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I. INTRODUCTION  
Fractional calculus is the theory of derivative and integral of non-integer order, which can be traced back 

to Leibniz, Liouville, Grunwald, Letnikov and Riemann. Fractional calculus has been attracting the attention of 

scientists and engineers from long time ago, and has been widely used in physics, engineering, biology, economics 

and other fields [1-16].  

In this article, we mainly find the fractional derivatives of the following four types of two variables 

fractional equations: 

  
   

 

       
      

   
 

       
     ,                     (1) 

                                         ,                  (2) 
 

       
       

    ,                          (3) 

 

      
      

 

 
          .                          (4) 

Where      ,       are real numbers, and    .   ,     ,      are  -fractional exponential function, 

cosine function, sine function respectively. Using product rule, quotient rule and chain rule for fractional 

derivatives, the fractional derivatives of the implicit fractional functions can be easily obtained. 

                                                                                                                                                                                                                                      

II. DEFINITIONS AND PROPERTIES   
 Firstly, we introduce the fractional calculus used in this paper. 

Definition 2.1: Let   be a real number and   be a positive integer, then the modified Riemann-Liouville 

fractional derivatives of Jumarie type ([  ]) is defined by  
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where               

 
dt  is the gamma function defined on    . If      

  
 
            

       
    

      
         exists, then      is called  -th order  -fractional differentiable function, and 

     
  

 
       is the  -th order  -fractional derivative of     . We note that      

  
 

     
   in general, 

and we have the following properties [18].  

Proposition 2.2:  Let       be real numbers and        then 
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Definition 2.3 ([19]): Let      and     be real numbers,         , and      . If the function 

           can be expressed as a  -fractional power series, that is,         
  

       
      

   
    on 

some open interval            , then we say that        is  -fractional analytic at   , where   is the 

radius of convergence about   . If            is continuous on closed interval       and is  -fractional 

analytic at every point in open interval      , then we say that    is an  -fractional analytic function on      . 
Definition 2.4:  The Mittag-Leffler function is defined by 

       
  

       
 
   ,                                    (8) 

where     is a real number,    , and   is a complex variable. 

Definition 2.5: Assume that       and   is a real variable. Then        is called  -fractional 

exponential function, and the  -fractional cosine and sine function are defined as follows: 
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Next, we introduce a new multiplication of fractional analytic functions. 

Definition 2.6 ([20]): Let      ,        and        be two  -fractional analytic functions, 
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Then we define 
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Definition 2.7: Assume that          
  

                 is the   times product of the fractional 

function       . If                , then       is called the   reciprocal of       , and is denoted by 

        
   

. 

Theorem 2.8 (product rule for fractional derivatives)([17]):  Let      , and        be   -fractional 

analytic function. Then 
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Theorem 2.9 (quotient rule for fractional derivatives) ([17]): Assume that       , and        are    -

fractional analytic functions,     , then 
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Theorem 2.10 (chain rule for fractional derivatives)([17]): If f       
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III. CALCULATION AND RESULTS                                                                                                                 
In this section, we will use the product rule, quotient rule and chain rule for fractional derivatives to 

evaluate the fractional derivatives of the equations discussed in this article.  

Example 3.1: Let      . Find     
           from the equation  

  
   

 

       
      

   
 

       
     . 

Solution: Taking the fractional derivatives on both sides of Eq. (  ) at the same time, and we get 
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Using chain rule and product rule for fractional derivatives yields 
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Thus, 
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And hence, 
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Example 3.2: If      . Evaluate     
           from the equation  

                                         . 

Solution: Since 
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It follows that 
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And hence, by product rule for fractional derivatives, 
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Therefore, 
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Thus, 
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Example 3.3: Assume that      ,       are real numbers, and    . Evaluate the second order 

 -fractional derivative     
  

 
         from the equation  
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Solution: Since 
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It follows that 
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And hence, 
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Furthermore, by quotient rule for fractional derivatives,  
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Example 3.4: Suppose that that      . Find the second order  -fractional derivative     
  

 
         

from the equation  
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Solution: Since 
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By chain rule for fractional derivatives, we obtain 
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Hence, 

    
                           .                      (32) 

Furthermore, using quotient rule for fractional derivatives yields 
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IV. CONCLUSION   
The fractional differential problem of implicit fractional functions is very important in fractional 

calculus. Using product rule, quotient rule and chain rule for fractional derivatives, we can easily obtain the 

solution of this problem. In the future, we will also use these methods to study the engineering mathematics 
problems and fractional differential equations based on the Jumarie type of Riemann-Liouville fractional 

derivatives. 
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