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ABSTRACT. In this article, we study some properties of the solutions of the
bup g, —
following difference equation: un+1 = aun + nin=7 , o n=0,1,---,
Cly_g + dig_7
assuming positive initial conditions u_7,u_g,--- ,uo > 0 and a, b, ¢, d are pos-

itive constants. Furthermore, we give some specific forms of the solutions for
several special cases of the equation.
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I. Introduction

Difference equations are mathematical relations that describe the evolution of a
variable over discrete time steps. They are the discrete-time analogs of differential
equations and are widely used in modeling systems where changes occur at specific
intervals. Several applications of difference equations that can be found either in
economics and finance (Compound interest and loan repayment models that use re-
currence relations for amortization schedules), in population dynamics (exponential
and logistic growths), in engineering and control systems (discrete-time filters and
modeling RLC circuits in discrete time) and in computer science (recurrence re-
lations for divide-and-conquer algorithms, transition probabilities between states).
Difference equations provide a powerful framework for modeling discrete-time sys-
tems across disciplines. From finance to bhiology, they offer insights into dynamic
behavior, stability, and long-term trends.

Our aim in this paper is to investigate the behavior of the solution of the following
nonlinear difference equation

bupty, 7
(1.1) Upy1 = AUy + nr , n=0,1,---,
Clly_g + dtly_7
where the initial conditions u_7,u_g.--- ,ug > 0 are arbitrary positive real num-

bers and a, b, ¢ and d are positive constants.
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Recently there has been a great interest in studying the qualitative properties of
rational difference equations. Some prototypes for the development of the basic
theory of the global behavior of nonlinear difference equations of order greater than
one come from the results for rational difference equations.

However, there have not been any effective general methods to deal with the global
behavior of rational difference equations of order greater than one so far. From the
known work, one can see that it is extremely difficult to understand thoroughly the
global behaviors of solutions of rational difference equations although they have

simple forms (or expressions). One can refer to for examples to
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illustrate this. Therefore, the study of rational difference equations of order greater
than one is worth further consideration.

Many researchers have investigated the bhehavior of the solution of difference
equations, for example, Elsayed et al. [22] has obtained results concerning the dy-
namics and global attractivity of the rational difference equation

Wl Up—2

Uppl = —————————.
" b, 2 + iy, 3

Aloqeili has obtained the solutions of the difference equation

Up_1

Upy] = ——————.
a4 — Uplp_1

Simsek et al. obtained the solution of the difference equation

Un—3

Upp] = —————
n 1+ up_y

Cinar | got the solutions of the following difference equations

Un—1 Un—1 Atn_—1

Upyl = —————, Upt1 — Un41 =
nt 1+ auyu,_ " e 1+ bty

—1 + aupyti, 1’

In , Ibrahim got the form of the solution of the rational difference equation
UpUn—2
Un—1 ((I- + bun“‘n—?)

Upp1 =

Karatas et al. [40] got the solution of the difference equation

Up_5

Upyl = ————————————
- 1+ vp_otn_5

Here, we recall some notations and results which will be useful in our investiga-
tion. Let I be some interval of real numbers and let

foIrt o,
be a continuously differentiable function. Then for every set of initial conditions
U_ o, Uy 1, U_fs2, ..., up € I, the difference equation
(1.2) Upy1 = [ty Uy 1y ety g), m=0,1,..,

has a unique solution {u, }>% _,.

Definition 1.1. A point u € [ is called an equilibrium point of Eq.
T = f(a,d,...,a). That is, u, = @ for n > 0, is a solution of Eq.
equivalently, « is a fixed point of f.

Definition 1.2. e The equilibrium point « of Eq. (1.2) is locally stable if for
every = > 0, there exists > 0 such that for all w_g, u_gr1,u_g12,...,u0 €
I, with
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|ll,k — ﬂl + |u,k+1 — ﬁ| + |u,k+2 — ﬁ‘ +...+ |‘LLD - le < 4,

we have |u, —u| < ¢, for all n > —k.

e The equilibrium point @ of Eq. (1.2)) is locally asymptotically stable if @ is
locally stable solution of Eq. (1.2) and there exists v > 0, such that for all
U_foy U fi1,U_fr2,-..,ug € I, with

|l[,k — le + ‘U,jprl — ﬁ‘ + |ll,k+g - ?:L‘ + .ot |Ug — ’ELl < 4,

we have lim wu, = u.
n—oo

e The equilibrium point @ of Eq. (1.2)) is global attractor if for all u_g, t_g11, ..., ug €

I we have

lim u,, = .
n—00

e The equilibrium point # of Eq. is globally asymptotically stable if @
is locally stable, and % is also a global attractor of Eq. .
e The equilibrium point @ of Eq. is unstable if @ is not locally stable.
The linearized equation of Eq. about the equilibrium @ is the linear differ-

ence equation
k

of (u,a, ..., u)
Ynsl = Z ({7_%_2-

i=0

Theorem 1.3. Assume that p,q € R and k € {0,1,2,...}. Then |p|+ ¢l <1 isa
sufficient condition for the asymptotic stability of the difference equation

Upal + Plp + qup—p =0,n=0,1,...

Remark 1.4. The theorem can he easily extended to a general linear equations of
the form

(1.3) Upik + P1Unak—1+ o FPrUn =0, n=0,1,..
where }?1‘ P2, -, i € Rand i > 0. Then Eq. is asymptotically stable provided
that Z |ps| < 1.
i=0
Consider the following equation
(1.4) Upa1 = §(tn, Un_6, Un_7).
The following theorem will be useful for the proof of our results in this paper.
Theorem 1.5. Let [a,b] be an interval of real numbers and assume that
g :[a, b = [a,b],

is a continuous function satisfying the following properties:

(a) gla,y,z) is nondecreasing in x and z in [a,b] for each y € [a,b], and is
nonincreasing in y € |a,b] for each x and z in [a,b]
(b) of (m, M) € [a,b] x [a,b] is a solution of the system

M = g(M,m, M), m = g(m, M,m),
then m = M.

Then has a unique equilibrium point i € [a,b] and every solution of
converges to u.
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2. LocAL STABILITY oF Eq. (1.1

In this section we investigate the local stability character of the solutions of Eq.
(L.1). Equation (1.1) has a unique equilibrium point and is given by

bii?
cit 4+ di’

U= au +

or
(1 —a)(c+d) = bu?,

then if (1 —a)(e+d) # b, then the unique equilibrium point is @ = 0.
Define the following function

f1(0,00)% = (0,00)

buw
Ju,v,w) = au+ cv +dw’
Tt follows that
bw beuw beuv
fu(u, l»,'w) = a+7m-‘ —dw’ fv(u. U,'U_!) = 77((‘1.‘ n dur)g' fwl(u, v, u‘) = 7(@ I dw)Q'
Then
o b o be o be
ftn(tl:'u:'u):a'+c+t{= fv(ururu):_(c_+d)2‘ fﬂ‘(uzuru): (C_+d)2'
Then
L - be o be
fult,u,u) = a+ i Jolit, i, 1) = TCra Jw(w, u,u) = (T
The linearized equation of Eq. (1.1) about @ is
2.1) T SR L
(2 T e d) " T e a2 T era2 T T

Theorem 2.1. Assume that

b(d +3¢) < (1 —a)(c+d)>
Then the equilibrium point of Eq. is locally asymptotically stable.
Proof. Tt follows from Theorem that Eq. is asymptotically stable if

a+ b + be + be <1
- c+d (c+d)? (c+d)? ’
or
TR .S
“Tetd (c+d)2 =7
and so,
b(d + 3¢)
— 1 —a).
(crap “U79
The proof is complete. t
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3. GLOBAL ATTRACTOR OF THE EQUILIBRIUM POINT OF Eq. ||

In this section we investigate the global attractivity character of solutions of Eq.

).

Theorem 3.1. The equilibrium point u of Fy. is global atlractor if d(1—a) # b

Proof. Let p,q be real numbers and assume that g : [p,q]* — [p,q] is a function
) buw . .
defined by g(u,v,w) = au + o+ dw then we can easily see that the function

cv + dw
glu, v, w) is increasing in wu,w and decreasing in v. Suppose that (m, M) is a

solution of the system
M = g(M,m, M), m = g(m, M,m).
Then from Eq. (L.1), we see that

e bm?
M=aM + — =—am+ ——,
Mt cm + dM = anm ceM —+dm’
or 5 5
b bm
M(l—a)= ———, (l—a) = ——,
( @) cm + dM m( @) cM +dm’
then

c(1 —a)ymM +d(1 —a)M? = bM?, c(1 —a)ymM +d(1 — a)m? = bm?,
subtracting, we obtain
d(1 — a)(M?* —m?) = b(M?* —m?).
Since d(1 —a) # b then
M =m.

It follows from Theorem that @ is a global attractor of Eq. 1| and then the
proof is complete. (I

4. BOUNDEDNESS OF SOLUTIONS OF Eq. (1.1]

In this section we study the boundedness of solutions of Eq. (1.1)).

Theorem 4.1. Fvery solution of Fq. is bounded if a +2 < 1.

Proof. Let {u,}p> _4 be a solution of Eq. (1.1). It follows from Eq. (1.1) that

bty Uy 7 by iy _7 b
Upail = AUy + — < aun + —/ T —|a+- Up.
+
Clly_g + dtty, 7 dity, 7 d

Then w41 < uy, ¥V > 0. Then the sequences {u, }o2 - is decreasing and so is
bounded from above by M = max{u_7,u_g,--- ,ug}- ]

For confirming the results of this section, we consider numerical example for
u_y = lLiu_g = b6u_5 = 3,u_y = du_3 = l,bu_g = 59%u_; = 4du =5
(See Figure [1)). Difference equations are solved iteratively, making them ideal for
computational modeling (e.g., Euler’s method for discretizing ODEs).
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Ficure 1. Left: a = 0.1,b = 0.8,¢ = 1,d = 1 which satisfy the
boundedness conditions (the solution is bounded). Right: a =
1,b = 0.8,¢c = 1,d = 0.5 which don’t satisfy the boundedness
conditions (the solution is unbounded).

5. PERIODICITY OF SOLUTIONs OF EqQ. (1.1

Given the complexity of the recurrence relation and the lack of a straightforward
periodic pattern for arbitrary initial conditions and parameters, we conclude that
the sequence does not exhibit a universal periodic behavior. However, specific
choices of parameters and initial conditions may lead to periodic solutions.

This is a recurrence of order 8 (since wu, ., depends on u,_-). To find periodic
solutions, we look for fixed points or cycles.

Theorem 5.1. The solutions of Eq. converges to a constant

b
+ =1
c+d
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0 10 20 30 40

FICURE 2. a = 0.45455,b = 6,c = 1,d = 10 which satisfy the con-

dition a + = 1 and the solution converges to a constant. Up:

c+
Uu_7=1lu_g=>56u_s=3u_g=>5u_3=1u_o=>59%u_| =
4,ug = 5. Down: u_; = u_g = --- = ug = 4 where the solution

remains constant.

Under general parameters, the sequence u,, does not necessarily exhibit periodic-
ity. Thus, the sequence can be periodic under certain conditions, but the general
solution does not guarantee periodicity for arbitrary parameters.

Theorem 5.2. In the special case where a =0, b = ¢, and d = 0, the solution of

Lq. is periodic with period 9.

This is a special case of the "Lyness cycle” or "Todd’s recurrence,” which is
known to be periodic (Please see Figure . For this specific recurrence, the period
is 9 (for the sequence {u,}). For other parameter choices, the period (if it exists)
depends on the specific values of a. b, ¢, d.
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0 20 40 60 30

N

n

Ficure 3. a = 0.45455,b = 6,¢c = 1,d = 10 which satisfy the con-

- b :
dition a + —— = 1 and the solution converges to a constant. Up:
c
U_y = l,u_g =5.6,u_s =3 u_g =5u_3=1Lu_o=59%u_1=
7 lbu_g =5,u_y = l,u_4 = H,u_g =

4,ug = 5. Down: u_, =
1,u,2 = 5.'&1,1 = 1.'210 =bh.
UnUn—7

6. ON THE DIFFERENCE EQUATION w41 = —————
—Up—6 + Up_7

In this subsection we study the following special case of [q. 1}

UpUp_7

(6.1) Upr] = ———, n=01,---,

—Up_g T Un_7 .
where the initial conditions v_7,u_g,--- ,up > 0 are arbitrary positive real num-
bers.

First, we need to understand what periodicity means in this context. A sequence is

periodic if there exists a positive integer 1" such that u,.7 = u, for all n where the
Uplp_F

—Up— k1 T Un—k
which is periodic of a period 2(k 4+ 1). The period is related to the least common

sequence is defined. In our case, the recurrence has the u, 1 =
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multiple (LCM) of the differences. Therefore, the solutions of Eq. 1] is periodic
of period 16 (Please see Figure 4).

10 T T T

wn

0 20 40 60 80 100 120 140
n

0 20 40 60 30 100 120 140

T

Luo=4u 1 =1u = Down: w7 = l,u g = 2,u_5 =
3su_g=4u_3=>5u_o=0u_; =7,upg=8.

Ficure 4. Up: w7 = lbu g = 6,u_5 = l,u 4 = 5u 3 =
7.

UpUp—7
7. ON THE DIFFERENCE EQUATION tpqq = —
Up_¢g — Up_7

In this subsection we study the following special case of Eq. (1.1):
(7.1) Upig = —nn T 0,
Up—6 — Un—7

where the initial conditions u_;,u_g,--- ,ug > 0 are arbitrary positive real num-
bers.

Given the complexity, we recall that for such recurrences, the general solution is
periodic with period 3(k + 1), where k is the delay. In this problem, k = 7, so the
period is 24. Thus, the sequence u, is periodic with period 24 (Please see Figure

).
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0 50 100 150
n

5.
Lbu_g = 4,u =1, up = Down: u_7 = l,u_¢g = 2,u_
Ju_g4=4u s3=5u_9=06u_1="T1u =8.

FIGURE Up: v_7 = lbu_g = 6u_s = l,bu_4 = 5u_3 =
_1 7.

o

8. CONCLUSION

This work discussed the global stability, the boundedness, and the solutions of
some special cases of Eq. . We proved that if b(d + 3¢) < (1 — a)(c + d)? then
the equilibrium point of Eq. (L.1) is locally asymptotically stable. We showed that
the unique equilibrium of Eq. (1.1)) is globally asymptotically stable if d(1 —a) # b.

b
We proved that the solution of Lq. I is bounded if a + 7 < 1. The findings of

this study were validated by some numerical examples.
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