processing 

efficiency. 

The resulting grayscale images vary in size. Initially, we considered using RoI Pooling [10] to 

standardize image dimensions. However, experimental results showed poor performance with this method. We 

hypothesize that this is due to the pixel values in malware images being binary (0 or 1) rather than continuous 

grayscale values, causing RoI Pooling’s max-pooling operation to distort key features. 

Through experimentation, we found that resizing the images directly to 224×224 pixels yielded the best 

classification results.  

 

3.2.2 HANDLING ANOMALIES AND MISSING VALUES 

Some anomalies and missing values may exist in our dataset, such as Malware samples whose 

filenames cannot be found in the label table or Missing label information. 

These issues need to be addressed to prevent disruptions in feature engineering, which could negatively 

impact model training and evaluation. 

Since the original dataset is extremely large [9] and the proportion of affected samples is less than 

0.01%, we adopt a simple exclusion approach—ignoring these problematic samples. This method is efficient 

and has negligible impact on model performance. 

Additionally, missing values in our dataset primarily affect labels or filenames rather than numerical 

features. Thus, common imputation techniques (such as mean or median filling) are not applicable in this case. 

 

3.3 MODEL ARCHITECTURE 

In this study, we selected ResNeSt as the model, an improved version of ResNet [14][15]. Unlike 

ResNet, ResNeSt introduces a network slicing mechanism, as shown in the figure. During inference, the model 

no longer follows a single sequential computation path. Instead, the input is duplicated into k copies, each sent 

into a separate Cardinal for independent computation. Within each Cardinal, the input is further split into r 

slices, processed separately, and then merged using Concatenate to combine the results. 

This architecture enhances accuracy because even if a particular Cardinal learns incorrect features 

during training, other Cardinals can still capture the correct patterns, improving overall classification 

performance. Additionally, within each Cardinal, ResNeSt incorporates a split-attention mechanism [14], which 

enables the model to learn relationships between one or multiple channels, further refining feature extraction 

and classification accuracy. 

For this experiment, we employed the ResNeSt50 network, balancing computational efficiency with 

high classification performance. 
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Figure (1):  Architecture of  ResNeSt Network 

 

V. EXPERIMENT RESULT 
4.1 EXPERIMENTAL ENVIRONMENT 

Our experimental environment configuration is shown in Table 2. 

Table 2: Experimental Environment Configuration 

Component Version 

Pytorch 1.10.1 

Numpy 1.21.5 

CUDA 11.2 

CuDNN 8.1.1 

Pandas 1.3.4 

The training hyperparameters are shown in Table 3. 

Table 3: Training Parameter Information 

Hyperparameter Value 

Learning Rate 0.01 

Epoches 50 

Weight Decay 0.0001 

Batch Size 64 

Shuffle True 

Drop Last True 

4.2 EXPERIMENTAL SETUP 

Since the methods proposed in [6][7] cannot be migrated to ARM-based machines, and the dataset in 

[9] does not provide ARM-related data, we did not conduct comparative experiments. Instead, we performed 

experiments solely on the x86 platform, using model accuracy on the test set as the evaluation metric. The 

experiments were conducted on a Windows 10 system with an Nvidia RTX 3060Ti GPU. 
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4.3 EXPERIMENTAL RESULTS 

At the beginning of training, the learning rate was set to 0.01, as the model weights were initialized. A 

larger learning rate in the early iterations allows the model to explore a broader parameter space to find an 

optimal region for subsequent fine-tuning [24]. 

As shown in Figure 2, the learning rate decreased rapidly at the start. If a high learning rate were 

maintained for too long, the model could overshoot the optimal region, so it was necessary to gradually reduce 

the learning rate to allow finer exploration in a promising region. However, between 20 and 25 iterations, we 

observed a temporary increase in model loss, which we suspect was due to the learning rate being too high at 

that stage, causing the model to jump out of a local minimum, leading to an increase in loss. As the learning rate 

continued to decrease in later iterations, the model resumed learning, minimizing loss and converging to a better 

set of parameters. 

 
Figure (2): Illustration of the Impact of Learning Rate 

 

Figure (3): Comparison of Model Accuracy Across Different Models 

Table 4: Model Accuracy 

Models 2-gram 3-gram LSTM MaLCNN 

Accuracy 87% 95% 96% 98.4% 

The reference models address malware classification by converting assembly code into a text 

classification problem. In Table 4, we present the final test accuracy of all models. Among them, the N-gram 

model performed best when n = 3, while LSTM achieved a high accuracy of 96%. 

However, the N-gram method requires maintaining a large word frequency matrix [6], making search 

and update operations highly costly, leading to a significantly higher model complexity compared to MalCNN. 

Additionally, LSTM, as an RNN-based model, typically has a higher computational complexity than MalCNN, 

which belongs to the CNN model family. 
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Therefore, MalCNN has a key advantage of lower model complexity, reducing computational overhead 

far more efficiently than the other three methods. 

 

VI. CONCLUSION  
In this paper, we proposed a malware classification model based on computer vision methods. We 

explored various feature engineering techniques for processing raw binary .bytes files and identified an 

approach well-suited for our research. We then selected ResNeSt as the base model and, after conducting 

experiments and reviewing related literature, incorporated AutoAugment, mix-up, and other training techniques 

to improve model accuracy and robustness. Additionally, we optimized Label Smoothing to ensure 

compatibility with other training strategies. 

Compared to other models and methods, our approach achieved higher classification accuracy while 

maintaining lower model complexity. However, we believe there is still room for improvement. In future work, 

we plan to integrate adversarial training to evaluate the model’s robustness against state-of-the-art attack 

algorithms and explore potential solutions to further enhance security and reliability. 
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