
Quest Journals

Journal of Software Engineering and Simulation
Volume 8 ~ Issue 5 (2022) pp: 34-40

ISSN(Online) :2321-3795 ISSN (Print):2321-3809

www.questjournals.org

*Corresponding Author: Obobom Miracle Billy 34 | Page

Research Paper

Efficient Algorithms for Publishing, Subscribing and

Aggregating Information Contents in a Distributed

System.

1
Obobom Miracle Billy,

2
Bennett, E. O.,

3
Sako, D. J. S.

Department of Computer Science, Rivers State University, Port Harcourt, Nigeria

Abstract
A publish, subscribe and aggregate system is an information dissemination infrastructure that supports many-

to-many communications among publishers and subscribers. Lots of time and resources is spent by users

filtering through a barrage of information due to lack of notification when new information contents are

available in a dynamic environment where information constantly fluctuates. Socket I/O technology was

adopted to enable subscribers receive information in real time. System implementation was achieved using

AdonisJS. Eleven (11) topics were created by the publisher module and different contents were published to

these sample topics. Keywords were extracted using MonkeyLearn text analysis to extract these keywords from
the total words on each content and recommendation was made to other similar contents using related

keywords. The content with more related keywords got more content recommendation to subscribed users than

content with little or no keywords. The results show 77.8% efficiency which indicates that subscribers can

subscribe to contents of interest and thus receive only information published to these contents which is further

aggregated by the broker system for efficient information management and decision making.

Keywords: Publisher, Subscriber, Aggregating, Distributed System

Received 03 May, 2022; Revised 14 May, 2022; Accepted 16 May, 2022 © The author(s) 2022.

Published with open access at www.questjournals.org

I. INTRODUCTION:
With the growth of technology, the volume of data generated and received has increased dramatically.

By 2020, it was estimated that about 1.7 gigabytes of fresh data per second would be generated [1] but that

estimate may have now been surpassed. Every day, quintillion bytes of data are generated, and this number is

growing rapidly as the Internet of Things (IoT) expands. Data is generated from every aspect of life as a result

of the Internet of Things (IoT), including sensors used to gather climatic data, uploads to social networking

sites, digital images and videos, buy transaction records, and cell phone GPS signals [2]. With this high burst of

information, an end user would be exposed to a large amount of information at a time and would waste a lot of

time trying to determine whether they needed to do anything with a given information or not and thus will tend

to discard a huge amount of information without taking any action – this will not only be time consuming but

will lead to a waste of resources.

The Publish/Subscribe system is very useful in our world today. It helps us to better monitor and
describe the world around us. In our waking hours we come in contact with a barrage of events and information.

Most of these information and events are not really relevant and we shouldn’t spend our time, resources and

decision making on them. While some information is useful to notice, there are others which are important, even

critically important and make it necessary to use all available tools and resources. Being able to have knowledge

of highly important information with minimal effort is critical to any successful individual or organization [3].

In the Publish-Subscribe system, subscribers register their interest in any topic or event and

subsequently they are notified asynchronously about any event or information that matches their registered

interest. These events or messages are being generated by the publishers. The publisher need not know of the

subscribers that are receiving the messages and one publisher can send copies of messages to multiple

subscribers [4].

Efficient Algorithms for Publishing, Subscribing and Aggregating Information Contents ..

*Corresponding Author: Obobom Miracle Billy 35 | Page

Thispaper presents efficient algorithms for publishing, subscribing and aggregating information

contents in a distributed system which will enable users to get information useful and relevant to them and will

greatly reduce the time spent surfing through large volumes of information and therefore lead to better and

enhanced decision-makingprocess, while also saving cost.

II. RELATED LITERATURES
Publish-Subscribe systems are intended for situations where a single message is required by, and

should be distributed to multiple users. One major advantage of this system is that it keeps the publisher

separated from the subscriber, thus a publisher does not necessarily need to know the subscribers and the

subscribers do not need to know anything about the publisher. A publisher publishes to a group of subscribers

who make a subscription to some or all published information by a publisher. The system matches these

publications to the subscribers, ensuring that all messages are made available and delivered to all subscribers in

a timely manner [5].

Subscribers are usually interested in a particular message (event) or message patterns and not in all

messages. The different ways in which these messages are specified based on the subscriber’s interest has led to

several subscriptions schemes, of which the two most widely used are: (i) Topic-based subscription and (ii)
Content-based subscription schemes.

In Topic-based subscription, publish/subscribe scheme is solely based on topics or subjects and it uses

the idea of channels which is used to bundle communicating peers with methods to characterize and classify

event contents. Publishers can publish events and subscribers can make subscriptions to individual topics which

are identified by keywords [6].

(ii) The content-based publish/subscribe system uses a subscription scheme based on the actual content

of the considered events. This means that events are not classified according to some predefined external

criterion (e.g., topic name), but according to the properties of the events themselves [7]

One of the earliest publicly described public/subscribe systems was the “news” subsystem of the ISIS

Toolkit. The ISIS Toolkit was developed out of a study of fault tolerance in distributed systems. It implemented

Virtual Synchrony which are rules for replicating data or a service that will behave in a manner
indistinguishable from the behaviour of some non-replicated reference system running on a single non-faulty

node [8].

With the advancement in computing, more improved and efficient publish-subscribe systems started

emerging like IBM MQ, Rabbit MQ, Microsoft Scribe, Apache Kafka, Amazon SNS, Google Pubsub,

Websocket, etc.

IBM MQ (also WebSphere MQ) focused on providing an available, reliable, scalable, secured and

high-performance transport mechanism [9] and uses queue managers where multiple queue managers can run on

a single physical server as well as a large variety of different hardware and operating system combinations [10].

Microsoft Scribe uses a topic-based system where notifications are grouped in topics (or subjects) and

subscribers receive all notifications related to that particular topic (identified by keywords) [11].

Apache Kafka became the de-facto streaming platform in many organizations where it provides a

scalable and reliable platform to capture and store all the produced data from different systems. It also
efficiently provides the captured data to all the systems that want to consume it [12]. It became advantageous

because it can be used as a connecting layer as it provides real delivery guarantees. A message in Kafka which

is the unit of data is simply an array of bytes and can have an optional bit of metadata, which is referred to as a

key which is written into partitions in a controlled manner.

RabbitMQ is an Advanced Message Queuing Protocol (AMQP)message broker. It is arguably the most

popular open source and cross-platform message broker. It is lightweight and easy to deploy on premises and in

the cloud. It supports multiple messaging protocols and can be deployed in distributed and federated

configurations to meet high-scale, high-availability requirements [13].

III. SYSTEM ARCHITECTURE
Architecture specifies the structure, views and action of a system. It is a precise blueprint and

illustration of how the system is to be developed. It is constructed in such a way that it assists understanding

with respect to the structures and actions of the system.

Efficient Algorithms for Publishing, Subscribing and Aggregating Information Contents ..

*Corresponding Author: Obobom Miracle Billy 36 | Page

Figure 1: System Architecture

A publisher publishes messages to topics and can optimally receive message delivery reports. These

messages are asynchronous and completely different from each other. Publishers do not need to have any
knowledge of, or relation to, their subscriber. The subscribers are the end users of the messages sent by the

publisher. A subscriber indicates interest in a particular topic by making a subscription to that topic. When a

message is sent by the publisher to a topic the subscriber has made a subscription to, the subscriber receives a

notification informing him/her that a message has been published to a topic of interest. Notifications are sent to

the subscribers when messages are published by publishers. A subscriber can only receive notification from a

particular topic if he/she has indicated interest in the topic by making a subscription.

Table 1: Notations used in Publish Subscribe System
S/No Symbol Notation

1. T Topics to subscribe to/Topics generated by publishers.

2. S Subscription that is stored on each subscriber

3. TMT Stores all subscription containing topic T and a sequence

number that counts the number of events published on T.

4 e A new event

5. pi A single entity of a publisher.

6 SGT Sequencing group of T

7. ide A unique identifier associated to each event produced by

a publisher.

8. outgoingEventsi A set variable, initially empty, storing the events indexed

by event id that are published.

9. subsi A set variable storing topics subscribed by pi

10. LCTi An integer value representing the sequence number

associated to topic Ti

11 Sub_LCi A set of pairs for each sequence number

12 generateUniqueEventID(e) Generates a locally unique identifier for a specific event e

13. getTopicRespAddress(T) Returns the network address of the topic manager TMT

responsible for T.

14 CREATE_PUB_TS Generate an empty timestamp for a generic event

published on Topic T

15 ENS Event Notification Service

16 FILL_IN_SUB_TS Fill the time stamp and forward new subscription to the

Topic Manager.

17 COMPLETED_SUB_VC Subscription has been completed

A. Description of Algorithm for the Publisher Process
When an event e is published on a topic T, the publisher pi executes Algorithm 1 shown below. In

particular, it associates to e a unique identifier generated locally (line 1), it puts the event, together with the topic

and the corresponding identifier in a buffer (line 2) and sends a CREATE_PUB_TS (ide, i, T) message to the

topic manager TMT, associated to T (lines 3-4).

Efficient Algorithms for Publishing, Subscribing and Aggregating Information Contents ..

*Corresponding Author: Obobom Miracle Billy 37 | Page

Algorithm 1: Publish Algorithm

Figure 4: Publisher Process Algorithm

B. Description of Algorithm for Subscribe Process

B. Description of Algorithm for Subscribe Process

When a subscriber Si wants to subscribe to a new topic T, it executes the algorithm shown in

Algorithm 2. In particular, it creates an empty subscription timestamp through the createSubTimestamp function

(including also topic T), and then it sends a FILL_IN_SUB_TS (ts,(subsi ∪ {T}), id) message to fill the

timestamp and to forward the new subscription to the topic manager TMTk as in Algorithm 2 which is

responsible for the last topic in the subscription, according to the precedence relation → (lines 2-4).

Algorithm 2: Subscribe Algorithm

C. Description of Algorithm for the Notification

When an event e is notified by the ENS, a subscriber Siexecutes the algorithm 3. The algorithm uses a

function tag (e) that creates a new event e1, containing e and the indication that it has been delivered out-of-

order. The event e is not immediately notified to the application layer. A subscriber Si first checks if the event

has been published on a topic actually subscribed by Si and then checks if it has been notified by the ENS in the

right order (line 1). If such a condition is not satisfied, a new event e1 is created by tagging e; then, the event e1

is notified to the application (lines 9-11) [14].

operation PUBLISH(e, T):

(1) ide generateUniqueEventID(e):

(2) outgoingEvents (e,ide, T);

(3) dest getTopicRespAddress(T);

(4) send CREATE_PUB_TS (ide, I, T) to dest;

(5) when EVENT_TS (ts, eid) is delivered;

(6) let<e, ide T >€ outgoingEvents

(7) such that (eid = ide);

(8) ENSpublish(<e, ts>, T);

(9) outgoingEvents outgoingEvents/{<e, ide T>}

operation SUBSCRIBE(T):

(1) ts createSubTimestamp(subsiƱ T)

(2) t next(ts, null);

(3) dest getTopicRespAddress(t
1
);

(4) send FILL_IN_SUB_TS (ts, (subsi Ʊ {T}), id) to dest

(5) when COMPLETED_SUB_VC (ts,s) is delivered:

(6) sub_LCi ts;

(7) subsi subsiƱ{T};

(8) ENSsubscribe(T);

Efficient Algorithms for Publishing, Subscribing and Aggregating Information Contents ..

*Corresponding Author: Obobom Miracle Billy 38 | Page

Algorithm 3: Notify Algorithm

IV. RESULTS AND DISCUSSION
Topics can only be created by the Publisher Module which then makes updates of appropriate

information (news) to these topics created. The Subscriber Module handles subscriptions to topics created by the

Publisher module. Information updated on these topics can be viewed and notifications can be gotten based on

the topics such subscription is made to. The Subscriber Module also performs Unsubscribe action, if it no longer

wants to receive notification and information update from (a particular) topic(s). Notification is handled by the

Broker Module using the socket.I/O technology which carries out notification in real time as long as the

Subscriber Module is active on the system. Aggregation is also being performed by the Broker Module which

monitors and captures the topics that have been subscribed to by the Subscriber Module and uses these data to
filter information and thus performs aggregation by automatically recommending related information to the

Subscriber Module. The Subscriber Module can choose to receive this aggregated information or not based on

its requirements.

This system enables users to receive information (contents) of interest and also help manage this

information (contents) adequately which enhances effective decision making, saves time and resources and aid

better concentration using a simplified approach that does not need special training to use.

Table 2: Domain Extracted

From Table 2 above, 11 topics are created by the publisher module and different contents are published

to these topics which subscriptions have been made to. Based on the contents published, keywords are extracted

from the total words on each content and recommendation is made to other contents using related keywords.

S/

N

Topics Published

Content

Subscrib

er

Total

Word

Keywords

Generated

Recommended

Contents

1 Business 0 0 0 0 0

2 Education 1 1 129 9 1

3 Entertainment 0 0 0 0 0

4 Health 0 0 0 0 0

5 Movies 1 2 91 4 0

6 Politics 1 1 171 12 1

7 Science 3 1 145 10 2

8 Sports 2 2 171 10 1

9 Technology 1 3 118 15 2

10 Travels 0 0 0 0 0

11 Trends 0 0 0 0 0

upon ENSnotify(< e, ts>, T);

(1) if ((T € subsi) ꓥ (sub_LCi<ts))

(2)then trigger notify (e, T); % ordered notification

(3) for each (<Tj, v > € sub_LCi)

(4) if ((Ǝ<Tj, v
i
> € ts)ꓥ (v

i
> v))

(5) thensub_LCi sub_LCi{<Tj, v>}

(6) sub_LCi sub_LCiƱ {<Tj, v
i
>}

(7) endif

(8) endfor

(9) elsee
i

 tag(e);

(10) trigger notify (e
1
, T) %out-of-order

notification

(11) endif

Efficient Algorithms for Publishing, Subscribing and Aggregating Information Contents ..

*Corresponding Author: Obobom Miracle Billy 39 | Page

Figure 2: Line Chart showing the number of recommended contents to the subscriber from contents published

on each topic

Figure 3: Topics Created by the Publisher

Figure 4: Published Contents

Efficient Algorithms for Publishing, Subscribing and Aggregating Information Contents ..

*Corresponding Author: Obobom Miracle Billy 40 | Page

REFERENCES
[1]. Marr,B. (2016). Big Data in Practice: How 45 Successful companies used Big Data Analytics to Deliver Extraordinary Results

[2]. Bessis, N.& Dobre, C. (2014). Big Data and Internet of Things: A Roadmap for Smart Environments.

[3]. Tarkoma, S. (2012). Publish/Subscribe Systems - Design and Principles

[4]. Pandey, K. & Zhang, K. (2015). Minimizing the communication Cost of Aggregation in Publish/Subscribe Systems.

[5]. Perry, M., Delporte, C., Demi, F., Ghosh, A., Luong, M. (2001).MQSeries Publish/Subscribe Applications

[6]. Birman, K. (N.D). A History of the Virtual Synchrony Replication Model. Department of Computer Science, Cornell University,

Ithaca, New York 14853.

[7]. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A., (2003). The Many Faces of Publish/Subscribe.ACM Computing Surveys, Vol.

35(2).

[8]. Birman, K. (N.D). A History of the Virtual Synchrony Replication Model. Department of Computer Science, Cornell University,

Ithaca, New York 14853.

[9]. Credle, R., Elkins, C., Hayward, P., Lampkin, V., Leming, M., Sanchez, J., Taylor, M., Wilson, M. (2014). IBM MQ V8 Features

and Enhancement.

[10]. Davies, S.,& Broadhurst, P. (2005). WebSphere MQ V6 Fundamentals. IBM Red Paper Publications.

[11]. Shehnaaz, Y. (2004). Survey of Publish Subscribe Communication System

[12]. Jafarpour, H., Desai, R., Guy D. (2019) - KSQL: Streaming SQL Engine for Apache Kafka

[13]. Bageri, S. (2018). Learning RabbitMQ with C#: A magical tool for the IT world.

[14]. Baldoni, R., Bonomi, S., Platania, M., Querzoni, L. (2011). Dynamic Message Ordering for Topic-Based Publish/Subscribe System.

