
Quest Journals

Journal of Software Engineering and Simulation

Volume 8 ~ Issue 11 (2022) pp: 24-27

ISSN(Online) :2321-3795 ISSN (Print):2321-3809

www.questjournals.org

*Corresponding Author: Yochna Sheetal Garuda 24 | Page

Research Paper

Efficient Self Protection in Clustered Distributed System

Using Access Detection

Yochna Sheetal Garuda

Bhagyashree Shankar
Dr.K. Vinodha , PES University, Bangalore, India

Abstract— The complexity of today's distributed computing environment is such that the presence of bugs and

security holes is statistically unavoidable. A very promising approach to the present issue is to implement a self-

protected system. Self-protection refers to the ability for a system to detect illegal behaviors. This article

demonstrates the implementation of self-protection manager which targets clustered distributed systems. Our

approach is based on the global database of the clustered distributed applications. This knowledge permits to

detect known and unknown attacks if an prohibited (illegal) access is performed. The prototype is designed

using accessdetection.

Keywords— Cluster security, self-protection, LAN device.

Received 15 Nov., 2022; Revised 28 Nov., 2022; Accepted 30 Nov., 2022 © The author(s) 2022.

Published with open access at www.questjournals.org

I. INTRODUCTION
The assumptions correspond to the point of view of a machine provider which rents his cluster

infrastructure to different customers. It is assumed that each customer has a set of machines completely

allocated to the applications. However, the native network and the Internet access are shared by all the

applications. Therefore, the threat may arrive from outside of the cluster through the web. The main aim of this

paper is to present the improved method for self-protected system in the context of cluster-based applications. It

is considered that the hardware environment is composed of a cluster of machines interconnected through a

local area network with an Inter net access via a router. The software environment is composed of a set of

application components deployed on thecluster.

The approach is based on the access provided to the particular user in a cluster to access a particular

process. Any attempt to use a process which is not allowed for a particular user is trapped and the access to that

process is rejected. Legal access for different process to different users in the cluster is maintained by the

Deployment Manager. The main characteristics of the system are: 1) to reduce the perturbation on the managed

system whereas providing high reactivity, 2) to change the configuration (and reconfiguration) of security

components when the system evolves, and 3) to keep the protection manager (which implements the protection

policy) independent from the protected legacy system. The purpose of the work is not to replace the existing

tools but rather to provide a systematic approach that allows more closely-coupled interactions between them, so

that the cluster wide, coordinated reaction against an attack can become automated, and thus, more efficient.

The main limitation relates to the scope of the detected attacks and to the allowed process; the current

system can only detect attacks which use illegal process based on the information in the global Catalog. In order

to validate our approach, we applied it to the self-protection of a cluster of machines.

The remainder of the article is organized as follows: Section 2 presents the related work. Section 3 presents our

Implementation details. Section 4 presents Flowchart. The evaluation is reported in Section 5. We conclude in

Section 6.

II. LITERATURESURVEY
This section reviews the main tools and techniques currently used by security experts to fight against intrusions

and the existing systems which implement a self-protected behavior.

Efficient Self Protection in Clustered Distributed System Using Access Detection

*Corresponding Author: Yochna Sheetal Garuda 25 | Page

A. IntrusionDetection

In [20], two main approaches have been explored to ensure intrusion detection: misuse intrusion detection and

anomaly intrusion detection. These approaches have been used in the case of Firewalls and Intrusion Detection

Systems (IDS).

Snort[19] is an example of such systems. This approach induces alittle range offalsepositives however cannot

notice unknown attacks. Anomaly intrusion detection tries to identify irregular behaviors of the system by

shaping the traditional behavior of the system (instead of attacks). The system is discovered and any misdeed is

signaled.

An early work [6] modelled and verified behavior correctness at the level of system calls. Recent examples of

anomaly-based detection can be found in [17], [8], [9], and [5]. This approach can detect unknown attacks but at

the price of a lot of falsepositives.

B. Backtracking Tools

In [14], Backtracking tools record detailed data about the system activity so that once an intrusion attempt has

been detected; it is possible to determine the sequence of events that led to the intrusion and the potential extent

of the damage (e.g., data theft/loss).

The Taser system [10] provides the ability to restore the system in a trusted state. It enhances the file system

with a selective self-recovery capability.

C. Self-ProtectedSystems

Self-protected systems avoid miss communication between systems and provide security to the system. Self-

protected systems are systems which are able to autonomously fight back intrusions in real time.

Rootsense [15] is an example of self-protected system. It differs from classical IDS within the sense that it

detects and blocks intrusions in real-time. It audits events within different level of the host operating system and

correlates them to comprehensively capture the global systemstate.

MLIDS [1] (multilevel intrusion detection system) is another example of self-protected system. MLIDS

automates the detection of network attacks and proactively protect against them.

The Self-cleansing system (SCS) [11] is another solution to build self-protected software. It targets replicated

servers which are stateless(e.g., web servers) involving a load- balancing strategy. This bearish approach makes

the assumption that all intrusions cannot be detected and blocked. In fact, after a certain time,

thesystemisconsidered to be compromised. Hence,itperiodically reinstalls a part of the system from

asecurerepository. However, the solution only applies tostatelesscomponents.Howeverthe self-protected tools

areinvaluablefor

systemadministratorsastheyarenotpowerfulenoughtoensuregoodlevelsofsecurity,forseveralreasons.Firstofall,mos

tdetectorscanonlyprotectthesystemagainst known attacks. Therefore, pirates are always alengthahead

withtheresorttonew“exploits”,whichareablebypassfilters and scanners. The purpose of our work

isnottoreplacetheexistingtoolsbutrathertoprovideasystematic approach that allows moreclosely-

coupledinteractionsbetween them, so that the cluster-wide,coordinated reaction against an attack can become

automated, and thus, more efficient.

D. Summary

From this work, it is analyzed that a self-protected system should be 1) be fully automated both in its

configuration and its reaction to intrusions, 2) fire near-zero false positive since the response is automated, and

3) induce a low- performance overhead on an application performance to enable real-timeprotection.

III. IMPLEMENTATIONDETAILS
The approach is based on the access provided to the particular user in a cluster to access a particular

process. Any attempt to use a process which is not allowed for a particular user is trapped and the access to that

process is rejected. Legal access for different process to different users in the cluster is maintained by the

Deployment Manager .

A. Deployment Manager

Role of Deployment Manger is to create global database and if required maintain the database. Global database

will contain information regarding i) the number of machines in the cluster , ii) the number of process in each

machine in the cluster, iii) the user groups allowed / not allowed for each user. Deployment Manager Collects

information of machines in clusters and identifies the processes on each individual machines. Identify user

groups that allowed access for these process and prepares a global database.

Efficient Self Protection in Clustered Distributed System Using Access Detection

*Corresponding Author: Yochna Sheetal Garuda 26 | Page

B. Self Protection Manager

Role of Self Protection is to fire Query to the machines which are in the cluster. Query will be asking for

processes running in the machine under the specific user.

In reply to the query fired by self-protection manager, the machine replies with the processes running under the

specific user. Self-Protection manger in turn will verify the reply given by machine with the global database.

When an illegal access of the processes from an undefined user is detected, the self-protection manager quickly

stops that request.

C. Proposed Algorithm

D. Control Loop Reactivity

This experience evaluates the time between the detection illegal access and the termination of compromised

process. Our objective is to keep the time delay at its minimum level. The infrastructure corresponds to that of

Fig.1.

Fig. 1 : System Model

IV. EXPERIMENTALVALIDATION
Clusters are used to evaluate our self-protectionsystem.

The deployment manager and self-protection manager will be developed in .net technology. We will be using

SQL Server as our database. This will work only on the windows operating system. The illegal access will be

identified through deployment manager and self-protectionmanager.

V. CONCLUSION
Today, distributed computing environments are increasingly complex and difficult to

administrate. This complexity is such that the presence of bugs and security holes is statistically unavoidable.

Therefore, access control policies become very difficult to specify and to enforce. Following the autonomic

computing vision, a very promising approach to deal with this issue is to implement a self-protected system

which is able to distinguish legal (self) from illegal (nonself) operations. The detection of an illegalbehaviour

triggers a counter-measure to isolate the compromised resources and prevent further damages. In this we have

Efficient Self Protection in Clustered Distributed System Using Access Detection

*Corresponding Author: Yochna Sheetal Garuda 27 | Page

designed and implemented self-protection system whose main characteristics are: 1) to reduce the perturbation

on the managed system whereas providing high reactivity, 2) to change the configuration (and reconfiguration)

of security components when the system evolves, and 3) to keep the protection manager (which implements the

protection policy) independent from the protected legacy system. In this when an illegal access of the processes

from an undefined user is detected, the self- protection manager quickly stops thatrequest.

REFERENCES
[1]. Noel De Palma, Daniel Hagimont, Fabienne Boyer, and Laurent Broto, “Self-Protection in a Clustered Distributed System”, IEEE

Transactions On Parallel And Distributed Systems, VOL. 23, NO. 2, FEBRUARY2012.

[2]. G.S. Blair, N. Bencomo, and R.B. France, “Models@ run.time,” Computer, vol. 42, no. 10, pp. 22-27, Oct.2009.

[3]. E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani, “The Fractal Component Model and Its Support in Java,”
Software—Practice and Experience, vol. 36, nos. 11/12, pp. 1257- 1284,2006.

[4]. B.H.C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A Goal- Based Modeling Approach to Develop Requirements of an

Adaptive System with Environmental Uncertainty,” Proc. ACM/IEEE Int’l Conf. Model Driven Eng. Languages and Systems,2009.
[5]. L. Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Kumar, and P. Dokas, The MINDS-Minnesota Intrusion Detection

System Next Generation Data Mining. MIT Press,2004.

[6]. S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A Sense of Self for Unix Processes,” Proc. IEEE Symp. Research in
Security and Privacy,1996.

[7]. S. Forrest, S.A. Hofmeyr, and A. Somayaji, “Computer Immunology,” Comm. the ACM, vol. 40, no. 10, pp. 88-96,1997.

[8]. D. Gao, M.K. Reiter, and D. Song, “Behavioral Distance for Intrusion Detection,” Proc. Eighth Int’l Symp. Recent Advances in

Intrusion Detection (RAID ’05), Sept.2006.

[9]. J.T. Giffin, D. Dagon, S. Jha, W. Lee, and B.P. Miller, “Environment-Sensitive Intrusion Detection,” Proc. Int’l Symp. Recent

Advances in Intrusion Detection, Sept.2005.
[10]. A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara, “The Taser Intrusion Recovery System,” Proc. 20th ACM Symp. Operating

Systems Principles,2005.

[11]. Y. Huang and A. Sood, “Self-Cleansing Systems for Intrusion Containment,” Proc. Workshop Self-Healing, Adaptive and Self-
MANaged Systems,2002.

[12]. Sun Microsystems, Java 2 Platform Enterprise Ed. (J2EE), http://java.sun.com/j2ee/,2011.

[13]. J. Kephart, An Architectural Blueprint for Autonomic Computing. IBM White Paper, 2003.
[14]. S.T. King and P.M. Chen, “Backtracking Intrusions,” ACM Trans. Computer Systems, vol. 23, no. 1, pp. 51-76,2005.

[15]. R. Koller, R. Rangaswami, J. Marrero, I. Hernandez, G. Smith, M. Barsilai, S. Necula, and S. Masoud, “Anatomy of a Real-Time

Intrusion Prevention System,” Proc. Int’l Conf. Autonomic Computing, pp. 151-160,2008.
[16]. B. Morin, O. Barais, G. Nain, and J.-M. Jezequel, “Taming Dynamically Adaptive Systems Using Models and Aspects,” Proc. IEEE

Int’l Conf. Software Eng.,2009.

[17]. D. Mutz, F. Valeur, C. Kruegel, and G. Vigna, “Anomalous System Call Detection,” ACM Trans. Information and System Security,
vol. 9, no. 1, pp. 61-93, Feb.2006.

[18]. S. Sicard, F. Boyer, and N. De Palma, “Using Components for Architecture-Based Management: The Self-Repair Case,” Proc. Int’l

Conf. Software Eng.,2008.
[19]. M. Roesch, “Snort—Lightweight Intrusion Detection for Networks,” Proc. Large Systems Administration Conf., Nov.1999.

[20]. A. Sundaram, “An Introduction to Intrusion Detection,” ACM Crossroads Student Magazine, vol. 2, no. 4, pp. 3-7,1996.

http://java.sun.com/j2ee/

