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ABSTRACT: Multi-view clustering is an important task in machine learning domain. It aims to partition data 

into clusters across multiple views of representations. Traditional approaches always concatenate features 

together to perform single-view clustering algorithms, which may raise a fundamental problem: the 
relationships of different view representations are overlooked. In recent years, many alternative approaches 

have been proposed to make use of these heterogeneous multi-view information. However, they often suffer from 

the assumption that there are the same feature generation distributions for all views, which may be not true in 

practice. In this paper, we propose a novel non-parametric Bayesian generative model, Multi-View data via a 

Dirichlet Process Mixture Model, namely MVDPMM, to address this issue. By incorporating dirichlet process, 

the proposed model can automatically form a cluster structure across all views, without selecting the number of 

clusters.  Furthermore, we assume there is a latent parameter space shared by all views, and data in each view 

are derived through a projection matrix. We devise an effective inference algorithm using the collapsed Gibbs 

sampling to solve the proposed model. The model is evaluated on both synthetic and real-world datasets with 

different settings, and the experimental results demonstrate the effectiveness of our model in contrast with some 

competitive baselines. 
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I. INTRODUCTION 
The profusion of big data brings not only more volumes, but also more attributes and aspects of data. 

Since data are increasingly collected from diverse sources, many datasets are formed by heterogeneous 

representations for same instances. This kind of data is usually called multi-view data, where multi-view means 

a number of feature sets can be organized to form multiple views or representations from data. For example, the 

news can be displayed by different sources with different languages; the web pages always contain different 

kinds of con- tents such as texts, images and links. These multi-view data not only provides useful knowledge 

for applications but sheds light on understanding the intrinsic structure of data generation.  

Performing clustering on multi-view data is an extraordinarily important task in multi-view machine 
learning. Multi-view clustering aims to partition data into clusters across multiple view representations. 

Although features can be fused together to perform single-view clustering algorithms, this roadmap raises a 

fundamental problem: the relationships of different view representations are overlooked. A number of 

alternative approaches have been proposed to make use of these heterogeneous information, which can be 

classified into three categories: subspace methods to obtain a feature subspace representation and perform 

clustering on them; non-negative matrix factorization (NMF) based methods which seek common latent factors 

among views; graph based methods which generate a fusion graph to perform spectral clustering algorithms.  

These prominent solutions demonstrate the promise of heterogeneous information, but suffer from 

several limitations: (1) the difficulty of model selection is often bypassed when the number of clusters is fixed; 

(2) they are sensitive to outliers which could reduce the performance when deeming outliers as normal 

instances; and (3) they often assume the same feature generation distributions for all views, which may be not 
true in practice.  

To address the above questions, in this paper, we propose a novel non- parametric bayesian approach 

for multi-view clustering. Specifically, we model Multi-View data via a Dirichlet Process Mixture Model, 

namely MVDPMM. By incorporating dirichlet process, the proposed model can automatically form a cluster 

structure across all views, without selecting the number of clusters. The noise and outliers generated by different 

distributions can effectively lower the impact of normal instances. Furthermore, we assume there is a latent 
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parameter space shared by all views, and subspace in each view are derived through a projection matrix. We 

devise an effective inference algorithm to solve the proposed model. In contrast with some competitive 

baselines, our approach can achieve a better clustering performance on several multi-view benchmarks. We 
summarize the major contributions as follows:  

• We formalize the multi-view clustering problem in a non-parametric way, and propose a generative 

approach based on dirichlet process mixture model. Our approach is more interpretable than others 

since it models data in a probabilistic generative perspective.    

• With our model, features in each view are generated by diverse distributions from a parameter 

subspace which is projected from a common parameter space. The advantage is that complementary 

information across views con- tributes to a consistent clustering result.    

• We employ a Gibbs Sampling method to effectively solve the model inference. The performance of the 

proposed approach is then evaluated through extensive experiments on several real-world benchmark 

datasets.    

The rest of the paper is organized as follows. In section II we review related work briefly on multi-view 
clustering. We then formally present the model specification and propose the inference algorithm to discover 

clusters in Section III. In Section IV, we evaluate the proposed model using several real-world datasets, and 

report the performance results with discussions. We finally conclude the paper in Section V. 

 

II. RELATED WORKS 
 Multi-view data clustering has been ubiquitous in recent years since multiple view often provides 

coherent or complimentary information. Studying multi-view Data is with great challenges compared to single-

view data due to different generation mechanisms under different views. In this section, we review the related 

models on multi-view clustering methods.      
The most popular research on multi-view data is multi-view clustering or co-clustering. Multi-view 

clustering aims to divide objects into clusters based on multiple views of entities. One class of methods is to 

utilize traditional single- view clustering algorithms. For example, the straightforward methods incorporate 

attributes of multiple views into the classical clustering process directly [1]. In contrast, late integration method 

[4] derives results from each individual view and then fuses them base on consensus. [2] projects multi-view 

data into a common lower dimensional subspace and then applies k-means to get the partitions. Another cate- 

gory of multi-view clustering is relying on matrix factorization technique (MF). [3] proposed a non-negative 

matrix factorization (NMF) based approach that gives compatible clustering solutions across multiple views. To 

find out the key subset of features in each view that are associated with the clusters, [5] simultaneously 

decomposes multiple data matrices into sparse row and columns vectors.  

Spectral clustering [6], [7] is a popular clustering technique that has shown good performance on 

arbitrary shaped data. It is extensively studied as a significant framework by many literatures on multi-view 
datasets. [8] proposed a random walk based solution to derive a global graph cut over the single graphs in other 

views. In [9], the authors applied the idea of co-training and proposed a Co-Training multi-view Spectral 

Clustering (CTMSC), where the new graph similarity of one view is limited by solving the eigenvectors of the 

Laplacian of other views. [10] added a co-regularization term to enforce the eigenvectors of diverse views 

having high pairwise similarities, and proposed a method called Co-Regularized multi-view Spectral Clustering 

(CRMSC). [11] presented a novel method named by MVSC-CEV, to computing the common eigenvectors of 

the Laplacian matrices derived from the similarity matrices of the input views. To address the possible 

dependencies among views, [12] adopts the brainstorming process to compensate the biases caused by 

information sharing between multiple views with dependent opinions, and finally a compromise opinion is 

merged.  

 

 

III. THE PROPOSED MODEL                                                                                                             
3.1 A Brief Review of DPMM  

 Dirichlet Process Mixture Model (DPMM) is the most successful application to the Dirichlet Process. 

It can be considered as an infinite extension of Finite Mixture Model (FMM) which assumes data is generated 

from a mixture of components or distributions. Figure 1 shows the graphical description of DPMM in stick-

breaking representations.  
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Figure 1. Graphical Model Representation of DPMM. 

 

Suppose we have N observations . The generative process which is equivalent to the 
graph is as follows:  

 

In this model, is the mixture weight of components . It can be constructed 

from a stick-breaking process, named after Griffith, Engen, and McCloskey (GEM). zi denotes the cluster 

indicator for instance xi and can be sampled by a discrete distribution given π. The cluster parameter θk are 

sampled from a shared prior distribution G0(γ) parameterized by γ. Finally, each instance xi is generated from a 

distribution F(·) given the parameter θzi .  

If we integrating the mixture weight π out then the DPMM is transformed to the Chinese Restaurant 

Process (CRP), which explicitly illustrates the conditional distribution of cluster indicators as follows:  

 
where z−i denotes the cluster indicators except zi, and Nk,−i denotes the number of instances in cluster k excluding 

the i-th instance.  

The above model can be Inferred by either Gibbs Sampling or Variational Inference methods. We can 

clearly see that DPMM can effectively cluster data without requiring us to specify the number of clusters.  

 

3.2 Model Specification  
We now start to study the problem multi-view clustering. Given a multi-view dataset with N instances, 

suppose each instance has D views denoted by xi = . Multi-view clustering problem is to 

partition these instances into several clusters. We admit the general assumption as previous researches that 

instances have consistent cluster structure with all views. The difficulty in the probabilistic generative 

perspective lies in that data in different views could be generated by diverse distributions with totally different 

parameter space.  

To address this challenge, we assume that there is a common parameter space shared by all views, and 

each datum is implicitly sampled from a latent measure parameterized by θk in this shared space. In order to 

generate  in view j, there exists a projection matrix W(j) that transform θk to parameter . Note that  may 
be in a subspace of the original shared space, or be in a totally different parameter space. Then instances in view 

j are generated by view-specific distribution with projected parameters. The graphical representation of our 

MVDPMM is shown in Figure 2.  
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Figure 2. Graphical Model Representation of MVDPMM. 

 

The generative process of MVDPMM is as follows:  

 
where N(·) denotes the Gaussian distribution, I is the identity matrix, and Fj (·) denotes the specific distributions 

in view j.  

There are three advantages of our model. Firstly, we can clearly see that the generation of π, zi and θk in 

MVDPMM are consistent with DPMM. This ensures the infinite mixture nature of our model to be a successful 

generalization of Dirichlet Process, and endow MVDPMM the ability of automatically select the number of 

clusters. Another novelty of MVDPMM is that it can utilize the heterogeneous information in multiple views in 

a robust matter. To achieve this, the view-specific parameter is generated by a Gaussian distribution 

conditioned on W(j), θk, and β. The mean W(j)θk converts cluster parameters in common space to the parameter in 
view j. It is more practical to allow noise and outliers added in the process of projection. Thus we adopt β as 

precision parameter to control the robustness of our model. The third virtue is that each instance xi can be 

generated from diverse distributions Fj(·) with different projected parameters  for the same cluster zi.    

Discussions on W(j), The projection matrix W(j) in our model can either be a static parameter fixed 

beforehand, or a latent variable. For the simplest example, let the common space C be expanded by the 

concatenation of parameters in all views. Thus C is the direct sum of parameter subspaces satisfying 

, where dim() demotes the dimension of space and V(j) denotes parameter subspace. 
In this case, W(j)can be defined as (O, · · · , O, I, O, · · · , O) with dimension dim(V(j))×dim(C), where I is identity 

matrix corresponding to the j-th component. Then θ(j) can be directly extracted k from θk by W(j)θk without 

considering noise. If we treat W(j) as a latent variable, it needs to be estimated from data by maximum likelihood 

method or bayesian treatment. The details of estimating W(j) are in the next subsection.  

 

3.2 Model Inference  

The goal of model inference for MVDPMM is to learn the posterior distribution of latent variables, 

especially zi. The complete joint likelihood of data and latent variables can be written as:  
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Since directly solving the posterior distribution of latent variables from Eq.(4) is difficult, we adopt the 

Gibbs Sampling [15] method. Gibbs Sampling is one of Markov chain Monte Carlo (MCMC) sampling 

algorithms for statistical inference. We breakdown the inference procedure into four steps in each iteration as 
follows.  

 

Step 1: Sampling cluster indicator variables z.  
According to the conditional independence principle, the posterior of cluster indicator variable zi can be 

given by  

 
where ∼ denotes all variables except zi, and z-i denotes the set of cluster indicator variables excluding zi.  

Next a straightforward method is to sample mixture weight π from GEM distribution. To induce a more 

efficient inference procedure, an alternative way is integrating π out. By incorporating both (2) and (5), we can 

derive the following posterior of zi using Bayesian rule and Markov property:  

 
According to Eq.(6), we could sample the cluster indicator zi for xi through fixing other cluster 

indicators except zi. Then in this step, we could alternatively sample the cluster indicators for all instances.  

Step 2: Sampling cluster parameter  for each view. 

 
 Step 3: Sampling shared cluster parameter θk.  

 
Step 4: Estimating and Updating projection matrices W.  

Given and θk, we can update projection matrix W(j) via a bayesian view:  

 

Note that  and let the prior distribution  
for simplicity. Then W(j) can be estimated by maximizing the posterior distribution and we can the following 

results:  

 
 

IV. PERFORMANCE EVALUATION 
In this section, we conduct experiments on both synthetic and real-world multi-view datasets. First, we 

introduce the experimental settings as well as baseline methods. Then we evaluate the effectiveness and 
performance of the proposed FMSC approach against the baseline methods.  
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4.1. Experiment Settings.  

To evaluate the performance of the proposed approach, we adopt five multi-view datasets including 

both synthetic and real-world datasets.  
Synthetic data is generated from two views to four views with two clusters. Similar to the settings in 

[9] and [10], we randomly sample 1000 instances (n = 1000) for each view via 2-dimentional Gaussian mixture 

model. The means and covariance of all clusters in different views are defined in Table 1.  

We also adopt five popular real-world datasets: UCI digits, Reuters, BBC, BBCSport and Yale 

datasets. The datasets are introduced as follows:  

 UCI digits. This dataset is created from handwritten numerals from 0 to 9, and each instance forms an 

image with 15 × 16 pixels. It is available at the UCI repository.  

 Reuters. Reuters multilingual corpus is a set of news articles written in five languages: English, French, 

German, Italian and Spanish. We sample 10, 000 instances into our experiments from the original corpus 

that contains 18,758 articles. For each view, we use a word dictionary as features and compute the term 

frequencies as feature values.  

 BBC and BBCSport datasets. Both of the two datasets are multi-view news articles from the BBC. BBC 

contains five possible topics (business, entertainment, politics, sport and technology), and BBCSport 

focuses on five sports topics (athletics, cricket, football, rugby and tennis). We also adopt term frequencies 

as feature values.  

 Yale. Yale is an image dataset that consists of 165 face images of 15 classes in pixel. Each class has 11 

images.  

We summarize some characters of the above datasets in Table1. Note that the numbers in column 

‘#Feature’ are the sum of features in all views.  

 

Table 1. Description of real-world datasets.  

 
 

To validate the effectiveness of our MVDPMM approach, we run our approach on the above-

mentioned datasets and compare the results against three baseline clustering methods: Concatenation, Co-

training, and Co-reg. Concatenation is a straightforward approach that features of each view are concatenated to 

perform a standard spectral clustering. Co-training [9] alternatively performs spectral clustering on each view by 

incorporating other view’s eigenvector matrices as constraints. Co-reg refers to Co-Regularized multi-view 

spectral clustering approach proposed by [10]. Our work is based on Co-reg and extends it to the federated 

scenario.  

We measure the quality of clustering results on several metrics: Normalized Mutual Information 

(NMI), Adjusted mutual information (AMI), Adjusted Rand index (ARI), Completeness (COM) and 

Homogeneity (HOM). NMI and AMI are two different normalized versions of Mutual Information (MI), which 

quantifies how much the estimated clustering is informative about the true clustering [13]. The ARI metric is 
similar to the clustering accuracy and measures the degree of agreement between the estimated clustering and 

the true clustering. COM and HOM are two important conditional entropy based metrics [14]. COM measures 

the ratio of the member of a given class that is assigned to the same cluster, while HOM measures the ratio of 

instances of a single class pertaining to a single cluster.  

In order to evaluate the execution time of the proposed approach, we also introduce Running Time in 

seconds as a metric. For all the above metrics, a higher value means the corresponding method has a better 

performance. We repeat 10 times and report the mean values for each experiment. All approaches are run on an 

Intel i9-9900K 3.6 GHz with 64GB of RAM, using single-threaded processes.  

 

4.2. Results.  

In this subsection, we report the experiment results of our MVDPMM approach on datasets compared 
with baselines. The aim is to verify whether it can receive as considerable clustering performance as baseline 

approaches. We report the results as follows.  

Table 2 demonstrates the clustering results on synthetic datasets. We can easily see that the overall 

performance of four-views dataset is better than that of three-views, and the overall performance of three-views 
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dataset is better than that of two-views. The results suggest that more views can bring improvements on the 

clustering performance. For different approaches, the performance of MVDPMM and Co-reg is superior than 

Co-training and Concatenation. Our MVDPMM approach has almost as the same performance as Co-reg.  
 

Table 2. Clustering results on synthetic datasets. 

 
 

Table 3 shows the multi-view clustering results on five real-world datasets. For UCI digits and Reuters, 

our MVDPMM approach has the best performance than other baselines. For on BBCSports, BBC, and Yale 

dataset, the performance of our approach is as almost the same as Co-training and Co-reg methods on all metrics. 

So, we can safely say that our MVDPMM is a good clustering approach.  

 

Table 3. Clustering results on real-world datasets. 

 
 

V. CONCLUSION  
In this paper, we propose a non-parametric bayesian model, namely, MVDPMM, for multi-view 

clustering. By incorporating dirichlet process, the proposed model can automatically form a cluster structure 

across all views, without selecting the number of clusters. The noise and outliers generated by different 
distributions can effectively lower the impact of normal instances. Furthermore, we assume there is a latent 

parameter space shared by all views, and subspace in each view are derived through a projection matrix. We 

devise an effective inference algorithm to solve the proposed model. Experimental results show that our 

approach can achieve better clustering performance on several multi-view benchmarks. 
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