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ABSTRACT: In the field of urban distribution, time-varying road network conditions are complex, customers' 

requirements for delivery time and freshness of goods are stringent, and the current situation of the coexistence 

of electric vehicles and fuel vehicles has brought new challenges and opportunities to logistics enterprises' 

distribution path optimization. Logistics enterprises need to optimize the distribution plan. This paper 

constructs a mixed fleet vehicle routing optimization model with multi factor considerations. Considering the 

key factors such as electric vehicle charging strategy, carbon emission cost and customer satisfaction, the 

minimum total distribution cost and the maximum customer satisfaction are the two objectives. In order to 

improve the efficiency and quality of the solution, this study designs and improves the NSGA-II algorithm, 

which integrates clustering, path rearrangement greedy strategy based on time window and cost optimization, 

and verifies the effectiveness of the improved NSGA-II algorithm through the numerical experiment of Solomon 

standard example, and makes a comparative analysis of the distribution schemes using mixed fleet and 

charging strategy, so as to help logistics enterprises determine the optimal charging strategy and distribution 

scheme. 
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I. INTRODUCTION 

Against the backdrop of global climate change mitigation efforts, the low-carbon economy has 

emerged as a core strategy for sustainable development worldwide. The transportation sector, accounting for 

24% of global energy-related carbon emissions, represents one of the primary sources of emissions. Within this 

sector, freight logistics—particularly cold chain logistics—exhibits 30% to 50% higher carbon emission 

intensity per unit of cargo compared to conventional freight due to the high energy consumption of refrigeration 

equipment. Consequently, reducing carbon emissions in logistics has become a critical challenge in achieving 

the "dual carbon" goals. 

In recent years, the rapid development of new energy vehicles has provided a viable pathway toward 

low-carbon transportation. However, due to constraints such as battery technology, charging infrastructure, and 

acquisition costs, mixed fleets comprising both conventional fuel-powered vehicles and NEVs will remain the 

predominant choice for logistics enterprises in the short to medium term. This is particularly evident in cold 

chain logistics, where the range of NEVs is significantly impacted by temperature control systems, further 

complicating operational scheduling. The optimization of mixed-fleet routing to minimize both carbon 

emissions and operational costs while maintaining transport efficiency has thus become a key research focus for 

both academia and industry. 

 

II. ROUTING OPTIMIZATION MODEL OF MIXED FLEETS 

2.1 Problem description 

The mixed-fleet cold-chain distribution model constructed in this study operates as follows: Within specified 

time constraints, the distribution center dispatches a mixed fleet of refrigerated vehicles (including both 

conventional fuel-powered and new energy vehicles) to deliver goods to multiple customers with known 

demand before returning to the depot. Customers impose strict requirements on delivery time windows. Each 

http://www.questjournals.org/
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vehicle may serve multiple customer nodes, but its load cannot exceed rated capacity. When an electric vehicle's 

remaining battery falls below a threshold, it must visit a nearby charging station to recharge fully before 

continuing its route, with charging stations allowing multiple visits. Given the perishable nature of fresh 

products, the customer satisfaction evaluation system prioritizes delivery timeliness and product quality. Under 

cargo capacity and time window constraints, the model optimizes vehicle scheduling to achieve dual objectives: 

maximizing customer satisfaction while minimizing total system costs. 

 

 

Figure 1: distribution diagram of mixed fleets 

 

2.2 Model assumptions 

This study focuses on the distribution problem of a single distribution center, multiple demand points, and a 

mixed fleet. The goal is to optimize vehicle routes, transport cold chain products from distribution centers to 

demand points, minimize total costs, and improve customer satisfaction. To simplify the study, we adopt the 

following assumptions: 

(1) The research scope is limited to the cold chain distribution process of specific fresh food categories in 

a single distribution center. 

(2) The vehicle departs from the distribution center, completes all customer point delivery tasks, and 

returns to the distribution center. 

(3) The spatial distribution, demand, expected service time window, and tolerable time range of the 

distribution center and customer nodes are all included in the model as known conditions. 

(4) The vehicle load is a known fixed value, and the total demand of each vehicle on a single path is less 

than the rated load capacity of the vehicle. 

(5) Customer needs must be fully met and cannot be separated, but the same delivery vehicle can 

provide services for multiple customer nodes. 

(6) Customer satisfaction depends on the comprehensive performance of delivery timeliness and 

product freshness. 

(7) The external environment temperature remains constant and does not change over time, and 

agricultural products are always in a constant temperature state during refrigerated truck transportation. 

These assumptions provide the basis for constructing models that balance simplicity and accuracy in routing 

optimization. 

 

2.3 Notation description 

Based on the aforementioned assumptions, the parameters and descriptions are shown in Tables 1. 
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Table 1: Parameters and meanings 

 

 
 

2.4 model design 

The objective function constructed by this model consists of a minimum cost function and a maximum customer 

satisfaction function.The total delivery cost includes fixed vehicle operating costs, transportation energy 

consumption costs, product quality loss costs, refrigeration energy consumption costs, time window deviation 

penalty costs, carbon emission costs, and charging costs, which can be calculated as follows: 

C1 (fixed operating cost of vehicles): including fixed expenses such as driver compensation, vehicle 

depreciation and insurance, which are directly related to the number of vehicles used. Let p1
cbe the unit fixed 

cost of new energy refrigerated vehicles (yuan/vehicle) and p e be the unit fixed cost of traditional fuel 

refrigerated vehicles (yuan/vehicle), then the fixed operating cost of vehicles can be expressed as: 

 

C2 (transportation energy consumption cost): refers to the fuel consumption cost, and its cost is positively 

correlated with the vehicle mileage. Let p3 be the unit price of fuel oil (yuan/L). 
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C3 (product quality loss cost): assuming that the environmental conditions are relatively constant and the 

product loss is only related to time, it can be divided into two stages for calculation: transportation and loading 

and unloading. Let p4 be the cost of quality loss per unit time (yuan/h). a1 and a2 respectively represent the 

quality attenuation coefficient in the transportation stage and the loading and unloading stage. (a1=0.002, 

a2=0.003) 

 

C4 (refrigeration energy consumption cost): energy consumption cost generated by the operation of 

refrigeration equipment. Assuming that the specifications of refrigeration equipment are uniform and the 

temperature difference inside and outside the compartment is constant, the energy consumption is only related to 

time and can be divided into two stages for calculation: transportation and loading and unloading. Let p5 be the 

refrigeration cost per unit time (yuan/h). 

 

 
 

C5 (time window deviation penalty cost): the penalty cost incurred when the delivery time exceeds the service 

time range required by the customer. Let p6 be the penalty cost per unit time (yuan/min). 

 

C6 (carbon emission cost): carbon tax mechanism is adopted. Carbon emission cost=carbon emission × carbon 

tax unit price. The sources of carbon emissions include two parts: one is the carbon emissions generated by the 

fuel consumption of the power system of transport vehicles; The second is the carbon emission generated by the 

power consumption of refrigeration equipment. θ is the CO2 emission coefficient of the refrigeration process, 

and p7 is the carbon emission cost coefficient. 

 

 
C7 (charging cost): 

 

Linear piecewise function is used to characterize customer satisfaction based on delivery time. When the 

vehicle arrives within [Bi,Ei] time, the customer is most satisfied; Within the time of [MBi,Bi] or [Ei,MEi], 

customer satisfaction decreases linearly with the degree of deviation; If the maximum tolerance time window 

[MBi,MEi] is exceeded, customer satisfaction will be reduced to 0. 

 

 
 

Assuming that customer satisfaction and product quality maintain a positive correlation, that is, the higher the 

quality of products received by customers, the higher the level of customer satisfaction. dc is the initial quality 

level of the product, dt is the quality degradation caused by time factors during transportation, where tia－Ts 

is the product in transit time. do represents the quality loss caused by a single unloading, and NOi represents 

the cumulative loading and unloading times of the distribution vehicle when serving the customer point i. 
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The minimum cost function and the maximum customer satisfaction function are shown as follows: 

 

 

s.t. 
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Constraint Explanation: 

 

Equation 12 indicates arranging only one vehicle service for each demand point, Equation 13 limits vehicles to 

depart from the distribution center at most once, Equation 14 ensures that the vehicle's loading capacity cannot 

exceed its rated load capacity, Equation 15 ensures balanced access to each node to ensure path continuity, 

Equation 16 ensures that the starting and ending points of each vehicle are at the distribution center to ensure 

path closure, Equation 17 indicates the calculation method for the time it takes for vehicles to arrive at and leave 

the customer point, Equation 18 indicates the calculation method for the time it takes for fuel vehicles to leave 

the customer point and travel to the next customer point, Equation 19 indicates the calculation method for the 

time it takes for electric vehicles to leave the customer point and travel to the next customer point, and Equation 

20 indicates the calculation method for the time it takes for electric vehicles to travel from the previous customer 

point to the charging station. For electric vehicles, the model further considers power management, including 

Equation 21 to ensure that the initial power of the electric vehicle is full when it departs, Equation 22 to 

calculate the power consumption of the electric vehicle, Equation 23 to calculate the remaining power of the 

electric vehicle from the previous customer point to the next customer point, Equation 24 to calculate the 

remaining power of the electric vehicle when it arrives at the charging station from the customer point, Equation 

25 to ensure that the electric vehicle's power can travel from the current node to the next node and charging 

station, Equations 26-28 to calculate the charging amount of the electric vehicle, the charging time, the 

relationship between charging rate and charging amount, and to ensure that the charging amount of the electric 

vehicle does not exceed the battery capacity, and Equation 29 to calculate the time for the electric vehicle to 

arrive at and leave the charging station. Finally, the model restricts the values of variables, and Equation 30 

ensures that the decision variables are binary, ensuring the feasibility of the decision variables. The model 

comprehensively considers path planning, time windows, power constraints, and charging strategies, and is 

suitable for cold chain distribution problems with charging stations. 

 

III. ALGORITHM DESIGN 

3.1 Algorithm description 

This study used NSGA-II to solve the model. Unlike single objective optimization, in multi-objective 

optimization, the optimization objectives are often contradictory and it is often difficult to achieve simultaneous 

optimization of multiple objectives. In real-world delivery tasks, logistics companies can select solutions from 

the Pareto optimal solution set that are suitable for the current scenario, align with the company's business 

capabilities, and fit the company's preferences as the solution. This article uses K-means clustering method to 

optimize the initial population based on NSGA-II, and combines time window constraints and cost optimization 

to design a dynamic sorting algorithm improvement. The algorithm process is as follows. 

 

3.2 Algorithm steps 

The flow chart is shown in Figure 2, and the algorithm’s steps are given below. Step 1: Population initialization 

Configure algorithm parameters, including population size N, current iteration count gen (initialized to 1), and 

maximum iteration count gen_max. Using K-means clustering of customer nodes based on vehicle load 

limitations to group delivery plans and ensure the quality of initial chromosomes. Randomly generate delivery 

sequences within each cluster and construct an initial population P. 

 

Step 2: Genetic Operation 

Perform non dominated sorting and crowding calculation on chromosomes to obtain individual fitness. Use the 

binary tournament selection mechanism to screen high-quality individuals. Perform partial matching crossover 
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(PMX) and sequential crossover (OX) operators on the selected parent individuals to generate a new offspring 

population. Perform mutation operations on individuals in the offspring population, introducing a certain degree 

of randomness to maintain population diversity. 

 

Step 3: Subpopulation Construction and Disturbance Mechanism 

Randomly select R chromosomes from the new population P to form subpopulation P1, while the remaining 

chromosomes form subpopulation P2. Introduce a random perturbation strategy to P1, optimize the path, and 

prevent the algorithm from getting stuck in local optima. 

Step 4: greedy strategy for path rearrangement based on time window and cost optimization 

For the chromosomes in population P1, time window constraint optimization and cost optimization strategies 

are adopted for path rearrangement to improve the quality of solutions and increase the diversity of the 

population. Calculate the dual objective fitness values Z1 (Li) (total cost) and Z2 (Li) (customer satisfaction) for 

each path Li. Adopting a dynamic insertion strategy, optimizing the path sequence to ensure that the vehicle's 

arrival time at the customer meets the time window as much as possible, while reducing refrigeration and cargo 

damage costs. 

Step 5: Non dominated Sorting and Population Update 

Use fast non dominated sorting to divide the hierarchy of frontier solutions and calculate crowding to ensure 

population diversity and distribution uniformity. Combining populations P1 and P2, compare crowding levels 

and prioritize selecting the first N chromosomes to form the next generation population P. 

Step 6: Iteration and Termination 

Repeat steps 2 to 5 until the maximum number of iterations is reached. If the frontier solution set is stationary 

for several consecutive generations, terminate the iteration in advance to improve computational efficiency. 

 

 
Figure 2: process of improved NSGA-II 
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IV. NUMERICAL EXPERIMENTS 

4.1 Example description 

Given the current lack of benchmark test datasets specifically for vehicle path planning problems with charging 

facilities, this study used RC208 from the VRPTW standard test library developed by international authoritative 

scholar Solomon as experimental data. Some datasets are shown in Table 2. The geographic coordinates of the 

distribution center in this case are (40,50), with an operating time of 960 minutes (16 hours), serving 100 

demand nodes. On this basis, this study scientifically added location information for 20 charging facilities. The 

locations of the distribution center and demand points are shown in Figure 3. 

 

Table 2: RC208 Partial Data Table 

 

CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME 

0 40 50 0 0 960 0 

1 25 85 20 388 911 10 

2 22 75 30 30 546 10 

3 22 85 10 353 708 10 

4 20 80 40 425 913 10 

5 20 85 20 40 630 10 

6 18 75 20 228 667 10 

7 15 75 20 161 558 10 

8 15 80 10 229 624 10 

 

Figure 3: Location map of all nodes 

 

4.2 Parameter setup 

To validate the algorithm’s performance for the routing optimization model, NSGA-II and improved NSGA-II 

were used to solve these models. 

Choosing appropriate parameters for the algorithm is crucial. In this work, the population size is set to 150, the 

Pc and Pm are set to 0.9 and 0.1, respectively, the genetic generation gap is set to 0.1, and the number of 

iterations is set to 100. The other parameters used in the experiment are shown in Table 3. 
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Table 3: Parameter settings 

 

Parameter Value Parameter Value 

Q1 250 kg  

 

300 (yuan/ vehicle) 

 

Q2 200kg P2 1 (yuan/kwh) 

E 80kwh p3 8 (yuan/L) 

fijk 0.15(L/km) p4 1 (yuan/h) 

cijk 0.5(kg/km) p5 0.35 (yuan/h) 

e 0.3(kwh/km) p6 1 (yuan/min) 

r 80(kwh/h) p7 0.05 (yuan/kg) 

 

 

250 (yuan /vehicle)   

 

4.3 Result analysis 

4.3.1 Comparisons of different algorithms 

We obtained optimal vehicle routing results via MATLAB 2023a. Following the algorithm design in Section 3, 

input information of each node, demand , and other data into MATLAB. To verify the effectiveness of the 

improved NSGA-II in this study, it was compared with traditional NSGA-II. Explored its convergence, the 

Pareto solution set after 100 iterations and the average total delivery cost and delivery route of each generation 

population are shown in Figure 4, Figure 5, and Table 4. 

 

  

（a） Iterative diagram （b）Frontier solution distribution map 

Figure 4: RC208 Algorithm effectiveness analysis 
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（a）NSGA-II algorithm vehicle routing （b）Improved NSGA-II algorithm vehicle routing 

Figure 5: RC208 Comparison of vehicle routes 

 

Table 4: The results of the two algorithms are analyzed 

 

algorithm C1 C2 C3 C4 C5 C6 C7 Total 

cost 

Customer 

satisfaction 

Number of 

Pareto solutions 

NSGA-II 2150 2890.27 289.57 431.90 7.00 140.25 876.52 6664.75 91.22 6 

Improved 

NSGA-II 

 

2200 

 

628.52 

 

220.71 

 

333.09 

 

0 

 

31.21 

 

153.01 

 

3566.53 

 

93.09 

 

12 

Through multiple tests, the horizontal axis in Figure 4 (a) represents the number of iterations, while the vertical 

axis represents the average delivery cost of the Pareto solution set corresponding to each iteration. From the 

iteration curve, although traditional NSGA-II has a fast decline rate in the early stage, due to the poor quality of 

the initial solution generated, it begins to converge at the 40th iteration, which can easily lead to local optima 

and lose the possibility of finding other solutions. The improved NSGA-II algorithm uses clustering methods to 

generate initial solutions with higher quality, shorter convergence time, and can locate the optimal solution more 

quickly. 

The total delivery cost has been reduced by 47%, with significant savings, indicating that the improved 

algorithm performs better in cost optimization. Customer satisfaction has increased by 1.29%, although the 

increase is not significant, it can still maintain or even slightly improve satisfaction while significantly reducing 

costs, indicating that the improved algorithm still maintains good performance in meeting customer needs. The 

doubling of the number of Pareto solutions means that the improved algorithm provides more non dominated 

solutions, which can provide decision-makers with richer options and demonstrate stronger multi-objective 

optimization capabilities. From the above results, it can be seen that the improved NSGA-II algorithm has 

shown significant optimization effects in multiple cost dimensions, reducing transportation costs by 78.24%, 

carbon emission costs by 77.73%, charging costs by 82.48%, and cargo damage costs by 22.42%, achieving 

significant reductions and effectively improving customer satisfaction. This indicates that the improved 

algorithm not only enhances the performance of multi-objective optimization, but also effectively reduces 

various costs, especially in terms of environmental protection and energy utilization, demonstrating stronger 

sustainability. 

 

4.3.2 Comparisons of different scenarios 

In modern logistics transportation, how to reduce operating costs and environmental impact while 

ensuring delivery efficiency is an important challenge faced by enterprises. Although gasoline vehicles have 

advantages in range and charging speed, they have higher operating costs and higher carbon emissions. In 

contrast, electric vehicles have become an important choice for green logistics due to their lower energy 

consumption and lower carbon emissions. Therefore, adopting a mixed fleet strategy, which involves the 

coordinated operation of fuel vehicles and electric vehicles, can fully leverage the advantages of both to 

optimize overall route planning. Below, we will compare the performance of pure fuel fleet and mixed fleet in 

terms of distribution routes and various costs, and analyze the rationality and necessity of adopting mixed fleet. 

The costs of these two strategies are shown in Table 5, the results of the vehicle path are shown in Table 6. 
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The total cost of the pure fuel fleet is 4677.50 yuan, an increase of about 30.8% compared to the mixed fleet's 

3577.68 yuan. Among them, transportation costs are the main source of costs. Due to high oil prices, the 

transportation costs of pure fuel fleets are much higher than those of mixed fleets, indicating that partial 

substitution of electric vehicles for fuel vehicles can effectively reduce transportation costs. The carbon 

emission cost of the mixed fleet decreased by 70.8%, indicating that the use of electric vehicles can significantly 

reduce carbon emission costs. Under carbon taxes or environmental policies, high carbon emissions may bring 

additional economic burdens. The fixed cost of a mixed fleet is 220 yuan, slightly higher than that of a pure fuel 

fleet by 200 yuan. This is due to the high fixed operating cost of electric vehicles, which is why companies are 

unable to fully transition from pure fuel vehicles to pure electric vehicles in the current context. However, due to 

the total cost savings of 1099.82 yuan, this additional fixed cost can be fully offset by the savings in operating 

costs. Charging costs increase but do not affect the overall performance. The charging cost of the mixed fleet is 

153.01 yuan, but compared to the overall savings of 1099.82 yuan for the pure fuel fleet, this part of the cost can 

be ignored. The mixed fleet has a shorter driving distance. The total driving distance of the mixed fleet is 

1062.14km, while the pure fuel fleet is 1415.19km, a reduction of 353.05km or 25%. In the absence of trams, 

vehicles require longer distances to cover all customers, which increases time and cost. Under the mixed fleet 

strategy, the use of trams optimized routes, resulting in a significant reduction in total travel distance. The mixed 

fleet only needs to be charged twice, which means that the range of the tram can basically meet the delivery 

needs without significantly increasing operational complexity. 

 

Table 5: The cost of the two strategies are analyzed 

 

Fleet strategy C1 C2 C3 C4 C5 C6 C7 

Fuel fleet 2000 1938.22 286.87 345.43 0 106.97 0 

Mixed fleet 2200 628.52 220.71 333.09 0 31.21 153.01 

Table 6: The results of the two strategies are analyzed 

 

Fleet 

strategy 

vehicle 

number 

Customer Path Number of 

customers 

Distance Charging 

cycles 

Total 

cost 

Satisfaction 

 Fuel 1 50-34-31-29-27-26-28- 

30-32-33-9-10 

12 157.39 /   

 Fuel 2 55-60-78-73-17-47-16- 

15-13-14-12-11-53-65 

14 126.41 /   

 Fuel 3 79-7-6-8-46-5-3-1-45- 

4-2-70-95 

13 137.9 /   

 Fuel 4 24-22-25-23-21-48-19- 

49-20-89-76 

11 102.06 /   

Mixed fleet  41-38-39-37-35-36-40- 

43-44-42 

   3566.53 93.09 

Electric 1 10 65.2 0   

  

Electric 2 

90-99-82-98-88-69-68- 

61-72-71-93-54-124- 

81-80 

 

14 

 

147.32 

 

1 

  

 Electric 3 66-83-64-56-91-92-84- 

51-85-63-62-67-94-96 

14 120.12 0   

 Electric 4 57-74-18-77-58-75-59- 

112-97-87-86-52-100 

12 205.72 1   

 Fuel 1 26-70-2-4-45-3-5-46- 

8-6-7 

11 174.61 /   

 Fuel 2 90-35-79-53-82-99-59- 

75-86-57-19-65 

12 278.40 /   



Optimization of vehicle routing problems for cold chain logistics mixed fleet under low-.. 

DOI: 10.35629/3795-11041527                                   www.questjournals.org                                          26 | Page 

 Fuel 3 54-72-68-88-10-24-48- 

76-22-98-69 

11 222.33 /   

 Fuel 4 55-100-60-73-17-15- 

13-11-80-94-71-36-81 

13 205.55 /   

Fuel fleet  61-96-93-31-29-27-28- 

30-20-18-21-74-58-16- 

47-14 

   4677.50 93.06 

 Fuel 5 16 226.43 /  

 Fuel 6 34-32-33-89-49-23-25- 

77-97-87-12-78 

12 200.89 /  

 Fuel 7 9-52-51-50-41-38-39- 

37-40-43-44-42-1 

13 206.06 /  

 Fuel 8 66-83-64-56-84-85-63- 

62-67-95-91-92 

12 100.92 /  

 

V. CONCLUSION 

The experimental results show that the improved NSGA-II algorithm exhibits superior optimization 

ability in multiple cases, reducing the total delivery cost by 47%, significantly increasing the number of Pareto 

solutions, and maintaining stable customer satisfaction while ensuring cost optimization. Further cost 

breakdown analysis shows that the improved algorithm has achieved significant optimization in transportation 

costs, carbon emissions, cargo damage, charging costs, etc., especially in reducing transportation costs and 

carbon emissions by 78.24% and 77.73% respectively, demonstrating excellent economic value and 

environmental friendliness. In addition, through the analysis of the mixed fleet strategy, it was found that the 

collaborative use of electric vehicles and fuel vehicles can effectively reduce operating costs, optimize 

distribution efficiency, and conform to the development trend of green logistics. 

Based on the clustering results, initialize the vehicle path, prioritize expanding outward from the center 

point, reduce invalid travel, make the initial solution closer to the optimal solution, and improve the 

convergence speed of the algorithm. The experimental results show that this strategy effectively reduces the 

instability of the initial solution while ensuring reasonable allocation of vehicles, enabling the improved NSGA- 

II algorithm to search for high-quality solutions in the early stages and improving optimization efficiency. It 

provides powerful decision support for logistics enterprises in selecting the optimal distribution scheme and the 

optimal charging station access strategy, and has certain theoretical significance and practical application value. 

By optimizing distribution routes and vehicle configuration, enterprises can not only reduce operating costs and 

improve customer satisfaction, but also improve their market competitiveness in the context of a low-carbon 

economy. 
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