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Abstract 
Machine learning (ML) is revolutionizing paleontology by addressing longstanding challenges in fossil 

identification and analysis. This study explores the application of ML techniques, particularly computer vision, 

in automating the classification of mammalian skulls. Using a meticulously curated dataset sourced from 

renowned natural history institutions, an ML model was trained to identify six mammalian orders with a high 

degree of accuracy. The tool, hosted on the Huggingface platform, simplifies skull identification through a user-

friendly interface, enabling rapid and reliable classification. While constrained by computational resources and 

limited training scope, the model demonstrates immense potential for improving the efficiency and objectivity of 

paleontological research. Future developments aim to expand the dataset to encompass all 29 mammalian orders, 

integrate confidence scoring, and enhance computational capabilities. These advancements promise to make ML 

an indispensable asset in the study of evolutionary relationships and biodiversity. The findings underline the 

transformative role of ML in paleontology, fostering new insights and expediting research in a field traditionally 

reliant on manual methods. 
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I. Introduction 
Machine Learning (ML) has emerged as a transformative technology in paleontology, offering 

researchers powerful tools to analyze large, complex datasets that reveal the intricate and ancient history of life 

on Earth. Traditionally, paleontology has relied heavily on manual methods for identifying, classifying, and 

interpreting fossils—a process that, while foundational, is not only time-consuming but also prone to human error 

and subjectivity. The introduction of ML into paleontological research is revolutionizing the field, enabling 

scientists to process and interpret vast amounts of data with unprecedented speed, precision, and accuracy. This 

paradigm shift is not just a technological upgrade; it is a fundamental change in how paleontologists uncover and 

understand patterns and relationships that were previously hidden within the data. 

 

One of the primary and most impactful applications of ML in paleontology is the classification of fossils. 

By training ML models on extensive datasets of fossil images, researchers can develop sophisticated algorithms 

capable of automatically identifying and categorizing fossils based on subtle features that may be challenging for 

even the most experienced human experts to discern. For instance, ML has been utilized to classify ape species 

by analyzing their dental structures, which are often complex and highly variable. The ability of ML to detect 

these nuanced differences and make accurate classifications underscores its potential to significantly enhance the 

precision, reliability, and efficiency of paleontological research. This capability is particularly valuable in a field 

where the accurate identification of fossils is critical to constructing reliable evolutionary timelines and 

understanding biodiversity across geological epochs. 

 

While ML is a subset of Artificial Intelligence (AI), it is distinct in its approach and methodology. 

Specifically, ML involves training AI models using large datasets, enabling the model to "learn" from the data in 

a manner that mirrors human learning processes. This training involves feeding the model with vast amounts of 
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data, allowing it to identify patterns, correlations, and relationships within the information. Once the model has 

been adequately trained, it can make predictions or classifications on new, previously unseen data based on the 

patterns it has learned. This process is particularly advantageous in paleontology, where ML can be applied to a 

variety of tasks, including species identification, pattern recognition, and complex data analysis. These 

applications are not only accelerating research but also opening new avenues for discoveries that were previously 

inaccessible due to the limitations of traditional methods. 

 

A specific and highly effective application of ML in paleontology is computer vision, a branch of ML 

that uses images as the primary data input for training AI models. Computer vision enables the automatic 

identification and analysis of images by recognizing and interpreting patterns within them. This technology has 

been employed in numerous paleontological studies to analyze fossil images, detect morphological features, and 

classify species with remarkable accuracy. For example, in a recent project, a computer vision model was 

developed to classify mammal skulls based on their morphological characteristics. This model, implemented as a 

web application with a user-friendly interface, allows users to upload images of mammal skulls, which the AI 

model then categorizes into one of six mammalian orders: Artiodactyla, Carnivora, Chiroptera, Lagomorpha, 

Pinnipedia, and Rodentia. The code for this model was written in Python, utilizing libraries such as pathlib and 

fastai.vision to build and deploy the AI model. The primary goal of this project was to create a tool that could 

accurately and efficiently identify the order to which a mammalian skull belongs, thereby streamlining the process 

of cataloging and studying these fossils. This application is not just a proof of concept but a practical tool that has 

the potential to significantly impact how paleontological research is conducted. 

 

The integration of ML into paleontology is not merely a recent innovation; it has already been applied in 

various studies with remarkable success. For example, a study conducted by Abdelhady et al. demonstrated that 

machine learning models could achieve an accuracy rate of 85% in identifying taxa from paleontological images. 

This level of accuracy is comparable to that of human experts, highlighting the potential of ML to complement, 

and in some cases, surpass traditional paleontological methods. Another notable study by De Baets in 2021 utilized 

ML to identify patterns in ammonoid species based on their conch shapes. By analyzing these morphological 

patterns, the ML model was able to classify different ammonoid species with a high degree of accuracy, providing 

insights that may have been overlooked due to human biases or limitations. These examples illustrate how ML 

can not only match human performance but also uncover new patterns and relationships that were previously 

inaccessible, offering a more comprehensive understanding of the fossil record. 

 

However, the effectiveness of ML models in paleontology, as in other scientific disciplines, is heavily 

dependent on the quality and quantity of the training data. High-quality, well-curated datasets are essential for 

training accurate and reliable models. If the training data contains errors, inconsistencies, or biases, the model's 

predictions are likely to be flawed. Additionally, the size of the training dataset is crucial; larger datasets generally 

allow for more robust and generalizable models. This aspect is particularly important in paleontology, where fossil 

data can be sparse, fragmented, or incomplete, making it challenging to gather comprehensive datasets for training 

ML models. Nevertheless, as more fossil data is digitized and made available for research, the potential for ML 

in paleontology continues to grow, offering new possibilities for the analysis and interpretation of the fossil record. 

 

Beyond ammonites and other invertebrates, ML has also been successfully applied to the study of 

mammalian fossils. In a 2024 study by Dominguez-Rodrigo et al., researchers used computer vision to analyze 

tooth marks left by African carnivores on bones. The algorithm developed in this study was capable of 

distinguishing between tooth marks made by different carnivore species with high accuracy, thereby reducing the 

subjectivity that often accompanies such analyses. This application of ML not only enhances the accuracy of fossil 

analysis but also provides a more objective and systematic approach to studying predator-prey interactions in the 

fossil record. Such applications demonstrate the versatility of ML in paleontology, capable of addressing a wide 

range of research questions and improving the reliability of paleontological interpretations. 

 

ML has also proven effective in the study of smaller, less conspicuous fossils. In a 2020 study by Xu et 

al., researchers developed a computer vision algorithm to rapidly and accurately identify microscopic palaeobios. 

The study utilized convolutional neural networks (CNNs), a type of ML model particularly well-suited for image 

analysis, to classify images of palaeobios. The model was trained on a large dataset of images and then validated 

on a separate set of images to assess its accuracy. The results demonstrated that the ML model could identify and 

classify palaeobios images with high precision, significantly reducing the time required for analysis compared to 

traditional manual methods. This application of ML highlights its versatility and effectiveness in studying a wide 

range of fossil types, from large vertebrates to tiny microorganisms, thereby broadening the scope of 

paleontological research. 
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Moreover, ML models are capable of handling exceptionally large datasets, which is particularly 

advantageous in paleontology. A 2023 study by Liu et al. exemplified this capability by using CNNs to gdevelop 

an automatic taxonomic identifier for fossils. The study utilized a dataset of over 415,000 images, encompassing 

a wide variety of fossil taxa. The sheer size and diversity of the dataset allowed the ML model to become a 

comprehensive and all-purpose identifier with high accuracy. The model's performance in this study underscored 

its effectiveness by outperforming traditional manual classification methods, significantly accelerating the pace 

of research and enabling paleontologists to process large volumes of data quickly and efficiently. This 

advancement in ML technology has the potential to revolutionize paleontological research by automating the 

identification and classification of fossils on a scale that was previously unimaginable, thereby transforming the 

way paleontologists work. 

The creation of a machine-learning model capable of identifying mammal skulls has profound 

implications for museums, research institutions, and educational settings. Museums, in particular, could benefit 

greatly from such a tool, as it would enable curators to quickly and accurately catalog skulls in their collections. 

Instead of relying on the slow and labor-intensive process of manual identification, curators could use the ML 

model to automatically identify the order of each skull, allowing for more efficient cataloging and management 

of collections. This would not only save time but also ensure a higher level of consistency and accuracy in the 

classification process. Additionally, such a tool could be used in educational settings to teach students about 

mammalian diversity and evolution, providing a hands-on learning experience that combines cutting-edge 

technology with traditional paleontological methods. By integrating ML into the educational curriculum, students 

would gain valuable insights into both the history of life on Earth and the technological advancements that are 

shaping the future of paleontological research. 

As ML technology continues to advance, its applications in paleontology are likely to expand even 

further. Future developments could include the integration of ML models with other emerging technologies, such 

as 3D imaging, augmented reality (AR), and virtual reality (VR), to create immersive and interactive experiences 

for studying fossils. For example, researchers could use ML models to analyze 3D scans of fossils, providing 

detailed insights into their morphology and allowing for more accurate reconstructions of extinct species. AR and 

VR could be used to create virtual fossil labs where students and researchers can interact with digital fossils in a 

simulated environment, enhancing the learning experience and making paleontology more accessible to a broader 

audience. 

Additionally, as more fossil data is digitized and made available for research, the potential for ML to 

uncover new insights into the history of life on Earth will only increase. In this context, ML represents not just a 

tool for paleontologists, but a new paradigm for understanding the complex and dynamic processes that have 

shaped life on our planet. The future of paleontology is likely to be one where ML plays a central role, driving 

new discoveries, transforming our understanding of the past, and paving the way for the next generation of 

paleontologists. With the continued integration of ML into paleontological research, we are entering a new era of 

discovery, where the secrets of the fossil record are revealed with greater clarity 

 

II. Methods 
The development of the machine-learning model for identifying mammalian skulls was conducted on a 

2021 iMac running Sonoma 14.5, providing a stable computational environment for this complex task. The model 

was initially coded on the Kaggle platform, which was chosen for its extensive tools in data management and 

model training. Subsequently, the model was integrated into the Huggingface Machine Learning Platform, which 

facilitated further refinement and deployment of the model. 

The training dataset was meticulously curated using Kaggle’s dataset feature, ensuring that the data was 

both comprehensive and organized for optimal machine-learning performance. The images utilized in the training 

process were sourced from the Smithsonian Museum of Natural History and the Hefner Museum of Natural 

History, institutions renowned for their extensive and diverse collections. These images were initially stored in a 

Google Drive folder to maintain accessibility and security before being transferred to the local computing 

environment for further processing. 

Prior to the primary coding effort, a preliminary study of computer vision principles was undertaken. 

This was facilitated by a video tutorial focused on basic computer vision techniques, where a simple model was 

constructed to differentiate between images of birds and forests. Despite limited prior experience with computer 

vision, the replication of this tutorial was successful, serving as an essential preparatory step for the more complex 

task of skull identification. This initial success provided a foundational understanding, but the skull identification 

model required a significantly more advanced approach and deeper technical expertise. 

A major challenge encountered during the project was the management and upload of the training dataset 

to Kaggle. Given the necessity for large datasets in effective AI training, this task was critical. However, the 

process was complicated by the substantial size of the Google Drive folder containing the images, necessitating 
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file compression to meet platform constraints. This time-intensive process highlighted the logistical difficulties 

inherent in managing large datasets. 

After successful compression and upload of the files, an additional challenge emerged in establishing a 

reliable data path within the Kaggle environment. For a period of two weeks, progress was impeded by a persistent 

TypeError indicating that a NoneType object was not iterable. This error presented significant difficulties, as its 

underlying cause took time to apparent, even with expert consultation. The complexity of the error message and 

the lack of clear diagnostic information necessitated an iterative troubleshooting approach. 

Ultimately, it was determined that the dataset’s folder structure was incompatible with the model’s 

requirements, preventing the code from correctly accessing the training images. This misalignment between the 

dataset organization and the model’s expectations was identified as the root cause of the TypeError. Upon 

reorganization of the dataset to conform to the model's specifications, the error was resolved, allowing the project 

to proceed. 

This experience underscored the critical importance of dataset management and the challenges associated 

with large-scale machine-learning projects. The resolution of these issues not only facilitated the successful 

development of the model but also provided valuable insights into the complexities of machine learning. The 

process highlighted the necessity of rigorous data organization and the potential pitfalls that can arise in the 

absence of careful planning. Through meticulous troubleshooting and iterative refinement, the project was 

ultimately successful, contributing to the broader understanding of machine-learning applications in biological 

classification. 

  

III. Results 
The application, hosted on the Huggingface platform, represents a sophisticated integration of advanced 

machine learning techniques into a user-friendly tool designed specifically for identifying mammalian skulls. This 

tool, aptly named "skullidentifier," is crafted to be both accessible and powerful, providing users with a seamless 

experience that simplifies the complex process of skull identification. The application is particularly valuable for 

researchers, educators, and enthusiasts who require a reliable and efficient means of identifying and classifying 

mammalian skulls based on their morphological features. 

At the core of the application is a straightforward input box where users can easily upload a picture of a 

skull they wish to identify. This simplicity in design ensures that users of varying technical expertise can engage 

with the tool without needing specialized knowledge or extensive training. Once an image is uploaded, the model 

rapidly processes it using state-of-the-art image recognition algorithms that have been trained on a diverse and 

comprehensive dataset of mammalian skull images. These algorithms are capable of detecting and analyzing 

intricate patterns within the image, comparing these features against the extensive training data to generate an 

identification. 

The output generated by the model is expressed as a percentage, which reflects the degree of similarity 

between the uploaded image and the various mammalian orders that the model has been trained to recognize. This 

percentage serves as an indication of the model's confidence in its identification. Importantly, the percentages 

provided by the model do not always total 100%. This design choice allows the model to reflect the reality of 

biological diversity, where certain skull features may be shared across multiple mammalian orders. As a result, 

the model may suggest that the characteristics of a skull share similarities with two or more orders, acknowledging 

the complex and sometimes overlapping morphological traits that exist across different mammalian families. 

This nuanced approach to identification is particularly useful in cases where skull features are not 

distinctive enough to clearly belong to a single order, thereby providing users with a more informed and 

comprehensive understanding of the potential classifications. For instance, a skull might exhibit features that are 

common to both Carnivora and Pinnipedia, and the model would reflect this by providing a percentage match for 

both orders. This capability is crucial for researchers who are exploring evolutionary relationships or studying 

species with convergent traits, as it allows for a more sophisticated analysis of the data. 

Beneath the input box, the application includes a selection of sample images that users can utilize to test 

and explore the capabilities of the AI model. These sample images serve multiple important functions within the 

application. First and foremost, they offer a practical demonstration of the model's abilities, allowing users to see 

how the tool processes and identifies skulls from different mammalian orders. By experimenting with these 

examples, users can gain a clearer understanding of how the model interprets various morphological features and 

how it arrives at its percentage-based outputs. 

In addition to demonstrating the model's functionality, these sample images also provide an educational 

component that is particularly valuable for students, educators, and researchers. By observing how the model 

handles skulls with ambiguous or overlapping features, users can deepen their understanding of the diversity and 

complexity of mammalian skull structures. This educational aspect is further enhanced by the ability to see how 

the model responds to images with mixed or partial matches, providing insights into the challenges and intricacies 

of skull identification in the context of evolutionary biology. 
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The inclusion of sample images also enhances user engagement by offering an interactive and hands-on 

experience. Instead of passively reading about the model's capabilities, users can actively participate in the 

identification process, experimenting with different images and observing the results. This interactive approach 

not only makes the application more engaging but also fosters a deeper connection between users and the tool, 

encouraging them to explore and learn more about the fascinating world of mammalian skulls. 

Moreover, the application’s design could be expanded in the future to include additional features that 

would further enhance its utility and educational value. For example, the inclusion of detailed explanations or 

annotations for each identification result could provide users with context about why the model assigned certain 

percentages to specific orders. These explanations could highlight particular morphological traits that influenced 

the model's decision, offering users a deeper understanding of the identification process and the biological 

significance of these features. 

Another potential enhancement could be the integration of a feedback system, allowing users to 

contribute their observations or corrections to improve the model over time. Such a feature would not only refine 

the model’s accuracy but also create a collaborative environment where users can share knowledge and insights. 

Additionally, features like side-by-side skull comparisons or the ability to track changes in identification 

confidence as the model is updated with new data could further enrich the user experience, making the application 

a more comprehensive and versatile tool for research and education.   

 

IV. Discussions 
Although our model is not yet trained to recognize all mammalian orders, it has demonstrated a high 

degree of accuracy in identifying skulls from the six orders it has been trained on. This success is noteworthy, 

especially given the complexity and subtlety involved in distinguishing between different mammalian skulls. 

However, as promising as these results are, there remain several areas where the model could be significantly 

enhanced, particularly if it is to be made available for widespread use in academic, research, and practical settings. 

The most pressing issue with the current model is its limited scope. At present, it is capable of identifying 

only six mammalian orders out of the 29 recognized in the mammal class. This limitation is primarily due to the 

time constraints and the computational limitations of the computer used to store and process the training files. 

During the development phase, these constraints necessitated focusing the model's training on a smaller subset of 

mammalian orders, preventing the inclusion of the full spectrum of diversity within the mammal class. 

This restricted training set poses a significant challenge when the model encounters a skull from an order 

it hasn't been trained on. In such cases, the model is likely to produce inaccurate results, as it may incorrectly 

classify the skull into one of the six orders it recognizes. This potential for misclassification is a serious concern, 

as it could lead to significant errors in research and analysis, thereby undermining the reliability and credibility of 

the tool. For instance, in a paleontological study where accurate classification of fossils is crucial, such errors 

could skew the results and lead to incorrect conclusions about evolutionary relationships or species diversity. 

However, despite these limitations, the model still offers considerable advantages. One of its most 

valuable benefits is the ability to significantly reduce the time required for research involving mammal skulls. 

While a human expert might take hours or even days to accurately identify a skull, the model can perform this 

task in a fraction of the time. This speed is particularly beneficial in research settings where time is a critical 

factor, such as in the cataloging of museum collections or the analysis of large datasets in evolutionary biology. 

By automating the identification process, the model allows researchers to focus on higher-level analysis and 

interpretation, potentially accelerating the pace of scientific discovery. 

To make the model more robust and suitable for broader application, future development efforts should 

focus on two primary areas. First, expanding the training dataset to cover all 29 mammalian orders is essential. 

Including the full range of mammalian diversity in the training data would ensure that the model can accurately 

identify skulls from any order within the mammal class. This expansion would not only increase the model's 

accuracy but also its utility across a wider range of research scenarios. For example, in a comprehensive study of 

mammalian evolution, the ability to accurately identify all 29 orders would be invaluable. 

Second, there is a critical need to address the computational limitations that currently restrict the model's 

capabilities. The initial development was constrained by the computational power available, which limited the 

size and complexity of the training dataset. To overcome these barriers, future work could involve investing in 

more powerful hardware capable of handling larger datasets and more complex models. Alternatively, optimizing 

the existing model to run more efficiently on current hardware could also provide a solution, allowing for the 

inclusion of more data without the need for significant additional resources. Advanced techniques such as model 

pruning, quantization, or the use of cloud-based computing resources could be explored to enhance the model's 

performance and scalability. 

In addition to these core improvements, it would be highly beneficial to integrate a confidence scoring 

system into the model. This system would provide users with a measure of the model's certainty in its predictions, 

allowing researchers to assess the reliability of each identification. For example, if the model classifies a skull 
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with a high confidence score, the user can be more assured of the accuracy of the result. Conversely, a low 

confidence score could indicate that the skull is from an order not well represented in the training data, prompting 

further investigation or a manual review. Such a feature would not only improve the model's transparency but also 

its usability, enabling researchers to make more informed decisions based on the model's output. 

These enhancements would collectively improve the accuracy, reliability, and versatility of the model, 

making it a more dependable tool for researchers. By expanding the training dataset, addressing computational 

constraints, and incorporating confidence scores, the model would be better equipped to handle the diverse and 

complex nature of mammalian skulls, reducing the potential for errors and enhancing the efficiency of studies in 

this field. Ultimately, these improvements could help establish the model as a valuable asset in paleontological 

research, museum curation, and educational applications, contributing to a deeper understanding of mammalian 

evolution and diversity. 

In conclusion, while the current model has shown great promise, there are clear avenues for further 

development that could significantly enhance its capabilities. By addressing the limitations of its training scope 

and computational constraints, and by integrating features such as confidence scoring, the model could evolve 

into a powerful tool for biological classification. As machine learning continues to advance, the potential 

applications of such models in paleontology and related fields are vast, offering exciting opportunities for future 

research and discovery. 

  

V. Conclusions 
Ultimately, the project successfully developed an app that can identify the order that a mammal skull 

belongs to, a significant step forward in the application of machine learning to biological classification. Although 

the AI was not trained using data from every single order in Mammalia—there are 29 orders in total—it is 

currently capable of identifying skulls from 6 distinct mammalian orders. The functionality of the app is 

straightforward: it requires users to upload an image of a skull, and it then processes this image to output a 

probability percentage, indicating which order it believes the skull belongs to based on its trained parameters. 

However, if the skull is not from one of the 6 mammalian orders the AI has been trained to recognize, 

the app will still attempt to make an identification. This guess is based on the patterns and similarities it detects 

when compared to the training images. Due to this limitation, there's a higher chance of incorrect identification in 

such cases, as the model's predictions are constrained by its training data. 

Looking ahead, there are plans to enhance the capabilities of this app significantly. One of the primary 

goals is to expand the database so that the model can recognize and accurately identify skulls from a broader range 

of mammalian orders. By covering more orders, the app will become more versatile and useful for a wider array 

of educational, research, and conservation tasks. Additionally, future updates will focus on improving the model's 

output by reporting a confidence score for each identification, along with a margin of error. These features will 

provide users with a clearer understanding of the reliability of each identification, making the app a more powerful 

tool for studying and cataloging mammalian diversity. 
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