Quest Journals

Journal of Software Engineering and Simulation
Volume 8 ~ Issue 5 (2022) pp: 16-25
ISSN(Online) :2321-3795 ISSN (Print):2321-3809
WWW.questjournals.org

Research Paper

Malware Detection and Classification System Using
Random Forest

! Chukunda Dike Chukunda

Department of Computer Science, Rivers State University, Nigeria

2 Dr. Daniel Matthias

Department of Computer Science, Rivers State University, Nigeria.

$Dr. E.O Bennett

Department of Computer Science, Rivers State University, Nigeria.

Corresponding Author: Chukunda Dike Chukunda
Department of Computer Science, Rivers State University, Nigeria

ABSTRACT- Malware programs attack computer systems, smart mobile devices, and some applications.
Malware is a program that needs to be watched out for because it can be a threat to computer users and
internet networks. The malware was created to steal personal information about a computer user or control a
user’s device over a network. Computers are easily infiltrated by various malware programs that can interfere
with and even damage user files. Many users are not aware of the entry of malware programs into a computer,
one of which is through a network that contains the malware program. The dataset used in this study was taken
from the Kaggle Data Set and VirusShare, with a total of 17845 Data in the form of a comma-separated values
(CSV) file, captured based on traffic on the network that contains both malware and non-malware. The process
of training and testing on the Data Set is carried out using the Tensorflow Tools by making a Binary
Classification or creating two classes, hamely the malicious class, and the benign class. The method used is
Machine Learning by comparing the Random Forest Algorithm, Support Vector Machine, and Bayesian
Network, The system was implemented using python programing language for its backend and HTML/CSS for
the frontend of the system. The results obtained from the three algorithms show that Random Forest has the
highest level of accuracy with a percentage of 99.95%, a precision of 0.998, and a recall of 0.999, with an
average detection speed of 3 to 8 seconds, enabling quick and earlier mitigating action to be done before injury.
Keywords- Malware Detection, Malware Classification, Machine Learning, Random Forest, Matrix
Evaluation

Received 01 May, 2022; Revised 10 May, 2022; Accepted 12 May, 2022 © The author(s) 2022.
Published with open access at www.questjournals.org

I INTRODUCTION

Computers, mobile phones, and the internet have been commonplace in our everyday lives in the
modern era. The majority of companies operate online, using computers and the internet. People and
organizations have found this to be a favorable environment. Because of the widespread usage of the Internet,
the credibility of our systems and information has grown in importance. This necessitates data continuity,
precision, and reliability throughout its life. Data cannot be accessed while in transit, and precautions must be
considered to prevent unauthorized persons from altering it [1].

As you would expect, malware has a long and illustrious past. Yisrael Rada may have coined the
word malware in 1990, yet these kinds of dangers had been known as computer viruses for decades. Although
many of the original infected programs were built as pranks or experiments, hackers now use malware to steal
personal, financial, and commercial data. Worse, government agencies are involved to gain access to classified
information [2]. We don't go a day without hearing about new varieties of malware that leave a trail of
devastation in their wake. Malicious software may appear to be a novel concept. Viruses, worms, and Trojans

*Corresponding Author: Chukunda Dike Chukunda 16 | Page

Malware Detection and Classification System Using Random Forest

have infected the majority of computer users in recent years, typically as a result of their machines being
targeted. The media equally played a part, reporting on the latest cyber-attacks and virus writer arrests on a more
regular basis [3].

On the other hand, malicious technology is not a new phenomenon. Even though the early computers
were not infected with viruses, they were nonetheless vulnerable. When information technology was in its
infancy, there were not enough people who knew how to manipulate computer systems.

However, as computer devices became more globally used, problems began to emerge. Viruses first
appeared in the 1970s on dedicated networks like the ARPANET. Apple's introduction of personal computers in
the early 1980s coincided with an increase in computer viruses. Individuals were able to comprehend how
computers functioned as more people acquired hands-on access to them, and some people accidentally exploited
their newfound knowledge for harmful ends [4]. Viruses have evolved in tandem with technological
advancements. Machines have advanced to the point that they are almost unrecognizable in only a few decades.
The once-basic computers that booted from a floppy disk have evolved into sophisticated systems capable of
transferring massive quantities of data almost rapidly, routing email to hundreds or thousands of addresses, and
entertaining people with movies, music, and interactive Web pages. Virus authors have adapted to these
developments [5].

. RELATED WORKS

[6] presented a deep learning-based malware variant identification technique. They successfully
resolved the data imbalance issue by using the bat technique to generate grayscale images from malicious code.
A convolutional neural network was used to detect and analyze malware pictures, with the model achieving a
high level of accuracy, according to the findings. [7] with the same configuration, introduced a more flexible
and hybrid deep learning platform approach for successful visual detection of malware. Researchers have to
utilize an aggressive learning machine with two hidden layers to detect dangers in malware in safety-critical
networks. [8] and [9] offered deep flow, a new deep learning-based technique for detecting malware straight
from the information streams of an application.

To improve the effectiveness of the classifier, researchers used deep learning as a feature extraction
method to detect malicious code. [10] Suggested a hybrid deep learning visualization technique, demonstrating
that a deep learning-based model can effectively differentiate the behavioral characteristics of several malware
families.

[11] Proposed a method for dealing with the complexities of the malware dataset. To increase the
scalability of unknown malware detection, this technique employs a multi-level deep learning model that
arranges the tree structure of several deep models.

Researchers employed a heterogeneous deep model made up of several layers of associative memory
and a weighted auto-encoder with multilayer constrained Boltzmann machines to detect malware, according to
[12]. The deep learning model is required to undertake a greedy layer-wise training operation followed by fine-
tuning of a supervised parameter to efficiently detect unsupervised features.

[13] Compared single-flow convolutional neural network (CNN) models to dual-flow deep learning
methods such as gated recurrent unit fully convolutional network (GRU-FCN). Operating systems (OS)
popularity has soared in recent years. However, because it is a common target for malicious software, its
popularity comes at the expense of stability.

[14] Developed a malware detection system based on interpretable strings derived from API execution
calls, as well as semantic strings that reveal an attacker's intent and goal. A parser was used to extract
interpretable text from each PE file, and an SVM ensemble with bagging was utilized to build the detector. The
system's performance was evaluated using a dataset created by Kingsoft's anti-virus lab.

[15] suggested a text categorization-based malware classification approach. They began by extracting
all n-grams from the training data, with n ranging from 3 to 6. Second, the Fisher Score feature selection
technique was used to choose the top 5500 features based on their Document Frequency (DF) score. They then
fed the features into a Decision Tree (DT), an Artificial Neural Network (ANN), a Support Vector Machine
(SVM), a Random Forest (RF), and a Bayes method (NB).

[16] proposed a method for collecting bytes n-gram characteristics from known dangerous samples,
with n ranging from 1 to 8, to aid in the identification of unknown executable. They employed a technique
called class-wise document frequency to minimize the feature space because the number of unique n-grams is so
huge. Finally, multiple N-gram models were generated using classifiers such as Decision Trees, Nave Bayes,
Instance-based Learners, Adaboost, and Random Forests.

[17] developed a method for calculating the information gain of each bytes n-gram in training samples and
selecting the K n-grams with the highest information gain as features. Each feature vector property's averages
from the malware and benign samples were then calculated individually. Finally, a new piece of software was

*Corresponding Author: Chukunda Dike Chukunda 17 | Page

Malware Detection and Classification System Using Random Forest

assigned to one of the two categories based on the distance between the unknown sample's feature vector and
the average vectors of the two categories.

[18] proposed a malware detection approach based on the frequency of opcode sequences and the
relevance of such sequences. Each program was represented as a feature vector, with each feature corresponding
to a unique 1-g or 2-g. To decrease the number of 2-g characteristics, they used Information Gain to choose the
top 1000 2-g traits. To test their strategy, they utilized 1700 malicious and 1000 benign programs. In the end, the
Support Vector Machine with Pearson VII proved to be the most accurate.

[19] proposed MutantX-S, a clustering approach based on operation code N-gram characteristics
retrieved from malware assembly language source code after disassembly. By combining a hashing method and
a close-to-linear clustering approach, MutantX-S increases the scalability of processing very large numbers of
malware with high-dimensional attributes. Instead of working with enormous amounts of data, the algorithm
simply used prototypes to do agglomerative hierarchical clustering.

According to [20], byte n-grams appear to learn mostly from string information in an executable,
namely elements from the PE header. Millions of n-grams (for a greater n), feature selection algorithms tend to
select the ones that usually occur to be considered features. This encourages the use of low entropy features such
as strings and padding locations.

[21] extended the previous work to detect metamorphic malware. Wavelet analysis was applied to
decide the areas where significant changes are made in the entropy values. Afterward, a comparison was made
regarding the similarity of the two files using the Levenshtein distance. Hence, given an unidentified piece of
software, it would be assigned to the class representing the most related sample in the training set.

[22] centered on creating an effective model for detecting phishing URLs using machine learning
techniques The Link Guard algorithm was used to extract real and visual links from the Domain Name System
(DNS), and the actual and visual links were compared to see if they were the same. The system was written in
the Python programming language. Experiments were carried out using two publicly accessible website
databases to test the effectiveness of detecting phishing websites. 3200 website samples were used, with 2127
genuine websites and 1036 phishing websites. The accuracy of the LinkGuard and SVM was 98.8 percent.

*Corresponding Author: Chukunda Dike Chukunda 18 | Page

Malware Detection and Classification System Using Random Forest

1. METHODOLOGY

Training
Sample

Feat
eature Tr

aining

HybridFeatur
ExX ¥ .

e Extraction

Repository

Random
Forest

Classification Phase/ Model

RANDOM FOREST

EXE | Extractionfor

Random Forest

Benign or Malicious L

EXE

Benign or Malicious

Figure 1: Architecture of the proposed System

*Corresponding Author: Chukunda Dike Chukunda

19 | Page

Malware Detection and Classification System Using Random Forest

Data Training
Collection of > > ‘

Data

Features
Extraction

v

Deployment of
Random Forest

v

User Input »! Feature > Detection/Classification
Extraction

Figure 2: Proposed System Flow Diagram

Collection of Dataset

The gathering of datasets is the initial step. Malware and benign files were gathered to provide the
dataset for training the model with a machine learning technique. The databases for dangerous and benign files
are combined to create a huge dataset. The benign files dataset has approximately 15,000 files, while the
harmful applications dataset contains approximately 30,000 files .

Training of Dataset

The created dataset is utilized to train the model using the random forest technique with the supplied
parameters. The data must be arranged, hence data prepossessing is a crucial element of the process. To extract
features, the relationship between these datasets must also be discovered. Finding data with missing
characteristics and values is also a big component of the process. Because many of the harmful files or software
gathered from VirusShare were unable to be adequately decompiled, they were discarded and new files were
collected from Contagio.

Feature Extraction

The main aim is to discover malicious permission patterns using a mix of permissions as ML input
training datasets of benign and malicious files. The permission-based features have been extracted, and these
traits have been used to distinguish between malicious and benign permission requests. The extraction of
features is crucial for prediction. The more features you have, the faster your computations will be, as well as
the less memory you'll use. This is used to go through the decompiled source code and retrieve the target system
used APIs, which are what make up the first feature sets. The model is built using the numbers of permission-
related APIs extracted as features from both the malicious and benign file datasets, and it can be used to forecast
any file from the test dataset.

Random Forest Algorithm:

A random forest algorithm is used to classify the features after they have been extracted. If we break
down the word, it consists of forest, which is a collection of decision trees, and random, which refers to the fact
that we are sampling at random. When this approach is applied to a data set, a portion of the data is used as a
training set, and the data is clustered into groups and subgroups. A decision tree is a structure that looks like a
tree and is created by connecting data points to groups and sub-groups. The program then creates a forest out of
several trees. However, each tree is unique since the variables are chosen at random for each split in the tree.
Apart from the training set, the remaining data is utilized to forecast which tree in the forest produces the best
categorization of data points, and the tree with the highest predictive power is displayed as output. The type of
each program is then determined using a set of labels, with 1 denoting malware and 0 denoting benign files. By
minimizing the uncertainty of the class labels, the decision tree splits the training set into two subsets with
distinct labels at each node.

*Corresponding Author: Chukunda Dike Chukunda 20 | Page

Malware Detection and Classification System Using Random Forest

HEENR
Decision Tree-1 Decision Tree-2 Decision Tree-N
Result-1 Result-2 Result-N
L»{ Majority Voting / Averaging

Final Result
Figure 3: Random Forest Algorithm

VirusShare

Dataset

\l/ Dataset Spliting \l/

30% 70%
Testing Training

Classification
Testing

Model

Random Forest

Evaluation

Figure 4: Formulation of Datasets

\2

*Corresponding Author: Chukunda Dike Chukunda 21| Page

Malware Detection and Classification System Using Random Forest

V. RESULT AND DISCUSSION

To create a baseline for comparing evaluation metrics between k-fold cross-validation metrics and
those achieved by testing on an unknown dataset, a 10-fold cross-validation approach was used with the entire
dataset of 345,000 observations. This strategy trains the classifier iteratively on 70% of the training data before
testing it on the remaining 30%. After 10 iterations, the results are calculated by computing the mean accuracy
across all models. The standard classification measures of Precision (an indicative measure of erroneous
positives), Recall (an indicative measure of false negatives), and F-measure are provided in Table 2. (a mean of
Precision and Recall). Each has a maximum score of 1.0.

The dataset was read into the working directory using the pandas library in python and analyzed if null
values are using a heatmap function from the seaborn library. Feature extraction was used in reducing the
columns of the dataset by selecting just two import features, which are the name and label columns. The name
column contains various applications while the label column represents the class for each of the applications. A
count plot that displays the number of benign files and malicious files can be seen in figure 5. Tokenizer was
used in separating each of the text in the name column into tokens for easy implementation while the
LabelEncoder function was used in converting the label column from non-numeric values to the numeric value.
The reduced dataset was split into training data and testing data. 85% of the data was used for training, while
15% of the data was used for testing. X_train, Y_train variable was used in holding the training data while
X_test, Y_test are used in holding the testing data. X _val and Y_val were also used in validating the data. The
training and validation data were passed into the random forest for training a model for detecting malicious
software. The model was trained using a batch size of 32 and an epoch value of 20. The performance of the
trained model can be seen in Figures 5, 6, 7, 8, and 9.

Table 1: Malware Dataset

Number Family Family Name No. of Variant
1 Dialer Adialer .C 122
2 Backdoor Agent.FYI 116
3 Worm Allaple.A 2949
4 Worm Allaple.L 1591
5 Trojan Alueron.genj 198
6 Worm Autol T.Autorun.K 106
7 Trojan C2Lop.P 146
8 Trojan C2Lop.genG 200
9 Dialer Dialplatform.B 177
10 Trojan Downloader Dontovo.A 162
11 Rogue Fakerean 381
12 Dialer Instantaccess 431
13 PWS Lolyda.AA 1 213
14 PWS Lolyda.AA 2 184
15 PWS Lolyda.AA 1 123
16 PWS Lolyda. AT 159
17 Trojan Malex.gen!J 136
18 Trojan Downloader bfuscator.AD 142
19 Backdoor Rbot!gen 158
20 Trojan Skintrim.N 80
21 Trojan Downloader Swizzor.genlE 128

Table 2: Summary of 10-Fold Cross-Validation Classification Results.

ALGORITHM ACCURACY (%) PRECISION RECALL F-MEASURE
Random Forest 99.95 0.998 0.999 0.9995
Bayesian Network 92.90 0.928 0.929 0.9290
SVM 70.39 0.702 0.703 0.7039

Table 3: Breakdown of Training Data used during Initial Training

Process Classification Number Percentage (%)
Malware 95,191 9%
Benign-ware 953,384 91%

Table 4: Breakdown of Malware by Classification used in Training Data

Malware Classification Number of Samples
Trojan 10
Spayware 18
Unknown 12
Ransomware 17
Backdoor 7
Worm 7

*Corresponding Author: Chukunda Dike Chukunda 22 | Page

Malware Detection and Classification System Using Random Forest

Virus 29

Table 5: Breakdown of Classification Report for Random Forest Training Runs

Precision Recall F1 False Positive False Negatine Run
1 1 1 1 1 94
1 0.79 88 2141 0 1
1 0.97 99 2.82 0 1
1 0.98 99 1.64 0 1
1 0.99 99 1.29 0 1
1 0.99 1 0.92 0 2

Table 6: Breakdown of Malware Classifications Used During Live Testing Of Including Detection Rates

Malware Classification Number of Samples Detection Ration (%)
Trojan 47 99.8%
Ransomware 30 100%
Spyware 30 99.8%
Backdoor 22 100%
Virus 74 100%
Adware 15 99.9%

[Text(e, @, 'Benign'), Text(1l, @, 'Malware')]

2000

1750

1500

1250

1000

count

750

500

250

Benign Malware
LABEL

Figure 5: Count Plot of Benign and Malware

These show the total number of malicious and begin files present on the dataset.

Confusion Matrix

The confusion matrix shows the number of prediction results of the classification problem. It shows the
summary of the number of correct and incorrect predictions with a count value broken down by down. The
confusion matrix is a technique for summarizing the performance of a classification algorithm. This is because
classification accuracy alone can be misleading if an unequal number of observations in each class. The
confusion matrix of the random forest can be seen in figure 6

*Corresponding Author: Chukunda Dike Chukunda 23 | Page

Malware Detection and Classification System Using Random Forest

Confusion Matrix
0 1

0 237 39

Actuals

1 21 146

Predictions

Figure 6: Confusion Matrix

The confusion matrix shows that the model classified the benign class correctly 237 times and falsely 39, and it
classifies the malicious class correctly 146 times and falsely 21.

Performance Analysis

The performance of the trained random forest model was carried out by plotting a classification report on the
trained dataset. The Classification report is used to measure the quality of predictions from the random forest
Model to check how many predictions are True and how many are False. More specifically, True Positives,
False Positives, True Negatives, and False Negatives are derived while making a prediction. The classification
report for the random forest model for malware detection and classification can be seen in figure 7 below

The classification report shows the accuracy level of the test data to be 87%, precision for the benign class to be
92%, and that of the malicious files to be 79%. The support shows the total number of the prediction made by
the random forest to be 276 for benign class and 167 for malware class.

Evaluation and Validation Results

Cross-Validation is a very powerful tool. It helps in giving a better use of data, and it gives much more
information about the performance of the random forest. In complex machine learning models, it's sometimes
easy not to pay enough attention and use the same data in different steps of the pipeline.

V. CONCLUSION

Malware, including in mobile and smart devices, has become more sophisticated and greater in
frequency during recent years. Despite the existence of several defensive tools and procedures, malware
detection, analysis, and classification remain difficult tasks because malware producers continue to hide
information in attacks or adapt cyber-attacks to avoid newer security measures. It is critical to evaluate malware
behavior and categorize samples to design an effective program to prevent malware attacks. A deep learning
technique for malware classification employing random forest (RF) architecture has been developed for this
purpose.

V. RECOMMENDATION

The study of malware will never go away due to the everyday new creation of malware. Future
research should continue to deepen it to improve understanding of the phenomenon, for better proactive
protection. In general, malware detection on devices is expected to be a popular topic in the future. Because of
the growing use of cellphones, an increasing number of individuals will be at risk from forthcoming malware.
And, as these devices gain additional capabilities, their use will expand, resulting in an increasing number of
victims. Creating online stores, as Apple and Android have done, was a decent first step in protecting customers
from harmful software. Before being made available in these stores, testing is performed to ensure that
submitted programs do not include any undesired behavior. Unfortunately, malware authors have devised
methods to circumvent these safeguards, emphasizing malware's pervasiveness. On-device protection is the only
way to retain security at an acceptable level in these situations. On-device detection was not possible on a broad
scale of the device five years ago owing to inadequate hardware. Devices now run at 1 GHz, and new dual-

*Corresponding Author: Chukunda Dike Chukunda 24 | Page

Malware Detection and Classification System Using Random Forest

processor architectures have been announced, allowing for on-device detection. As a result, future research will
focus on on-device detection to protect smartphone users from viruses.

[1].
[2].
[3].

[41.

[5].
[6].

[71.
8.

9.

[10].
[11].

[12].

[13].
[14].
[15].
[16].
[17].
[18].

[19].
[20].

[21].

[22].

[23].

REFERENCE
Alazab, M.; Venkataraman, S. & Watters, P. (2010). "Towards Understanding Malware Behaviour by the Extraction of API calls",
Accepted to the IEEE 2nd Cybercrime and Trustworthy Computing Workshop (CTC2010), 2010.
Stolfo, S.; Wang, K. & Li, W. (2006). "Towards stealthy malware detection”, Malware Detection, Advances in Information
Security, Springer, 27, 231-249.
Venkatraman, S. (2009). "Autonomic Context-Dependent Architecture for Malware Detection", Proceedings of International
Conference on e-Technology (e-Tech2009), International Business Academics Consortium, ISBN 978-986-83038-3-6, 8-10
January, Singapore, 2927-2947.
Mamoun Alazab, Andrii Shalaginov, Abdelwadood Mesleh & Albara Awajan (2020), ‘Intelligent mobile malware detection using
permission requests and API calls’, Future Generation Computer Systems, vol. 107, pp. 509-521, doi:10.1016/j.future.2020.02.002
[Q1, IF 5.768, ERA2010 RANK - A]
Moser, A., Kruegel, C. & Kirda, E. (2020). Limits of static analysis for malware detection 23rd Annual Computer Security
Applications Conference, pp. 421-430 Miami Beach, Florida, USA.
Ahmed, F., Hameed, H., Shafig, M. & Farooq, M. (2009) Using spatio-temporal information in API calls with machine learning
algorithms for malware detection Proceedings of the 2nd ACM workshop on security and artificial intelligence. ACM, 55 - 62.
Aslan, O. & Samet, R. A. (2020). Comprehensive Review on Malware Detection Approaches. IEEE Access, 8, 6249 — 6271.
AV Test (2015) [Online] Available from: https://www.av-test.org/en/statistics/malware/

Bayer, U., Moser, A., Kruegel, C. & Kirda, E. (2006) Dynamic analysis of malicious code. Journal of Computer
Virology, 2 (1), 67-77.

Casey, E. (2011). Foundations on Digital Forensics. Ch. 1. Retrieved from:
http://booksite.elsevier.com/samplechapters/9780123742681/Chapter_1.pdf

Christie, C. J. (2006). ‘Former UBS computer system manager gets 97 months for unleashing ‘logic bombs’ on company network.
US DOJ Press Release (News).

Continella, A., Guagnelli, A., Zingaro, G., De Pasquale, G., Barenghi, A. & Zanero, S. (2016). Shieldfs: A self-healing,
ransomware-aware filesystem Proceedings of the 32nd annual conference on computer security applications, ACM, New York,
NY, USA 336 — 347. ACSAC '16.

Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G. & Chen, J. (2018). Detection of Malicious Code Variants Based on Deep Learning.
IEEE Trans. Industrial Information, 14, 3187 — 3196.

Dahl, G., Stokes, W., Deng, L. & Yu, D. (2013). Large-scale malware classification using random projections and neural
networks 2013 IEEE international conference on acoustics, speech and signal processing, IEEE, 3422 — 3426.

Damodaran, A., Troia, F., Visaggio, C., Austin, H. & Stamp, M. (2017). A comparison of static, dynamic, and hybrid analysis
for malware detection. Journal of Computer Virology and Hacking Technology, 13 (1), 1 —12.

David, O. & Netanyahu, S. (2017). Deepsign: Deep learning for automatic malware signature generation and classification
2015 International Joint Conference on Neural Networks (IJCNN), 1 — 8.

Dini, G., Martinelli, F., Saracino, A. & Sgandurra, A. D. (2021). MADAM: a Multi-level Anomaly Detector for Android
Malware Springer Berlin Heidelberg, Berlin, Heidelberg 240 — 253.

Matrosov, A., Rodionov, E., Harley, D. & Malcho, J. (2011). Stuxnet Under the Microscope (Revision 1.31). Technical report.
Retrieved from www.go.eset.com/us/resources/ white-papers/Stuxnet_Under_the_Microscope.pdf.

Mukamurenzi, M. N. (2008). Storm Worm: A P2P Botnet, NTNU (Norwegian University of Science and Technology) white paper.
Naeem, H., Ullah, F., Naeem, M. R., Khalid, S., Vasan, D., Jabbar, S. & Saeed, S. (2020). The detection of malware in the industrial
internet of things is based on a hybrid image visualization and deep learning approach. Ad Hoc Network, 105, 102154.

Poulsen, K. (2013). Slammer worm crashed Ohio nuke plant network, Security Focus, available online at:
http://www.securityfocus.com/news/6767

Arshad, H., Khan, M. A., Sharif, M. 1., Yasmin, M., Tavares, J. M. R. S. & Zhang, Y. D. (2020). Satapathy, S.C. A multilevel
paradigm for deep convolutional neural network features selection with an application to human gait recognition. Expert System,
e12541.

Dumka, N., Matthias, D., Bennett, E. O., (2021). An efficient Model for detecting Uniform Resource Locator (URL) phishing using
machine learning technique. International Journals of Computer Techniques, 8, 1- 3.

*Corresponding Author: Chukunda Dike Chukunda 25 | Page

https://www.av-test.org/en/statistics/malware/
http://booksite.elsevier.com/samplechapters/9780123742681/Chapter_1.pdf
http://www.securityfocus.com/news/6767

